
Machine Automation Controller

NJ-series

Instructions Reference Manual

W502-E1-01

NJ501-1300
NJ501-1400
NJ501-1500

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or
by any means, mechanical, electronic, photocopying, recording, or otherwise, without the prior written permission of
OMRON.

No patent liability is assumed with respect to the use of the information contained herein. Moreover, because OMRON is
constantly striving to improve its high-quality products, the information contained in this manual is subject to change without
notice. Every precaution has been taken in the preparation of this manual. Nevertheless, OMRON assumes no responsibility
for errors or omissions. Neither is any liability assumed for damages resulting from the use of the information contained in
this publication.

 OMRON, 2011

1

Introduction

NJ-series Instructions Reference Manual (W502)

Introduction

Thank you for purchasing an NJ-series CPU Unit.
This manual contains information that is necessary to use the NJ-series CPU Unit. Please read this
manual and make sure you understand the functionality and performance of the NJ-series CPU Unit
before you attempt to use it in a control system.
Keep this manual in a safe place where it will be available for reference during operation.

This manual is intended for the following personnel, who must also have knowledge of electrical sys-
tems (an electrical engineer or the equivalent).

• Personnel in charge of introducing FA systems.

• Personnel in charge of designing FA systems.

• Personnel in charge of installing and maintaining FA systems.

• Personnel in charge of managing FA systems and facilities.

For programming, this manual is intended for personnel who understand the programming language
specifications in international standard IEC 61131-3 or Japanese standard JIS B3503.

This manual covers the following products.

• NJ-series CPU Units

• NJ501-1300

• NJ501-1400

• NJ501-1500

Intended Audience

Applicable Products

Relevant Manuals

2 NJ-series Instructions Reference Manual (W502)

Relevant Manuals

There are three manuals that provide basic information on the NJ-series CPU Units: the NJ-series CPU
Unit Hardware User’s Manual, the NJ-series CPU Unit Software User’s Manual (this manual), and the
NJ-series Instructions Reference Manual.
Most operations are performed from the Sysmac Studio Automation Software. Refer to the Sysmac Stu-
dio Version 1 Operation Manual (Cat. No. W504) for information on the Sysmac Studio.
Other manuals are necessary for specific system configurations and applications.
Read all of the manuals that are relevant to your system configuration and application to make the most
of the NJ-series CPU Unit.

NJ-series User’s Manuals

Basic information

Introduction to NJ-series Controllers

Setting devices and hardware

Using motion control

Using EtherCAT

Using EtherNet/IP

Using CJ-series Units

Software settings

Using motion control

Using EtherCAT

Using EtherNet/IP

Programming

Using motion control

Using EtherCAT

Using CJ-series Units

Programming error processing

Testing operation and debugging

Using motion control

Using EtherCAT

Using EtherNet/IP

Maintenance

Using EtherCAT

Using EtherNet/IP

Using CJ-series Units

N
J-

se
rie

s
C

P
U

 U
ni

t
H

ar
dw

ar
e

U
se

r´
s

M
an

ua
l

N
J-

se
rie

s
C

P
U

 U
ni

t
S

of
tw

ar
e

U
se

r´
s

M
an

ua
l

N
J-

se
rie

s
In

st
ru

ct
io

ns

R
ef

er
en

ce
 M

an
ua

l

N
J-

se
rie

s
C

P
U

 U
ni

t M
ot

io
n

C
on

tr
ol

 U
se

r´
s

M
an

ua
l

N
J-

se
rie

s
C

P
U

 U
ni

t B
ui

lt-
in

E

th
er

C
A

T
 P

or
t U

se
r´

s
M

an
ua

l

N
J-

se
rie

s
M

ot
io

n
C

on
tr

ol

In
st

ru
ct

io
ns

 R
ef

er
en

ce
 M

an
ua

l

N
J-

se
rie

s
C

P
U

 U
ni

t B
ui

lt-
in

E

th
er

N
et

/IP
 P

or
t U

se
r´

s
M

an
ua

l

N
J-

se
rie

s
T

ro
ub

le
sh

oo
tin

g
M

an
ua

l

C
J-

se
rie

s
S

pe
ci

al
 U

ni
t O

pe
ra

tio
n

M
an

ua
ls

 fo
r

N
J-

se
rie

s
C

P
U

 U
ni

t

Troubleshooting and managing

errors in an NJ-series Controller

Use the
relevant
manuals for
references
according to
any error that
occurs.

3

Manual Configuration

NJ-series Instructions Reference Manual (W502)

Manual Configuration

NJ-series CPU Unit Hardware User’s Manual (Cat. No. W500)

Section Description

Section 1
Introduction

This section provides an introduction to the NJ-series Controllers and their features,
and gives the NJ-series Controller specifications.

Section 2
System Configuration

This section describes the system configuration used for NJ-series Controllers.

Section 3
Configuration Units

This section describes the parts and functions of the configuration devices in the NJ-
series Controller configuration, including the CPU Unit and Configuration Units.

Section 4
Installation and Wiring

This section describes where and how to install the CPU Unit and Configuration Units
and how to wire them.

Section 5
Troubleshooting

This section describes the event codes, error confirmation methods, and corrections
for errors that can occur.

Section 6
Inspection and Maintenance

This section describes the contents of periodic inspections, the service life of the Bat-
tery and Power Supply Units, and replacement methods for the Battery and Power
Supply Units.

Appendices
The appendices provide the specifications of the Basic I/O Units, Unit dimensions,
load short-circuit protection detection, line disconnection detection, and measures for
EMC Directives.

NJ-series CPU Unit Software User’s Manual (Cat. No. W501)

Section Description

Section 1
Introduction

This section provides an introduction to the NJ-series Controllers and their features,
and gives the NJ-series Controller specifications.

Section 2
CPU Unit Operation

This section describes the variables and control systems of the CPU Unit and CPU
Unit status.

Section 3
I/O Ports, Slave Configuration, and
Unit Configuration

This section describes how to use I/O ports, how to create the slave configuration
and unit configuration and how to assign functions.

Section 4
Controller Setup

This section describes the initial settings of the function modules.

Section 5
Designing Tasks

This section describes the task system and types of tasks.

Section 6
Programming

This section describes programming, including the programming languages and the
variables and instructions that are used in programming.

Section 7
Simulation, Transferring Projects to
the Physical CPU Unit, and Opera-
tion

This section describes simulation of Controller operation and how to use the results
of simulation.

Section 8
CPU Unit Status

This section describes CPU Unit status.

Section 9
CPU Unit Functions

This section describes the functionality provided by the CPU Unit.

Section 10
Communications Setup

This section describes how to go online with the CPU Unit and how to connect to
other devices.

Section 11
Example of Actual Application Pro-
cedures

This section describes the procedures that are used to actually operate an NJ-series
Controller.

Section 12
Troubleshooting

This section describes the event codes, error confirmation methods, and corrections
for errors that can occur.

Appendices
The appendices provide the CPU Unit specifications, task execution times, system-
defined variable lists, data attribute lists, CJ-series Unit memory information, CJ-
series Unit memory allocation methods, and data type conversion information.

Manual Configuration

4 NJ-series Instructions Reference Manual (W502)

NJ-series Instructions Reference Manual (Cat. No. W502)
(This Manual)

Section Description

Section 1
Instruction Set

This section provides a table of the instructions that are described in this manual.

Section 2
Instruction Descriptions

This section describes instruction specifications in detail.

Appendices
The appendices provide a table of error codes and other supplemental information to
use instructions.

5

Sections in this Manual

NJ-series Instructions Reference Manual (W502)

Sections in this Manual

1

2

A

1

2

A

I

Instruction Set

Instruction Descriptions

Appendices

I Index

Sections in this Manual

6 NJ-series Instructions Reference Manual (W502)

7NJ-series Instructions Reference Manual (W502)

CONTENTS

CONTENTS

Introduction... 1

Relevant Manuals.. 2

Manual Configuration... 3

Sections in this Manual.. 5

Read and Understand this Manual.. 15

Safety Precautions ... 19

Precautions for Safe Use ... 20

Precautions for Correct Use .. 21

Regulations and Standards ... 22

Unit Versions... 24

Related Manuals ... 27

Revision History ... 29

Section 1 Instruction Set
Instruction Set ... 1-2

Section 2 Instruction Descriptions
Using this Section .. 2-2

Ladder Diagram Instructions . 2-13
LD and LDN ... 2-14
AND and ANDN ... 2-16
OR and ORN ... 2-18
Out and OutNot ... 2-20

ST Statement Instructions . 2-23
IF ... 2-24
CASE ... 2-28
WHILE ... 2-32
REPEAT .. 2-34
RETURN ... 2-36
FOR ... 2-37
EXIT .. 2-38

Sequence Input Instructions . 2-39
R_TRIG (Up) and F_TRIG (Down) .. 2-40
TestABit and TestABitN ... 2-43

Sequence Output Instructions . 2-45
RS ... 2-46
SR ... 2-48
Set and Reset .. 2-50
SetBits and ResetBits .. 2-53
SetABit and ResetABit .. 2-55

8 NJ-series Instructions Reference Manual (W502)

 CONTENTS

OutABit .. 2-57
Sequence Control Instructions .2-59

End .. 2-60
RETURN ... 2-61
MC and MCR ... 2-62
JMP ... 2-74
FOR and NEXT ... 2-76
BREAK .. 2-81

Comparison Instructions .2-83
EQ (=) .. 2-84
NE (<>) .. 2-86
LT (<), LE (<=), GT (>), and GE (>=) .. 2-88
EQascii .. 2-91
NEascii .. 2-93
LTascii, LEascii, GTascii, and GEascii .. 2-95
Cmp ... 2-98
ZoneCmp ... 2-100
TableCmp .. 2-102
AryCmpEQ and AryCmpNE .. 2-105
AryCmpLT, AryCmpLE, AryCmpGT, and AryCmpGE ... 2-107
AryCmpEQV and AryCmpNEV ... 2-110
AryCmpLTV, AryCmpLEV, AryCmpGTV, and AryCmpGEV 2-112

Timer Instructions .2-115
TON ... 2-116
TOF ... 2-120
TP .. 2-123
AccumulationTimer .. 2-126
Timer ... 2-129

Counter Instructions .2-133
CTD ... 2-134
CTD_** .. 2-136
CTU ... 2-138
CTU_** .. 2-140
CTUD .. 2-142
CTUD_** .. 2-146

Math Instructions .2-151
ADD (+) ... 2-152
AddOU (+OU) .. 2-154
SUB (-) .. 2-156
SubOU (-OU) ... 2-158
MUL (*) .. 2-161
MulOU (*OU) ... 2-163
DIV (/) .. 2-166
MOD .. 2-168
ABS ... 2-170
RadToDeg and DegToRad .. 2-172
SIN, COS, and TAN .. 2-174
ASIN, ACOS, and ATAN ... 2-177
SQRT .. 2-180
LN and LOG .. 2-182
EXP ... 2-185
EXPT (**) ... 2-187
Inc and Dec ... 2-189
Rand .. 2-191
AryAdd ... 2-193
AryAddV .. 2-195
ArySub ... 2-197
ArySubV .. 2-199

9NJ-series Instructions Reference Manual (W502)

CONTENTS

AryMean .. 2-201
ArySD .. 2-203
ModReal .. 2-205
Fraction ... 2-207
CheckReal ... 2-209

BCD Conversion Instructions . 2-211
_BCD_TO_* ... 2-212
_TO_BCD_* ... 2-215
BCD_TO_** ... 2-218
BCDsToBin .. 2-221
BinToBCDs_** ... 2-224
AryToBCD ... 2-227
AryToBin .. 2-229

Data Type Conversion Instructions . 2-231
TO* (Integer-to-Integer Conversion Group) ... 2-232
TO* (Integer-to-Bit String Conversion Group) .. 2-235
TO* (Integer-to-Real Number Conversion Group) 2-237
TO* (Bit String-to-Integer Conversion Group) .. 2-239
TO* (Bit String-to-Bit String Conversion Group) .. 2-242
TO* (Bit String-to-Real Number Conversion Group) 2-244
TO* (Real Number-to-Integer Conversion Group) 2-246
TO* (Real Number-to-Bit String Conversion Group) 2-249
TO* (Real Number-to-Real Number Conversion Group) 2-251
**_TO_STRING (Integer-to-Text String Conversion Group) 2-253
**_TO_STRING (Bit String-to-Text String Conversion Group) 2-255
**_TO_STRING (Real Number-to-Text String Conversion Group) 2-257
RealToFormatString .. 2-259
LrealToFormatString ... 2-264
STRING_TO_** (Text String-to-Integer Conversion Group) 2-270
STRING_TO_** (Text String-to-Bit String Conversion Group) 2-272
STRING_TO_** (Text String-to-Real Number Conversion Group) 2-274
TO_** (Integer Conversion Group) .. 2-277
TO_** (Bit String Conversion Group) .. 2-279
TO_** (Real Number Conversion Group) .. 2-281
TRUNC, Round, and RoundUp ... 2-283

Bit String Processing Instructions . 2-285
AND (&), OR, and XOR ... 2-286
XORN .. 2-289
NOT ... 2-291
AryAnd, AryOr, AryXor, and AryXorN .. 2-293

Selection Instructions . 2-297
SEL .. 2-298
MUX .. 2-300
LIMIT ... 2-302
Band .. 2-304
Zone .. 2-307
MAX and MIN .. 2-310
AryMax and AryMin ... 2-312
ArySearch .. 2-314

Data Movement Instructions . 2-317
MOVE .. 2-318
MoveBit ... 2-321
MoveDigit .. 2-323
TransBits ... 2-325
MemCopy .. 2-327
SetBlock .. 2-329
Exchange .. 2-331
AryExchange ... 2-333

10 NJ-series Instructions Reference Manual (W502)

 CONTENTS

AryMove .. 2-335
Clear .. 2-337
Copy**ToNum (Bit String to Signed Integer) ... 2-339
Copy**To*** (Bit String to Real Number) ... 2-341
CopyNumTo** (Signed Integer to Bit String) ... 2-343
CopyNumTo** (Signed Integer to Real Number) .. 2-345
Copy**To*** (Real Number to Bit String) ... 2-347
Copy**ToNum (Real Number to Signed Integer) .. 2-349

Shift Instructions .2-351
AryShiftReg ... 2-352
AryShiftRegLR ... 2-354
ArySHL and ArySHR ... 2-357
SHL and SHR .. 2-360
NSHLC and NSHRC ... 2-362
ROL and ROR ... 2-364

Conversion Instructions .2-367
Swap ... 2-368
Neg .. 2-369
Decoder ... 2-371
Encoder ... 2-374
BitCnt ... 2-376
ColmToLine_** .. 2-377
LineToColm ... 2-379
Gray ... 2-381
PWLApprox ... 2-384
MovingAverage ... 2-387
PIDAT .. 2-393
DispartReal .. 2-418
UniteReal ... 2-421
NumToDecString and NumToHexString ... 2-423
HexStringToNum_** .. 2-426
FixNumToString .. 2-428
StringToFixNum .. 2-430
DtToString ... 2-433
DateToString ... 2-435
TodToString ... 2-436
GrayToBin_** and BinToGray_** .. 2-438
StringToAry ... 2-441
AryToString ... 2-443
DispartDigit .. 2-445
UniteDigit_** .. 2-447
Dispart8Bit ... 2-449
Unite8Bit_** ... 2-451
ToAryByte .. 2-453
AryByteTo .. 2-458
SizeOfAry .. 2-463

Stack and Table Instructions .2-465
StackPush ... 2-466
StackFIFO and StackLIFO .. 2-475
StackIns ... 2-478
StackDel .. 2-480
RecSearch ... 2-482
RecRangeSearch .. 2-487
RecSort ... 2-492
RecNum .. 2-497
RecMax and RecMin ... 2-499

FCS Instructions .2-503
StringSum .. 2-504
StringLRC .. 2-506

11NJ-series Instructions Reference Manual (W502)

CONTENTS

StringCRCCCITT ... 2-508
StringCRC16 ... 2-510
AryLRC_** ... 2-512
AryCRCCCITT ... 2-514
AryCRC16 ... 2-516

Text String Instructions . 2-519
CONCAT ... 2-520
LEFT and RIGHT .. 2-522
MID .. 2-524
FIND .. 2-526
LEN ... 2-528
REPLACE .. 2-529
DELETE .. 2-531
INSERT ... 2-533
GetByteLen ... 2-535
ClearString .. 2-537
ToUCase and ToLCase ... 2-538
TrimL and TrimR ... 2-540

Time and Time of Day Instructions . 2-543
ADD_TIME .. 2-544
ADD_TOD_TIME ... 2-546
ADD_DT_TIME ... 2-548
SUB_TIME .. 2-550
SUB_TOD_TIME ... 2-552
SUB_TOD_TOD .. 2-554
SUB_DATE_DATE .. 2-555
SUB_DT_DT ... 2-556
SUB_DT_TIME .. 2-558
MULTIME .. 2-560
DIVTIME .. 2-562
CONCAT_DATE_TOD .. 2-564
DT_TO_TOD ... 2-566
DT_TO_DATE ... 2-568
SetTime ... 2-570
GetTime ... 2-572
DtToSec .. 2-574
DateToSec .. 2-576
TodToSec .. 2-577
SecToDt .. 2-578
SecToDate .. 2-580
SecToTod .. 2-582
TimeToNanoSec ... 2-583
TimeToSec .. 2-584
NanoSecToTime ... 2-585
SecToTime .. 2-586
ChkLeapYear .. 2-588
GetDaysOfMonth ... 2-589
DaysToMonth .. 2-591
GetDayOfWeek ... 2-593
GetWeekOfYear .. 2-595
DtToDateStruct .. 2-597
DateStructToDt .. 2-599

System Control Instructions . 2-601
TraceSamp .. 2-602
TraceTrig ... 2-605
GetTraceStatus ... 2-607
SetAlarm .. 2-610
ResetAlarm .. 2-615
GetAlarm ... 2-617

12 NJ-series Instructions Reference Manual (W502)

 CONTENTS

ResetPLCError .. 2-619
GetPLCError .. 2-622
ResetCJBError .. 2-624
GetCJBError .. 2-626
GetEIPError ... 2-628
ResetMCError ... 2-630
GetMCError ... 2-634
ResetECError .. 2-636
GetECError .. 2-637
SetInfo ... 2-639
ResetUnit ... 2-641
GetNTPStatus ... 2-645

Communications Instructions .2-647
ExecPMCR .. 2-648
SerialSend ... 2-658
SerialRcv ... 2-665
SendCmd .. 2-674
CIPOpen .. 2-684
CIPRead .. 2-692
CIPWrite .. 2-696
CIPSend .. 2-701
CIPClose ... 2-704
CIPUCMMRead ... 2-706
CIPUCMMWrite ... 2-710
CIPUCMMSend ... 2-716
EC_CoESDOWrite .. 2-726
EC_CoESDORead .. 2-729
EC_StartMon ... 2-734
EC_StopMon ... 2-740
EC_SaveMon .. 2-742
EC_CopyMon .. 2-744
EC_DisconnectSlave ... 2-746
EC_ConnectSlave ... 2-752
SktUDPCreate ... 2-754
SktUDPRcv ... 2-761
SktUDPSend ... 2-764
SktTCPAccept ... 2-767
SktTCPConnect ... 2-770
SktTCPRcv .. 2-777
SktTCPSend .. 2-780
SktGetTCPStatus .. 2-783
SktClose .. 2-786
SktClearBuf ... 2-789

SD Memory Card Instructions .2-793
FileWriteVar ... 2-794
FileReadVar .. 2-799
FileOpen .. 2-803
FileClose ... 2-806
FileSeek .. 2-809
FileRead .. 2-812
FileWrite .. 2-819
FileGets ... 2-826
FilePuts ... 2-833
FileCopy .. 2-840
FileRemove ... 2-848
FileRename ... 2-852
DirCreate ... 2-857
DirRemove .. 2-860

13NJ-series Instructions Reference Manual (W502)

CONTENTS

Other Instructions . 2-863
ReadNbit_** ... 2-864
WriteNbit_** ... 2-866
ChkRange ... 2-868
GetMyTaskStatus .. 2-870
Task_IsActive .. 2-873
Lock and Unlock .. 2-875
Get**Clk ... 2-880
Get**Cnt .. 2-881

Appendices

A-1 Error Codes Related to Instructions ..A-2

A-2 Error Code Descriptions ...A-18

A-3 Error Code Details ...A-24

A-4 SDO Abort Codes ..A-47

Index

14 NJ-series Instructions Reference Manual (W502)

 CONTENTS

15

Read and Understand this Manual

NJ-series Instructions Reference Manual (W502)

Read and Understand this Manual

Please read and understand this manual before using the product. Please consult your OMRON representative
if you have any questions or comments.

Warranty and Limitations of Liability

WARRANTY

OMRON's exclusive warranty is that the products are free from defects in materials and workmanship for a
period of one year (or other period if specified) from date of sale by OMRON.

OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, REGARDING NON-
INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR PARTICULAR PURPOSE OF THE
PRODUCTS. ANY BUYER OR USER ACKNOWLEDGES THAT THE BUYER OR USER ALONE HAS
DETERMINED THAT THE PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR
INTENDED USE. OMRON DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED.

LIMITATIONS OF LIABILITY

OMRON SHALL NOT BE RESPONSIBLE FOR SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES,
LOSS OF PROFITS OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS,
WHETHER SUCH CLAIM IS BASED ON CONTRACT, WARRANTY, NEGLIGENCE, OR STRICT
LIABILITY.

In no event shall the responsibility of OMRON for any act exceed the individual price of the product on which
liability is asserted.

IN NO EVENT SHALL OMRON BE RESPONSIBLE FOR WARRANTY, REPAIR, OR OTHER CLAIMS
REGARDING THE PRODUCTS UNLESS OMRON'S ANALYSIS CONFIRMS THAT THE PRODUCTS
WERE PROPERLY HANDLED, STORED, INSTALLED, AND MAINTAINED AND NOT SUBJECT TO
CONTAMINATION, ABUSE, MISUSE, OR INAPPROPRIATE MODIFICATION OR REPAIR.

Read and Understand this Manual

16 NJ-series Instructions Reference Manual (W502)

Application Considerations

SUITABILITY FOR USE

OMRON shall not be responsible for conformity with any standards, codes, or regulations that apply to the
combination of products in the customer's application or use of the products.

At the customer's request, OMRON will provide applicable third party certification documents identifying
ratings and limitations of use that apply to the products. This information by itself is not sufficient for a
complete determination of the suitability of the products in combination with the end product, machine,
system, or other application or use.

The following are some examples of applications for which particular attention must be given. This is not
intended to be an exhaustive list of all possible uses of the products, nor is it intended to imply that the uses
listed may be suitable for the products:

• Outdoor use, uses involving potential chemical contamination or electrical interference, or conditions or
uses not described in this manual.

• Nuclear energy control systems, combustion systems, railroad systems, aviation systems, medical
equipment, amusement machines, vehicles, safety equipment, and installations subject to separate
industry or government regulations.

• Systems, machines, and equipment that could present a risk to life or property.

Please know and observe all prohibitions of use applicable to the products.

NEVER USE THE PRODUCTS FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR
PROPERTY WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO
ADDRESS THE RISKS, AND THAT THE OMRON PRODUCTS ARE PROPERLY RATED AND
INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM.

PROGRAMMABLE PRODUCTS

OMRON shall not be responsible for the user's programming of a programmable product, or any
consequence thereof.

17

Read and Understand this Manual

NJ-series Instructions Reference Manual (W502)

Disclaimers

CHANGE IN SPECIFICATIONS

Product specifications and accessories may be changed at any time based on improvements and other
reasons.

It is our practice to change model numbers when published ratings or features are changed, or when
significant construction changes are made. However, some specifications of the products may be changed
without any notice. When in doubt, special model numbers may be assigned to fix or establish key
specifications for your application on your request. Please consult with your OMRON representative at any
time to confirm actual specifications of purchased products.

DIMENSIONS AND WEIGHTS

Dimensions and weights are nominal and are not to be used for manufacturing purposes, even when
tolerances are shown.

PERFORMANCE DATA

Performance data given in this manual is provided as a guide for the user in determining suitability and does
not constitute a warranty. It may represent the result of OMRON's test conditions, and the users must
correlate it to actual application requirements. Actual performance is subject to the OMRON Warranty and
Limitations of Liability.

ERRORS AND OMISSIONS

The information in this manual has been carefully checked and is believed to be accurate; however, no
responsibility is assumed for clerical, typographical, or proofreading errors, or omissions.

Read and Understand this Manual

18 NJ-series Instructions Reference Manual (W502)

19

Safety Precautions

NJ-series Instructions Reference Manual (W502)

Safety Precautions

Refer to the following manuals for safety precautions.

• NJ-series CPU Unit Hardware User’s Manual (Cat No. W500)

• NJ-series CPU Unit Software User’s Manual (Cat No. W501)

Precautions for Safe Use

20 NJ-series Instructions Reference Manual (W502)

Precautions for Safe Use

Refer to the following manuals for precautions for safe use.

• NJ-series CPU Unit Hardware User’s Manual (Cat No. W500)

• NJ-series CPU Unit Software User’s Manual (Cat No. W501)

21

Precautions for Correct Use

NJ-series Instructions Reference Manual (W502)

Precautions for Correct Use

Refer to the following manuals for precautions for correct use.

• NJ-series CPU Unit Hardware User’s Manual (Cat No. W500)

• NJ-series CPU Unit Software User’s Manual (Cat No. W501)

Regulations and Standards

22 NJ-series Instructions Reference Manual (W502)

Regulations and Standards

• EMC Directives

• Low Voltage Directive

EMC Directive
OMRON devices that comply with EC Directives also conform to the related EMC standards so that
they can be more easily built into other devices or the overall machine. The actual products have
been checked for conformity to EMC standards.*
Whether the products conform to the standards in the system used by the customer, however, must
be checked by the customer. EMC-related performance of the OMRON devices that comply with EC
Directives will vary depending on the configuration, wiring, and other conditions of the equipment or
control panel on which the OMRON devices are installed. The customer must, therefore, perform the
final check to confirm that devices and the overall machine conform to EMC standards.

* Applicable EMC (Electromagnetic Compatibility) standards are as follows:
EMS (Electromagnetic Susceptibility): EN 61131-2 and EN 61000-6-2
EMI (Electromagnetic Interference): EN 61131-2 and EN 61000-6-4 (Radiated emission: 10-m regulations)

Low Voltage Directive
Always ensure that devices operating at voltages of 50 to 1,000 VAC and 75 to 1,500 VDC meet the
required safety standards. The applicable directive is EN 61131-2.

Conformance to EC Directives
The NJ-series Controllers comply with EC Directives. To ensure that the machine or device in which
the NJ-series Controller is used complies with EC Directives, the Controller must be installed as fol-
lows:

• The NJ-series Controller must be installed within a control panel.

• You must use reinforced insulation or double insulation for the DC power supplies connected to
DC Power Supply Units and I/O Units.

• NJ-series Controllers that comply with EC Directives also conform to the Common Emission Stan-
dard (EN 61000-6-4). Radiated emission characteristics (10-m regulations) may vary depending
on the configuration of the control panel used, other devices connected to the control panel, wir-
ing, and other conditions.
You must therefore confirm that the overall machine or equipment complies with EC Directives.

Conformance to EC Directives

Applicable Directives

Concepts

23

Regulations and Standards

NJ-series Instructions Reference Manual (W502)

The NJ-series Controllers comply with the following shipbuilding standards. Applicability to the ship-
building standards is based on certain usage conditions. It may not be possible to use the product in
some locations. Contact your OMRON representative before attempting to use a Controller on a
ship.

• The NJ-series Controller must be installed within a control panel.

• Gaps in the door to the control panel must be completely filled or covered with gaskets or other
material.

• The following noise filter must be connected to the power supply line.

Noise Filter

• Sysmac and SYSMAC are trademarks or registered trademarks of OMRON Corporation in Japan
and other countries for OMRON factory automation products.

• Windows, Windows 98, Windows XP, Windows Vista, and Windows 7 are registered trademarks of
Microsoft Corporation in the USA and other countries.

• EtherCAT is a registered trademark of Beckhoff Automation GmbH for their patented technology.

• The SD logo is a trademark of SD-3C, LLC.

Other company names and product names in this document are the trademarks or registered trade-
marks of their respective companies.

This product incorporates certain third party software. The license and copyright information associ-
ated with this software is available at http://www.fa.omron.co.jp/nj_info_e/.

Conformance to Shipbuilding Standards

Usage Conditions for NK and LR Shipbuilding Standards

Manufacturer Model
Cosel Co., Ltd. TAH-06-683

Trademarks

Software Licenses and Copyrights

Unit Versions

24 NJ-series Instructions Reference Manual (W502)

Unit Versions

A “unit version” has been introduced to manage CPU Units in the NJ Series according to differences in
functionality accompanying Unit upgrades.

The unit version is given on the ID information label of the products for which unit versions are man-
aged, as shown below.

Example for NJ-series NJ501-@@@@ CPU Unit:

The following information is provided on the ID information label.

You can use the Unit Production Information on the Sysmac Studio to check the unit version of the CPU
Unit, CJ-series Special I/O Units, CJ-series CPU Bus Units, and EtherCAT slaves. The unit versions of
CJ-series Basic I/O Units cannot be checked from the Sysmac Studio.

CPU Unit and CJ-series Units

1 Double-click CPU/Expansion Racks under Configurations and Setup in the Multiview

Explorer. Or, right-click CPU/Expansion Racks under Configurations and Setup and select
Edit from the menu.

The Unit Editor is displayed for the Controller Configurations and Setup layer.

Unit Versions

Notation of Unit Versions on Products

Item Description

Unit model Gives the model of the Unit.

Unit version Gives the unit version of the Unit.

Lot number and
serial number

Gives the lot number and serial number of the Unit.

DDMYY: Lot number, @: For use by OMRON, xxxx: Serial number

“M” gives the month (1 to 9: January to September, X: October, Y: November, Z: December)

MAC address Gives the MAC address of the built-in port on the Unit.

Confirming Unit Versions with Sysmac Studio

ID information label

Unit model Unit version

Lot number and serial number MAC address

NJ501 -1500 Ver.1.@@

PORT1 MAC ADDRESS: @@@@@@@@@@@@
PORT2 MAC ADDRESS: @@@@@@@@@@@@

Lot No. DDMYY@ xxxx

25

Unit Versions

NJ-series Instructions Reference Manual (W502)

2 Right-click any open space in the Unit Editor and select Production Information.

The Production Information Dialog Box is displayed.

In this example, “Ver.1.0” is displayed next to the unit model.

The following items are displayed.

EtherCAT Slaves

1 Double-click EtherCAT under Configurations and Setup in the Multiview Explorer. Or, right-

click EtherCAT under Configurations and Setup and select Edit from the menu.

The EtherCAT Configuration Tab Page is displayed for the Controller Configurations and Setup
layer.

2 Right-click the master in the EtherCAT Configurations Editing Pane and select Display Produc-
tion Information.

The Production Information Dialog Box is displayed.

The following items are displayed.
Node address
Type information*
Serial number

* If the model number cannot be determined (such as when there is no ESI file), the vendor ID, product
code, and revision number are displayed.

Simple Display Detailed Display

CPU Unit CJ-series Units

Unit model

Unit version

Lot number

Unit model

Unit version

Lot number

Rack number, slot number, and unit number

Unit Versions

26 NJ-series Instructions Reference Manual (W502)

In this manual, unit versions are specified as shown in the following table.

Unit Version Notation

Product nameplate Notation in this manual Remarks

“Ver.1.0” or later to the right of
the lot number

Unit version 1.0 or later Unless unit versions are specified, the information in this manual
applies to all unit versions.

27

Related Manuals

NJ-series Instructions Reference Manual (W502)

Related Manuals

The following manuals are related to the NJ-series Controllers. Use these manuals for reference.

Manual name Cat. No. Model numbers Application Description

NJ-series CPU Unit
Hardware User’s Manual

W500 NJ501-@@@@ Learning the basic specifi-
cations of the NJ-series
CPU Units, including intro-
ductory information,
designing, installation, and
maintenance. Mainly hard-
ware information is pro-
vided.

An introduction to the entire NJ-series system is
provided along with the following information on
a Controller built with an NJ501 CPU Unit.

• Features and system configuration

• Introduction

• Part names and functions

• General specifications

• Installation and wiring

• Maintenance and inspection

Use this manual together with the NJ-series
CPU Unit Software User’s Manual (Cat. No.
W501).

NJ-series CPU Unit Soft-
ware User’s Manual

W501 NJ501-@@@@ Learning how to program
and set up an NJ-series
CPU Unit. Mainly software
information is provided.

The following information is provided on a Con-
troller built with an NJ501 CPU Unit.

• CPU Unit operation

• CPU Unit features

• Initial settings

• Programming based on IEC 61131-3 lan-
guage specifications

Use this manual together with the NJ-series
CPU Unit Hardware User’s Manual (Cat. No.
W500).

NJ-series CPU Unit
Motion Control User’s
Manual

W507 NJ501-@@@@ Learning about motion
control settings and pro-
gramming concepts.

The settings and operation of the CPU Unit and
programming concepts for motion control are
described. Use this manual together with the
NJ-series CPU Unit Hardware User’s Manual
(Cat. No. W500) and NJ-series CPU Unit Soft-
ware User’s Manual (Cat. No. W501).

NJ-series Instructions
Reference Manual

W502 NJ501-@@@@ Learning about the specifi-
cations of the instruction
set that is provided by
OMRON.

The instructions in the instruction set (IEC
61131-3 specifications) are described. When
programming, use this manual together with the
NJ-series CPU Unit Hardware User’s Manual
(Cat. No. W500) and NJ-series CPU Unit Soft-
ware User’s Manual (Cat. No. W501).

NJ-series Motion Control
Instructions Reference
Manual

W508 NJ501-@@@@ Learning about the specifi-
cations of the motion con-
trol instructions that are
provided by OMRON.

The motion control instructions are described.
When programming, use this manual together
with the NJ-series CPU Unit Hardware User’s
Manual (Cat. No. W500), NJ-series CPU Unit
Software User’s Manual (Cat. No. W501) and
NJ-series CPU Unit Motion Control User’s Man-
ual (Cat. No. W507).

CJ-series Special Unit
Manuals for NJ-series
CPU Unit

W490
W498
W499
W491
Z310
W492
W494
W497

CJ1W-@@@@ Learning how to use CJ-
series Units with an NJ-
series CPU Unit.

The methods and precautions for using CJ-
series Units with an NJ501 CPU Unit are
described, including access methods and pro-
gramming interfaces. Manuals are available for
the following Units.
Analog I/O Units, Insulated-type Analog I/O
Units, Temperature Control Units, ID Sensor
Units, High-speed Counter Units, Serial Com-
munications Units, and DeviceNet Units.

Use these manuals together with the NJ-series
CPU Unit Hardware User’s Manual (Cat. No.
W500) and NJ-series CPU Unit Software User’s
Manual (Cat. No. W501).

Related Manuals

28 NJ-series Instructions Reference Manual (W502)

NJ-series CPU Unit Built-
in EtherCAT Port User’s
Manual

W505 NJ501-@@@@ Using the built-in EtherCAT
port on an NJ-series CPU
Unit.

Information on the built-in EtherCAT port is pro-
vided. This manual provides an introduction and
provides information on the configuration, fea-
tures, and setup.
Use this manual together with the NJ-series
CPU Unit Hardware User’s Manual (Cat. No.
W500) and NJ-series CPU Unit Software User’s
Manual (Cat. No. W501).

NJ-series CPU Unit Built-
in EtherNet/IP Port
User’s Manual

W506 NJ501-@@@@ Using the built-in Ether-
Net/IP port on an NJ-series
CPU Unit.

Information on the built-in EtherNet/IP port is
provided. Information is provided on the basic
setup, tag data links, and other features.
Use this manual together with the NJ-series
CPU Unit Hardware User’s Manual (Cat. No.
W500) and NJ-series CPU Unit Software User’s
Manual (Cat. No. W501).

NJ-series Troubleshoot-
ing Manual

W503 NJ501-@@@@ Learning about the errors
that may be detected in an
NJ-series Controller.

Concepts on managing errors that may be
detected in an NJ-series Controller and informa-
tion on individual errors are described.
Use this manual together with the NJ-series
CPU Unit Hardware User’s Manual (Cat. No.
W500) and NJ-series CPU Unit Software User’s
Manual (Cat. No. W501).

Sysmac Studio Version 1
Operation Manual

W504 SYSMAC-
SE2@@@

Learning about the operat-
ing procedures and func-
tions of the Sysmac Studio.

Describes the operating procedures of the Sys-
mac Studio.

CX-Integrator
CS/CJ/CP/NSJ-series
Network Configuration
Tool Operation Manual

W464 Learning how to configure
networks (data links, rout-
ing tables, Communica-
tions Unit settings, etc.).

Describes operating procedures for the CX-Inte-
grator.

CX-Designer User’s
Manual

V099 Learning to create screen
data for NS-series Pro-
grammable Terminals.

Describes operating procedures for the CX-
Designer.

CX-Protocol Operation
Manual

W344 Creating data transfer pro-
tocols for general-purpose
devices connected to CJ-
series Serial Communica-
tions Units.

Describes operating procedures for the CX-Pro-
tocol.

Manual name Cat. No. Model numbers Application Description

29

Revision History

NJ-series Instructions Reference Manual (W502)

Revision History

A manual revision code appears as a suffix to the catalog number on the front and back covers of the
manual.

Revision code Date Revised content
01 July 2011 Original production

W502-E1-01
Revision code

Cat. No.

Revision History

30 NJ-series Instructions Reference Manual (W502)

1-1NJ-series Instructions Reference Manual (W502)

1

This section provides a table of the instructions that you can use with NJ-series Con-
trollers.

Instruction Set . 1-2

Instruction Set

1 Instruction Set

1-2 NJ-series Instructions Reference Manual (W502)

Instruction Set

Type Instruction Name Function Page

Ladder Diagram
Instructions

LD Load Reads the value of a BOOL variable. 2-14

LDN Load NOT Reads the inverse of the value of a BOOL vari-
able.

2-14

AND AND Takes the logical AND of the value of a BOOL
variable and the input value.

2-16

ANDN AND NOT Takes the logical AND of the inverse of the
value of a BOOL variable and the input value.

2-16

OR OR Takes the logical OR of the value of a BOOL
variable and the execution condition.

2-18

ORN OR NOT Takes the logical OR of the inverse of the value
of a BOOL variable and the execution condi-
tion.

2-18

Out Output Takes the logical result from the previous
instruction and outputs it to a BOOL variable.

2-20

OutNot Output NOT Takes the inverse of the logical result from the
previous instruction and outputs it to a BOOL
variable.

2-20

ST Statement
Instructions

IF If Uses the evaluation result of a specified condi-
tion expression to select one of two statements
to execute.

2-24

CASE Case Selects the statement to execute based on the
value of a specified integer expression.

2-28

WHILE While Repeatedly executes a statement as long as
the evaluation result of a specified condition
expression is TRUE.

2-32

REPEAT Repeat Executes a statement once and then executes
it repeatedly until a specified condition expres-
sion is TRUE.

2-34

RETURN Return Ends a function or function block and returns
processing to the calling instruction.

2-36

FOR Repeat Start Marks the starting position for repeat process-
ing of statements between the FOR and
END_FOR statements and specifies the
repeat condition.

2-37

EXIT Break Loop Cancels repeat processing from the lowest
level FOR statement to the END_FOR state-
ment.

2-38

Sequence Input
Instructions

R_TRIG (Up) Up Trigger Outputs TRUE for one task period only when
the input signal changes to TRUE.

2-40

F_TRIG (Down) Down Trigger Outputs TRUE for one task period only when
the input signal changes to FALSE.

2-40

TestABit Test A Bit Outputs the value of the specified bit in a bit
string.

2-43

TestABitN Test A Bit NOT Outputs the inverse of the value of the speci-
fied bit in a bit string.

2-43

Sequence Out-
put Instructions

RS Reset-Priority
Keep

Retains the value of a BOOL variable. It gives
priority to the Reset input if both the Set input
and Reset input are TRUE.

2-46

1-3

1 Instruction Set

NJ-series Instructions Reference Manual (W502)

 In
stru

ctio
n

 S
et

1

Sequence Out-
put Instructions

SR Set-Priority Keep Retains the value of a BOOL variable. It gives
priority to the Set input if both the Set input and
Reset input are TRUE.

2-48

Set Set Changes a BOOL variable to TRUE. 2-50

Reset Reset Changes a BOOL variable to FALSE. 2-50

SetBits Set Bits Changes consecutive bits in bit string data to
TRUE.

2-53

ResetBits Reset Bits Changes consecutive bits in bit string data to
FALSE.

2-53

SetABit Set A Bit Changes the specified bit in bit string data to
TRUE.

2-55

ResetABit Reset A Bit Changes the specified bit in bit string data to
FALSE.

2-55

OutABit Output A Bit Changes the specified bit in bit string data to
TRUE or FALSE.

2-57

Sequence Con-
trol Instructions

End End Ends execution of a program in the current
task period.

2-60

RETURN Return Ends a function or function block and returns
processing to the calling instruction.

2-61

MC Master Control
Start

Marks the starting point of a master control
region and resets the master control region.

2-62

MCR Master Control End Marks the end point of a master control region. 2-62

JMP Jump Moves processing to the specified jump desti-
nation.

2-74

FOR Repeat Start Marks the starting position for repeat process-
ing and specifies the repeat condition.

2-76

NEXT Repeat End Marks the ending position for repeat process-
ing.

2-76

BREAK Break Loop Cancels repeat processing from the lowest
level FOR instruction to the NEXT instruction.

2-81

Comparison
Instructions

EQ (=) Equal Determines if two or more values or text strings
are all equivalent.

2-84

NE (<>) Not Equal Determines if two values or text strings are not
equivalent.

2-86

LT (<) Less Than Performs a less than comparison between val-
ues.

2-88

LE (<=) Less Than Or
Equal

Performs a less than or equal comparison
between values.

2-88

GT (>) Greater Than Performs a greater than comparison between
values.

2-88

GE (>=) Greater Than Or
Equal

Performs a greater than or equal comparison
between values.

2-88

EQascii Text String
Comparison Equal

Determines if two or more text strings are all
equivalent.

2-91

NEascii Text String
Comparison Not
Equal

Determines if two text strings are not equiva-
lent.

2-93

LTascii Text String
Comparison Less
Than

Performs a less than comparison between text
strings.

2-95

LEascii Text String
Comparison Less
Than or Equal

Performs a less than or equal comparison
between text strings.

2-95

Type Instruction Name Function Page

1 Instruction Set

1-4 NJ-series Instructions Reference Manual (W502)

Comparison
Instructions

GTascii Text String
Comparison
Greater Than

Performs a greater than comparison between
text strings.

2-95

GEascii Text String
Comparison
Greater Than or
Equal

Performs a greater than or equal comparison
between text strings.

2-95

Cmp Compare Compares two values. 2-98

ZoneCmp Zone Comparison Determines if the comparison data is within the
specified maximum and minimum values.

2-100

TableCmp Table Comparison Compares the comparison data with multiple
defined ranges in a comparison table.

2-102

AryCmpEQ Array Comparison
Equal

Determines if the corresponding elements of
two arrays are equal.

2-105

AryCmpNE Array Comparison
Not Equal

Determines if the corresponding elements of
two arrays are not equal.

2-105

AryCmpLT Array Comparison
Less Than

Performs a less than comparison between the
corresponding elements of two arrays.

2-107

AryCmpLE Array Comparison
Less Than Or
Equal

Performs a less than or equal comparison
between the corresponding elements of two
arrays.

2-107

AryCmpGT Array Comparison
Greater Than

Performs a greater than comparison between
the corresponding elements of two arrays.

2-107

AryCmpGE Array Comparison
Greater Than Or
Equal

Performs a greater than or equal comparison
between the corresponding elements of two
arrays.

2-107

AryCmpEQV Array Value
Comparison Equal

Determines if the elements of an array are
equal to a value.

2-110

AryCmpNEV Array Value
Comparison Not
Equal

Determines if the elements of an array are not
equal to a value.

2-110

AryCmpLTV Array Value
Comparison Less
Than

Performs a less than comparison between a
value and the elements of an array.

2-112

AryCmpLEV Array Value
Comparison Less
Than Or Equal

Performs a less than or equal comparison
between a value and the elements of an array.

2-112

AryCmpGTV Array Value
Comparison
Greater Than

Performs a greater than comparison between a
value and the elements of an array.

2-112

AryCmpGEV Array Value
Comparison
Greater Than Or
Equal

Performs a greater than or equal comparison
between a value and the elements of an array.

2-112

Timer Instruc-
tions

TON On-Delay Timer Outputs TRUE when the set time elapses after
the timer starts.

2-116

TOF Off-Delay Timer Outputs FALSE when the set time elapses
after the timer starts.

2-120

TP Timer Pulse Outputs TRUE while the set time elapses after
the timer starts.

2-123

AccumulationTimer Accumulation
Timer

Totals the time that the timer input is TRUE. 2-126

Timer Hundred-ms Timer Outputs TRUE when the set time elapses after
the timer starts. Set the time in increments of
100 ms. The timing accuracy is 100 ms.

2-129

Type Instruction Name Function Page

1-5

1 Instruction Set

NJ-series Instructions Reference Manual (W502)

 In
stru

ctio
n

 S
et

1

Counter Instruc-
tions

CTD Down-counter Decrements the counter value when the
counter input signal is received. The preset
value and counter value must have an INT
data type.

2-134

CTD_** Down-counter
Group

Decrements the counter value when the
counter input signal is received. The preset
value and counter value must be one of the fol-
lowing data types: DINT, LINT, UDINT, or
ULINT.

2-136

CTU Up-counter Increments the counter value when the counter
input signal is received. The preset value and
counter value must have an INT data type.

2-138

CTU_** Up-counter Group Increments the counter value when the counter
input signal is received. The preset value and
counter value must be one of the following data
types: DINT, LINT, UDINT, or ULINT.

2-140

CTUD Up-down Counter Creates an up-down counter that operates
according to an up-counter input and a down-
counter input. The preset value and counter
value must have an INT data type.

2-142

CTUD_** Up-down Counter
Group

Creates an up-down counter that operates
according to an up-counter input and a down-
counter input. The preset value and counter
value must be one of the following data types:
DINT, LINT, UDINT, or ULINT.

2-146

Math Instruc-
tions

ADD (+) Addition Adds integers and real numbers. Also joins text
strings.

2-152

AddOU (+OU) Addition with
Overflow/
Underflow Check

Adds integers and real numbers. Also per-
forms an overflow/underflow check.

2-154

SUB (-) Subtraction Subtracts integers and real numbers. 2-156

SubOU (-OU) Subtraction with
Overflow/
Underflow Check

Subtracts integers or real numbers. Also per-
forms an overflow/underflow check.

2-158

MUL (*) Multiplication Multiplies integers and real numbers. 2-161

MulOU (*OU) Multiplication with
Overflow/
Underflow Check

Multiplies integers and real numbers and out-
puts the result. It also performs an over-
flow/underflow check.

2-163

DIV (/) Division Divides integers or real numbers. 2-166

MOD Modulo-division Finds the remainder for division of integers. 2-168

ABS Absolute Value Finds the absolute value of an integer or real
number.

2-170

RadToDeg Radians to
Degrees

Converts a real number from radians (rad) to
degrees (°).

2-172

DegToRad Degrees to
Radians

Converts a real number from degrees (°) to
radians (rad).

2-172

SIN Sine in Radians Calculates the sine of a real number. 2-174

COS Cosine in Radians Calculates the cosine of a real number. 2-174

TAN Tangent in Radians Calculates the tangent of a real number. 2-174

ASIN Principal Arc Sine Calculates the arcsine of a real number. 2-177

ACOS Principal Arc
Cosine

Calculates the arccosine of a real number. 2-177

ATAN Principal Arc
Tangent

Calculates the arctangent of a real number. 2-177

Type Instruction Name Function Page

1 Instruction Set

1-6 NJ-series Instructions Reference Manual (W502)

Math Instruc-
tions

SQRT Square Root Finds the square root of a number. 2-180

LN Natural Logarithm Finds the natural logarithm of a real number. 2-182

LOG Logarithm Base 10 Finds the base-10 logarithm of a real number. 2-182

EXP Natural
Exponential
Operation

Performs calculations for the natural exponen-
tial function.

2-185

EXPT (**) Exponentiation Raises one real number to the power of
another real number.

2-187

Inc Increment Increments an integer value. 2-189

Dec Decrement Decrements an integer value. 2-189

Rand Random Number Generates pseudorandom numbers. 2-191

AryAdd Array Addition Adds corresponding elements of two arrays. 2-193

AryAddV Array Value
Addition

Adds the same value to specified elements of
an array.

2-195

ArySub Array Subtraction Subtracts corresponding elements of two
arrays.

2-197

ArySubV Array Value
Subtraction

Subtracts the same value from specified ele-
ments of an array.

2-199

AryMean Array Mean Calculates the average of the elements of an
array.

2-201

ArySD Array Element
Standard Deviation

Calculates standard deviation of the elements
of an array.

2-203

ModReal Real Number
Modulo-division

Calculates the remainder of real number divi-
sion.

2-205

Fraction Real Number
Fraction

Finds the fractional part of a real number. 2-207

CheckReal Real Number
Check

Checks a real number to see if it is infinity or
nonnumeric data.

2-209

BCD Conversion
Instructions

_BCD_TO_* BCD-to-Unsigned
Integer Conversion
Group

Converts BCD bit strings into unsigned inte-
gers.

2-212

_TO_BCD_* Unsigned Integer-
to-BCD Conversion
Group

Converts unsigned integers to BCD bit strings. 2-215

BCD_TO_** BCD Data Type-to-
Unsigned Integer
Conversion Group

Converts BCD bit strings into unsigned inte-
gers.

2-218

BCDsToBin Signed BCD-to-
Signed Integer
Conversion

Converts signed BCD bit strings to signed inte-
gers.

2-221

BinToBCDs_** Signed Integer-to-
BCD Conversion
Group

Converts signed integers to signed BCD bit
strings.

2-224

AryToBCD Array BCD
Conversion

Converts the elements of an unsigned integer
array to BCD bit strings.

2-227

AryToBin Array Unsigned
Integer Conversion

Converts the elements of an array of BCD bit
strings into unsigned integers.

2-229

Data Type Con-
version Instruc-
tions

TO* (Integer-to-
Integer Conversion
Group)

Integer-to-Integer
Conversion Group

Converts integers to integers with different
data types.

2-232

TO* (Integer-to-
Bit String Conversion
Group)

Integer-to-Bit
String Conversion
Group

Converts integers to bit strings. 2-235

Type Instruction Name Function Page

1-7

1 Instruction Set

NJ-series Instructions Reference Manual (W502)

 In
stru

ctio
n

 S
et

1

Data Type Con-
version Instruc-
tions

TO* (Integer-to-
Real Number Conver-
sion Group)

Integer-to-Real
Number
Conversion Group

Converts integers to real numbers. 2-237

TO* (Bit String-to-
Integer Conversion
Group)

Bit String-to-
Integer Conversion
Group

Converts bit strings to integers. 2-239

TO* (Bit String-to-
Bit String Conversion
Group)

Bit String-to-Bit
String Conversion
Group

Converts bit strings to bit strings with different
data types.

2-242

TO* (Bit String-to-
Real Number Conver-
sion Group)

Bit String-to-Real
Number
Conversion Group

Converts bit strings to real numbers. 2-244

TO* (Real Num-
ber-to-Integer Conver-
sion Group)

Real Number-to-
Integer Conversion
Group

Converts real numbers to integers. 2-246

TO* (Real Num-
ber-to-Bit String Con-
version Group)

Real Number-to-Bit
String Conversion
Group

Converts real numbers to bit strings. 2-249

TO* (Real Num-
ber-to-Real Number
Conversion Group)

Real Number-to-
Real Number
Conversion Group

Converts real numbers to real numbers with
different data types.

2-251

**_TO_STRING (Inte-
ger-to-Text String Con-
version Group)

Integer-to-Text
String Conversion
Group

Converts integers to text strings. 2-253

**_TO_STRING (Bit
String-to-Text String
Conversion Group)

Bit String-to-Text
String Conversion
Group

Converts bit strings to text strings. 2-255

**_TO_STRING (Real
Number-to-Text String
Conversion Group)

Real Number-to-
Text String
Conversion Group

Converts real numbers to text strings. 2-257

RealToFormatString REAL-to-
Formatted Text
String

Converts a REAL variable to a text string with
the specified format.

2-259

LrealToFormatString LREAL-to-
Formatted Text
String

Converts a LREAL variable to a text string with
the specified format.

2-264

STRING_TO_** (Text
String-to-Integer Con-
version Group)

Text String-to-
Integer Conversion
Group

Converts text strings to integers. 2-270

STRING_TO_** (Text
String-to-Bit String
Conversion Group)

Text String-to-Bit
String Conversion
Group

Converts text strings to bit strings. 2-272

STRING_TO_** (Text
String-to-Real Number
Conversion Group)

Text String-to-Real
Number
Conversion Group

Converts text strings to real numbers. 2-274

TO_** (Integer Conver-
sion Group)

Integer Conversion
Group

Converts integers, bit strings, real numbers,
and text strings to integers.

2-277

TO_** (Bit String Con-
version Group)

Bit String
Conversion Group

Converts integers, bit strings, real numbers,
and text strings to bit strings.

2-279

TO_** (Real Number
Conversion Group)

Real Number
Conversion Group

Converts integers, bit strings, real numbers,
and text strings to real numbers.

2-281

TRUNC Truncate Truncates a real number at the first decimal
digit to make an integer.

2-283

Round Round Off Real
Number

Rounds a real number at the first decimal digit
to make an integer.

2-283

Type Instruction Name Function Page

1 Instruction Set

1-8 NJ-series Instructions Reference Manual (W502)

Data Type Con-
version Instruc-
tions

RoundUp Round Up Real
Number

Rounds up a real number at the first decimal
digit to make an integer.

2-283

Bit String Pro-
cessing Instruc-
tions

AND (&) Logical AND Performs a logical AND operation on Boolean
variables or individual bits in bit stings.

2-286

OR Logical OR Performs a logical OR operation on Boolean
variables or individual bits in bit stings.

2-286

XOR Logical Exclusive
OR

Performs a logical exclusive OR operation on
Boolean variables or individual bits in bit
stings.

2-286

XORN Logical Exclusive
NOR

Performs a logical exclusive NOR operation on
Boolean variables or individual bits in bit
stings.

2-289

NOT Bit Reversal Reverses the value of a Boolean variable or
individual bits in a bit string.

2-291

AryAnd Array Logical AND Performs a logical AND operation on Boolean
variables or individual bits in bit stings between
arrays.

2-293

AryOr Array Logical OR Performs a logical OR operation on Boolean
variables or individual bits in bit stings between
arrays.

2-293

AryXor Array Logical
Exclusive OR

Performs a logical exclusive OR operation on
Boolean variables or individual bits in bit stings
between arrays.

2-293

AryXorN Array Logical
Exclusive NOR

Performs a logical exclusive NOR operation on
Boolean variables or individual bits in bit stings
between arrays.

2-293

Selection
Instructions

SEL Binary Selection Selects one of two selections. 2-298

MUX Multiplexer Selects one of two to five selections. 2-300

LIMIT Limiter Limits the value of the input variable to the
specified minimum and maximum values.

2-302

Band Deadband Control Performs deadband control. 2-304

Zone Dead Zone Control Adds a bias value to the input value. 2-307

MAX Maximum Finds the largest of two to five values. 2-310

MIN Minimum Finds the smallest of two to five values. 2-310

AryMax Array Maximum Finds the elements with the largest value in a
one-dimensional array.

2-312

AryMin Array Minimum Finds the elements with the smallest value in a
one-dimensional array.

2-312

ArySearch Array Search Searches for the specified value in a one-
dimensional array.

2-314

Data Movement
Instructions

MOVE Move Moves the value of a constant or variable to
another variable.

2-318

MoveBit Move Bit Moves one bit in a bit string. 2-321

MoveDigit Move Digit Moves digits (4 bits per digit) in a bit string. 2-323

TransBits Move Bits Moves one or more bits in a bit string. 2-325

MemCopy Memory Copy Moves one or more array elements. The move
source and move destination must have the
same data type.

2-327

SetBlock Block Set Moves the value of a variable or constant to
one or more array elements.

2-329

Exchange Data Exchange Exchanges the values of two variables. 2-331

Type Instruction Name Function Page

1-9

1 Instruction Set

NJ-series Instructions Reference Manual (W502)

 In
stru

ctio
n

 S
et

1

Data Movement
Instructions

AryExchange Array Data
Exchange

Exchanges the elements of two arrays. 2-333

AryMove Array Move Moves one or more array elements. The data
types of the move source and move destina-
tion can be different.

2-335

Clear Initialize Initializes a variable. 2-337

Copy**ToNum (Bit
String to Signed Inte-
ger)

Bit Pattern Copy
(Bit String to
Signed Integer)
Group

Copies the content of a bit string directly to a
signed integer.

2-339

Copy**To*** (Bit String
to Real Number)

Bit Pattern Copy
(Bit String to Real
Number) Group

Copies the content of a bit string directly to a
real number.

2-341

CopyNumTo** (Signed
Integer to Bit String)

Bit Pattern Copy
(Signed Integer to
Bit String) Group

Copies the content of a signed integer directly
to a bit string.

2-343

CopyNumTo** (Signed
Integer to Real Num-
ber)

Bit Pattern Copy
(Signed Integer to
Real Number)
Group

Copies the content of a signed integer directly
to a real number.

2-345

Copy**To*** (Real
Number to Bit String)

Bit Pattern Copy
(Real Number to
Bit String) Group

Copies the content of a real number directly to
a bit string.

2-347

Copy**ToNum (Real
Number to Signed Inte-
ger)

Bit Pattern Copy
(Real Number to
Signed Integer)
Group

Copies the content of a real number directly to
a signed integer.

2-349

Shift Instructions AryShiftReg Shift Register Shifts a bit string one bit to the left and inserts
the input value to the least-significant bit. The
bit string consists of array elements.

2-352

AryShiftRegLR Reversible Shift
Register

Shifts a bit string one bit to the left or right and
inserts the input value to the least-significant or
most-significant bit. The bit string consists of
array elements.

2-354

ArySHL Array N-element
Left Shift

Shifts array elements by one or more elements
to the left (toward the higher elements).

2-357

ArySHR Array N-element
Right Shift

Shifts array elements by one or more elements
to the right (toward the lower elements).

2-357

SHL N-bit Left Shift Shifts a bit string by one or more bits to the left
(toward the higher bits).

2-360

SHR N-bit Right Shift Shifts a bit string by one or more bits to the
right (toward the lower bits).

2-360

NSHLC Shift N-bits Left
with Carry

Shifts an array of bit strings that includes the
Carry (CY) Flag by one or more bits to the left
(toward the higher elements).

2-362

NSHRC Shift N-bits Right
with Carry

Shifts an array of bit strings that includes the
Carry (CY) Flag by one or more bits to the right
(toward the lower elements).

2-362

ROL Rotate N-bits Left Rotates a bit string by one or more bits to the
left (toward the higher bits).

2-364

ROR Rotate N-bits Right Rotates a bit string by one or more bits to the
right (toward the lower bits).

2-364

Conversion
Instructions

Swap Swap Bytes Swaps the upper byte and lower byte of a 16-
bit value.

2-368

Neg Reverse Sign Reverses the sign of a number. 2-369

Type Instruction Name Function Page

1 Instruction Set

1-10 NJ-series Instructions Reference Manual (W502)

Conversion
Instructions

Decoder Bit Decoder Sets the specified bit to TRUE and the other
bits to FALSE in array elements that consist of
a maximum of 256 bits.

2-371

Encoder Bit Encoder Finds the position of the highest TRUE bit in
array elements that consist of a maximum of
256 bits.

2-374

BitCnt Bit Counter Counts the number of TRUE bits in a bit string. 2-376

ColmToLine_** Column to Line
Conversion Group

Extracts bit values from the specified position
of array elements and outputs them as a bit
string.

2-377

LineToColm Line to Column
Conversion

Takes the bits from a bit string and outputs
them to the specified bit position in array ele-
ments.

2-379

Gray Gray Code
Conversion

Converts a gray code into an angle. 2-381

PWLApprox Broken Line
Approximation

Performs broken line approximations for inte-
gers or real numbers.

2-384

MovingAverage Moving Average Calculates a moving average. 2-387

PIDAT PID with
Autotuning

Performs PID control with autotuning (2-PID
control with set point filter).

2-393

DispartReal Separate Mantissa
and Exponent

Separates a real number into the signed man-
tissa and the exponent.

2-418

UniteReal Combine Real
Number Mantissa
and Exponent

Combines a signed mantissa and exponent to
make a real number.

2-421

NumToDecString Fixed-length
Decimal Text String
Conversion

Converts an integer to a fixed-length decimal
text string.

2-423

NumToHexString Fixed-length
Hexadecimal Text
String Conversion

Converts an integer to a fixed-length hexadeci-
mal text string.

2-423

HexStringToNum_** Hexadecimal Text
String-to-Number
Conversion Group

Converts a hexadecimal text string to an inte-
ger.

2-426

FixNumToString Fixed-decimal
Number-to-Text
String Conversion

Converts a signed fixed-decimal number to a
decimal text string.

2-428

StringToFixNum Text String-to-
Fixed-decimal
Conversion

Converts a decimal text string to a signed
fixed-decimal number.

2-430

DtToString Date and Time-to-
Text String
Conversion

Converts a date and time to a text string. 2-433

DateToString Date-to-Text String
Conversion

Converts a date to a text string. 2-435

TodToString Time of Day-to-
Text String
Conversion

Converts a time of day to a text string. 2-436

GrayToBin_** Gray Code-to-
Binary Code
Conversion Group

Converts a gray code to a bit string. 2-438

BinToGray_** Binary Code-to-
Gray Code
Conversion

Converts a bit string to a gray code. 2-438

Type Instruction Name Function Page

1-11

1 Instruction Set

NJ-series Instructions Reference Manual (W502)

 In
stru

ctio
n

 S
et

1

Conversion
Instructions

StringToAry Text String-to-Array
Conversion

Converts a text string to a BYTE array. 2-441

AryToString Array-to-Text String
Conversion

Converts a BYTE array to a text string. 2-443

DispartDigit Four-bit Separation Separates a bit string into 4-bit units. 2-445

UniteDigit_** Four-bit Join Group Joins 4-bit units of data into a bit string. 2-447

Dispart8Bit Byte Data
Separation

Separates a bit string into individual bytes. 2-449

Unite8Bit_** Byte Data Join
Group

Joins bytes of data into a bit string. 2-451

ToAryByte Conversion to Byte
Array

Separates the value of a variable into bytes
and stores them in a BYTE array.

2-453

AryByteTo Conversion from
Byte Array

Joins BYTE array elements and stores the
result in a variable.

2-458

SizeOfAry Get Number of
Array Elements

Gets the number of elements in an array. 2-463

Stack and Table
Instructions

StackPush Push onto Stack Stores a value in a stack. 2-466

StackFIFO First In First Out Removes the bottom value from a stack. 2-475

StackLIFO Last In First Out Removes the top value from a stack. 2-475

StackIns Insert into Stack Inserts a value at a specified position in a
stack.

2-478

StackDel Delete from Stack Deletes a value from a specified position in a
stack.

2-480

RecSearch Record Search Searches an array of structures for elements
that match the search key with the specified
method.

2-482

RecRangeSearch Range Record
Search

Searches an array of structures for elements
that match the search condition range with the
specified method.

2-487

RecSort Record Sort Sorts the elements of an array of structures. 2-492

RecNum Get Number of
Records

Finds the number of records in an array of
structures to the end data.

2-497

RecMax Maximum Record
Search

Searches the specified member in the struc-
tures of an array of structures for the maximum
value.

2-499

RecMin Minimum Record
Search

Searches the specified member in the struc-
tures of an array of structures for the minimum
value.

2-499

FCS Instructions StringSum Checksum
Calculation

Calculates the checksum for a text string. 2-504

StringLRC Calculate Text
String LRC

Calculates the LRC value (horizontal parity). 2-506

StringCRCCCITT Calculate Text
String CRC-CCITT

Calculates the CRC-CCITT value using the
XMODEM method.

2-508

StringCRC16 Calculate Text
String CRC-16

Calculates the CRC-16 value using the MOD-
BUS method.

2-510

AryLRC_** Calculate Array
LRC Group

Calculates the LRC value for an array 2-512

AryCRCCCITT Calculate Array
CRC-CCITT

Calculates the CRC-CCITT value using the
XMODEM method.

2-514

AryCRC16 Calculate Array
CRC-16

Calculates the CRC-16 value using the MOD-
BUS method.

2-516

Type Instruction Name Function Page

1 Instruction Set

1-12 NJ-series Instructions Reference Manual (W502)

Text String
Instructions

CONCAT Concatenate String Joins two to five text strings. 2-520

LEFT Get String Left Extracts a text string with the specified number
of characters from the start (left) of a text
string.

2-522

RIGHT Get String Right Extracts a text string with the specified number
of characters from the end (right) of a text
string.

2-522

MID Get String Any Extracts a text string with the specified number
of characters from the specified character posi-
tion.

2-524

FIND Find String Searches a specified text string for the position
of a specified text string.

2-526

LEN String Length Finds the number of characters in a text string. 2-528

REPLACE Replace String Replaces part of a text string with another text
string

2-529

DELETE Delete String Deletes all or part of a text string. 2-531

INSERT Insert String Inserts a text string into another text string. 2-533

GetByteLen Get Byte Length Counts the number of bytes in a text string. 2-535

ClearString Clear String Clears a text string. 2-537

ToUCase Convert to
Uppercase

Converts all single-byte letters in a text string
to uppercase.

2-538

ToLCase Convert to
Lowercase

Converts all single-byte letters in a text string
to lowercase.

2-538

TrimL Trim String Left Removes blank space from the beginning of a
text string.

2-540

TrimR Trim String Right Removes blank space from the end of a text
string.

2-540

Time and Time
of Day Instruc-
tions

ADD_TIME Add Time Adds two times. 2-544

ADD_TOD_TIME Add Time to Time
of Day

Adds a time to a time of day. 2-546

ADD_DT_TIME Add Time to Date
and Time

Adds a time to a date and time. 2-548

SUB_TIME Subtract Time Subtracts one time from another. 2-550

SUB_TOD_TIME Subtract Time from
Time of Day

Subtracts a time from a time of day. 2-552

SUB_TOD_TOD Subtract Time of
Day

Subtracts a time of day from another time of
day.

2-554

SUB_DATE_DATE Subtract Date Subtracts another date from another date. 2-555

SUB_DT_DT Subtract Date and
Time

Subtracts another date and time from another
date and time.

2-556

SUB_DT_TIME Subtract Time from
Date and Time

Subtracts a time from a date and time. 2-558

MULTIME Multiply Time Multiplies a time by a specified number. 2-560

DIVTIME Divide Time Divides a time by a specified number. 2-562

CONCAT_DATE_TOD Concatenate Date
and Time of Day

Combines a date and a time of day. 2-564

DT_TO_TOD Extract Time of
Day from Date and
Time

Extracts the time of day from a date and time. 2-566

DT_TO_DATE Extract Date from
Date and Time

Extracts the date from a date and time. 2-568

SetTime Set Time Sets the system time. 2-570

Type Instruction Name Function Page

1-13

1 Instruction Set

NJ-series Instructions Reference Manual (W502)

 In
stru

ctio
n

 S
et

1

Time and Time
of Day Instruc-
tions

GetTime Get Time of Day Reads the current time. 2-572

DtToSec Convert Date and
Time to Seconds

Converts a date and time to the number of sec-
onds from 00:00:00 on January 1, 1970.

2-574

DateToSec Convert Date to
Seconds

Converts a date to the number of seconds from
00:00:00 on January 1, 1970.

2-576

TodToSec Convert Time of
Day to Seconds

Converts a time of day to the number of sec-
onds from 00:00:00.

2-577

SecToDt Convert Seconds
to Date and Time

Converts the number of seconds from
00:00:00 on January 1, 1970 to a date and
time.

2-578

SecToDate Convert Seconds
to Date

Converts the number of seconds from
00:00:00 on January 1, 1970 to a date.

2-580

SecToTod Convert Seconds
to Time of Day

Converts the number of seconds from
00:00:00 to a time of day.

2-582

TimeToNanoSec Convert Time to
Nanoseconds

Converts a time to nanoseconds. 2-583

TimeToSec Convert Time to
Seconds

Converts a time to seconds. 2-584

NanoSecToTime Convert
Nanoseconds to
Time

Converts nanoseconds to a time. 2-585

SecToTime Convert Seconds
to Time

Converts seconds to a time. 2-586

ChkLeapYear Check for Leap
Year

Checks for a leap year. 2-588

GetDaysOfMonth Get Days in Month Gets the number of days in the specified
month.

2-589

DaysToMonth Convert Days to
Month

Calculates the month based on the number of
days from January 1.

2-591

GetDayOfWeek Get Day of Week Gets the day of the week for the specified year,
month, and day of month.

2-593

GetWeekOfYear Get Week Number Gets the week number for the specified year,
month, and day of month.

2-595

DtToDateStruct Break Down Date
and Time

Converts a date and time to the year, month,
day, hour, minutes, seconds, and nanosec-
onds.

2-597

DateStructToDt Join Time Joins a year, month, day, hour, minutes, sec-
onds, and nanoseconds into a date and time.

2-599

System Control
Instructions

TraceSamp Data Trace
Sampling

Performs sampling for a data trace. 2-602

TraceTrig Data Trace Trigger Generates a trigger for data tracing. 2-605

GetTraceStatus Read Data Trace
Status

Reads the execution status of a data trace. 2-607

SetAlarm Create User-
defined Error

Creates a user-defined error. 2-610

ResetAlarm Reset User-
defined Error

Resets a user-defined error. 2-615

GetAlarm Get User-defined
Error Status

Gets the highest event level (of user-defined
error levels 1 to 8) and the highest level event
code of the current user-defined errors.

2-617

ResetPLCError Reset PLC
Controller Error

Resets errors in the PLC Function Module. 2-619

Type Instruction Name Function Page

1 Instruction Set

1-14 NJ-series Instructions Reference Manual (W502)

System Control
Instructions

GetPLCError Get PLC Controller
Error Status

Gets the highest level status (partial fault or
minor fault) and highest level event code of the
current Controller errors in the PLC Function
Module.

2-622

ResetCJBError Reset CJ Bus
Controller Error

Resets a Controller Error in the I/O bus. 2-624

GetCJBError Get I/O Bus Error
Status

Gets the highest level status (partial fault or
minor fault) and highest level event code of the
current Controller errors in the I/O bus.

2-626

GetEIPError Get EtherNet/IP
Error Status

Gets the highest level status (partial fault or
minor fault) and highest level event code of the
current Controller errors in the EtherNet/IP
Function Module.

2-628

ResetMCError Reset Motion
Control Error

Resets a Controller Error in the Motion Control
Function Module.

2-630

GetMCError Get Motion Control
Error Status

Gets the highest level status (partial fault or
minor fault) and highest level event code of the
current Controller errors in the Motion Control
Function Module.

2-634

ResetECError Reset EtherCAT
Error

Resets a Controller Error in the EtherCAT Mas-
ter Function Module.

2-636

GetECError Get EtherCAT
Error Status

Gets the highest level status (partial fault or
minor fault) and highest level event code of the
current communications port errors or master
errors in the EtherCAT Master Function Mod-
ule.

2-637

SetInfo Create User-
defined Information

Creates user-defined information. 2-639

ResetUnit Restart Unit Restarts a CPU Bus Unit or Special I/O Unit. 2-641

GetNTPStatus Read NTP Status Reads the NTP status. 2-645

Communica-
tions Instruc-
tions

ExecPMCR Protocol Macro Requests execution of a communications
sequence (protocol data) registered in a Serial
Communications Unit (unit version 2.2 or
later).

2-648

SerialSend SCU Send Serial Sends data in No-protocol Mode from a serial
port on a Serial Communications Unit.

2-658

SerialRcv SCU Receive
Serial

Receives data in No-protocol Mode from a
serial port on a Serial Communications Unit.

2-665

SendCmd Send Command Uses a serial gateway and sends a command
to a Serial Communications Unit. Or, sends an
explicit command to a DeviceNet Unit.

2-674

CIPOpen Open CIP Class 3
Connection

Opens a CIP class 3 connection with the spec-
ified remote node.

2-684

CIPRead Read Variable
Class 3 Explicit

Uses a class 3 explicit message to read the
value of a variable in another Controller on a
CIP network.

2-692

CIPWrite Write Variable
Class 3 Explicit

Uses a class 3 explicit message to write the
value of a variable in another Controller on a
CIP network.

2-696

CIPSend Send Explicit
Message Class 3

Sends a class 3 CIP message to a specified
device on a CIP network.

2-701

CIPClose Close CIP Class 3
Connection

Closes the CIP class 3 connection to the spec-
ified handle.

2-704

Type Instruction Name Function Page

1-15

1 Instruction Set

NJ-series Instructions Reference Manual (W502)

 In
stru

ctio
n

 S
et

1

Communica-
tions Instruc-
tions

CIPUCMMRead Read Variable
UCMM Explicit

Uses a UCMM explicit message to read the
value of a variable in another Controller on the
specified CIP network.

2-706

CIPUCMMWrite Write Variable
UCMM Explicit

Uses a UCMM explicit message to write the
value of a variable in another Controller on a
CIP network.

2-710

CIPUCMMSend Send Explicit
Message UCMM

Sends a UCMM CIP message to a specified
device on a CIP network.

2-716

EC_CoESDOWrite Write EtherCAT
CoE SDO

Writes a value to a CoE object of a specified
slave on the EtherCAT network.

2-726

EC_CoESDORead Read EtherCAT
CoE SDO

Reads a value from a CoE object of a specified
slave.

2-729

EC_StartMon Start EtherCAT
Packet Monitor

Starts packet monitoring of EtherCAT commu-
nications.

2-734

EC_StopMon Stop EtherCAT
Packet Monitor

Stops execution of packet monitoring. 2-740

EC_SaveMon Save EtherCAT
Packets

Saves EtherCAT communications packet data
to an internal file in the main memory of the
CPU Unit.

2-742

EC_CopyMon Transfer EtherCAT
Packets

Transfers packet data in an internal file in the
main memory of the CPU Unit to a SD Memory
Card.

2-744

EC_DisconnectSlave Disconnect
EtherCAT Slave

Disconnects the specified slave from the net-
work.

2-746

EC_ConnectSlave Connect EtherCAT
Slave

Connects the specified slave to the EtherCAT
network.

2-752

SktUDPCreate Create UDP
Socket

Creates a UDP socket request to open a servo
port for the built-in EtherNet/IP.

2-754

SktUDPRcv UDP Socket
Receive

Reads the data from the receive buffer for a
UDP socket for the built-in EtherNet/IP.

2-761

SktUDPSend UDP Socket Send Sends data from a UDP port for the built-in
EtherNet/IP.

2-764

SktTCPAccept Accept TCP
Socket

Requests accepting a TCP socket for the built-
in EtherNet/IP.

2-767

SktTCPConnect Connect TCP
Socket

Connects to a remote TCP port from the built-
in EtherNet/IP.

2-770

SktTCPRcv TCP Socket
Receive

Reads the data from the receive buffer for a
TCP socket for the built-in EtherNet/IP.

2-777

SktTCPSend TCP Socket Send Sends data from a TCP port for the built-in Eth-
erNet/IP.

2-780

SktGetTCPStatus Read TCP Socket
Status

Reads the status of a TCP socket. 2-783

SktClose Close TCP/UDP
Socket

Closes the specified TCP or UDP socket for
the built-in EtherNet/IP.

2-786

SktClearBuf Clear TCP/UDP
Socket Receive
Buffer

Clears the receive buffer for the specified TCP
or UDP socket for the built-in EtherNet/IP.

2-789

Type Instruction Name Function Page

1 Instruction Set

1-16 NJ-series Instructions Reference Manual (W502)

• Refer to the NJ-series Motion Control Instructions Reference Manual (Cat. No. W508) for the specifi-
cations of the motion control instructions.

• Refer to the Sysmac Studio Version 1 Operation Manual (Cat. No. W504) for the specifications of the
simulation instructions.

SD Memory
Card Instruc-
tions

FileWriteVar Write Variable to
File

Writes the value of a variable to the specified
file in the SD Memory Card. The value is writ-
ten in binary format.

2-794

FileReadVar Read Variable from
File

Reads the contents of the specified file on the
SD Memory Card as binary data and writes it
to a variable.

2-799

FileOpen Open File Opens the specified file in the SD Memory
Card.

2-803

FileClose Close File Closes the specified file in the SD Memory
Card.

2-806

FileSeek Seek File Sets a file position indicator in the specified file
in the SD Memory Card.

2-809

FileRead Read File Reads the data from the specified file in the SD
Memory Card.

2-812

FileWrite Write File Writes data to the specified file in the SD Mem-
ory Card.

2-819

FileGets Get Text String Reads a text string of one line from the speci-
fied file in the SD Memory Card.

2-826

FilePuts Put Text String Writes a text string to the specified file in the
SD Memory Card.

2-833

FileCopy Copy File Copies the specified file in the SD Memory
Card.

2-840

FileRemove Delete File Deletes the specified file from the SD Memory
Card.

2-848

FileRename Change File Name Changes the name of the specified file or
directory in the SD Memory Card.

2-852

DirCreate Create Directory Creates a directory with the specified name in
the SD Memory Card.

2-857

DirRemove Delete Directory Deletes the specified directory from the SD
Memory Card.

2-860

Other Instruc-
tions

ReadNbit_** N-bit Read Group Reads zero or more bits from a bit string. 2-864

WriteNbit_** N-bit Write Group Writes zero or more bits to a bit string. 2-866

ChkRange Check Subrange
Variable

Determines if the value of a variable is within
the valid range of the range type specification.

2-868

GetMyTaskStatus Read Current Task
Status

Reads the status of the current task. 2-870

Task_IsActive Determine Task
Status

Determines if the specified task is currently in
execution.

2-873

Lock Lock Tasks Starts an exclusive lock between tasks. Execu-
tion of any other task with a lock region with
the same lock number is disabled.

2-875

Unlock Unlock Tasks Stops an exclusive lock between tasks. 2-875

Get**Clk Get Clock Pulse
Group

Outputs a clock pulse at the specified cycle. 2-880

Get**Cnt Get Incrementing
Free-running
Counter Group

Gets the values of free-running counters of the
specified cycle.

2-881

Type Instruction Name Function Page

2-1NJ-series Instructions Reference Manual (W502)

2

This section describes the specifications of the instructions that you can use with NJ-
series Controllers.

Using this Section . 2-2

Ladder Diagram Instructions . 2-13

ST Statement Instructions . 2-23

Sequence Input Instructions . 2-39

Sequence Output Instructions . 2-45

Sequence Control Instructions . 2-59

Comparison Instructions . 2-83

Timer Instructions . 2-115

Counter Instructions . 2-133

Math Instructions . 2-151

BCD Conversion Instructions . 2-211

Data Type Conversion Instructions . 2-231

Bit String Processing Instructions . 2-285

Selection Instructions . 2-297

Data Movement Instructions . 2-317

Shift Instructions . 2-351

Conversion Instructions . 2-367

Stack and Table Instructions . 2-465

FCS Instructions . 2-503

Text String Instructions . 2-519

Time and Time of Day Instructions . 2-543

System Control Instructions . 2-601

Communications Instructions . 2-647

SD Memory Card Instructions . 2-793

Other Instructions . 2-863

Instruction Descriptions

2 Instruction Descriptions

2-2 NJ-series Instructions Reference Manual (W502)

Using this Section
The notation used to describe instructions in this section is explained below.

The following items are provided.

Items

Item Description

Instruction The instruction word is given.
Example: MoveBit

Name The name of the instruction is given.
Example: Move Bit

FB/FUN Whether the instruction is a function block (FB) instruction or a function (FUN) instruction is given.
You can call FB instructions only from programs and function blocks.
You can call FUN instructions from programs, function blocks, and functions.

Graphic expression The figure that represents the instruction in a ladder diagram is given.

Example for a FUN Instruction Example for a FB Instruction

The instruction option, upward differentiation specification, and instance specification are
described below.

Instruction option:
Support for the instruction option is indicated by “(@)” before the FUN instruction. If support for
the instruction option is indicated, you can place “@” before the instruction word to specify
upward differentiation. Also, you can place “%” before the instruction word to specify downward
differentiation. An instruction for which upward differentiation is specified is executed when the
value of the EN input variable was FALSE in the previous task period and is TRUE in the current
task period. An instruction for which downward differentiation is specified is executed when the
value of the EN input variable was TRUE in the previous task period and is FALSE in the current
task period.

Upward differentiation specification:
This is indicated by the arrow pointing into the instruction at the entry point of the input variable.
Instructions with this specification operate as upwardly differentiated instructions.

Instance specification:
An instance of an instruction is indicated by “XX_instance” above an FB instruction. You must
assign an instance name to any instance of an instruction that you specify.

Instruction wordInstruction option

Input variable name
Output variable
name

In-out variable
name

(@)MoveBit
EN ENO
In
InPos
InOut

InOutPos

AryShiftReg

AryShiftReg_instance

 Shift ENO
 Reset
 In
 InOut

 Size

Instance specification

Upward differentiation
specification

2-3

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

 U
sin

g
 th

is S
ectio

n

2

ST expression The notation that represents the instruction in ST is given.

There are two ways that you can use to code an instruction in ST. These are described below.

1. Directly Specifying the Correspondence between the Parameters and the Input, Output, and In-
Out Variables
Example: MoveBit(In:=abc, InPos:=def, InOut:=ghi, InOutPos:=jkl);

2. Specifying Only the Parameters and Omitting the Input, Output, and In-Out Variables
Example: MoveBit(In, InPos, InOut, InOutPos);

Method 2 is used in this section.

You must assign an instance name to any instruction that is given as
“XX_instance(variable_name).”

Example: TON_instance (In, PT, Q, ET);

Variables • Name
The input variables, output variables, and in-out variables are given.
Example: In1
However, variables that are used by many instructions are not given on the pages that describe
individual instructions. The following eight variables are commonly used. The specifications of
these variables are given later.
(EN, ENO, Execute, Done, Busy, Error, ErrorID, and ErrorIDEx)

• Meaning
The name of the variable is given.
Example: Up-counter

• I/O
Whether the variable is an input variable, output variable, or in-out variable is given.

• Description
The meaning of the variable and any restrictions are given.

• Valid range
The range that the variable can take is given. “Depends on data type” indicates that the valid
range of the variable depends on the data type that you use. The valid ranges of the data types
are given later in this section.

• Unit
The unit of the value that is specified with the variable is given. “---” indicates that there is no unit.
Example: Bytes

• Default
The specified default value is automatically used for the variable if you do not assign a parameter
to the instruction before it is executed.
 “---” indicates the following:

Input variables: The default value of the data type of the input variable is assigned. The
default values of the data types are given later in this section. If the input
variable is a structure, the default value is given in the specifications of the
structure in the description of the function of the instruction.

Output variables: Default values are not set.

In-out variables: Default values are not set.

• Data type
The data type of the variable is given. The use of enumerations, arrays, structures, and unions is
also given.

Function The function of the instruction is described. Variable names are given in italic text.
Example: In1
Array names are followed by “[]”.
Example: InOut[]

Related System-
defined Variables

The system-defined variables that are related to the instruction are given. Refer to the NJ-series
CPU Unit Software User's Manual (Cat. No. W501) for details on system-defined variables.

Related Semi-user-
defined Variables

The semi-user-defined variables and variable names that are related to the instruction are given.
Refer to the specified manuals for details on semi-user-defined variables.

Item Description

2 Instruction Descriptions

2-4 NJ-series Instructions Reference Manual (W502)

The specifications of variables that are used for many instructions (EN, ENO, Execute, Done, Busy,
Error, ErrorID, and ErrorIDEx) are described below. These variables are not described in the tables of
variables for individual instructions. Check the graphic or ST expression for the instruction to see if an
instruction uses these variables.

EN is an input variable that gives the execution condition for a FUN instruction.
When you use a FUN instruction in a ladder diagram, connect the execution condition to EN.

* If upward differentiation (@) is specified as an instruction option, the execution condition is when the value of EN changes
from FALSE to TRUE. If downward differentiation (%) is specified as an instruction option, the execution condition is when
the value of EN changes from TRUE to FALSE.

• FB instructions do not have an EN input variable.

• When you call a FUN instruction from structured text, omit the EN input variable. The EN input vari-
able is not required in structured text because the execution condition for the instruction is deter-
mined by the operation sequence.

The ENO output variable passes the execution to the next instruction in a ladder diagram. Normally,
when instruction execution is completed, the value of ENO changes to TRUE. Execution of the next
instruction is then started.

* ENO is TRUE only while the execution condition is met. The value of ENO changes to FALSE when the execution condition
is no longer met after a normal end.

• Most FUN instructions and FB instructions have ENO output variables. There are, however, some
instructions that do not have an ENO output variable.

• Omit the ENO output variable in structured text. The ENO output variable is not required in structured
text because the execution condition for the next instruction is determined by the operation sequence.

Additional Information Additional information on the function of the instruction is provided. This includes related instruc-
tions and helpful information for application of the instruction.

Precautions for Cor-
rect Use

Precautions for application of the instruction are given. The conditions under which errors occur for
the instruction are also given here.

Sample Programming Short samples of how to use the instruction in an application program are provided. The ladder dia-
gram and ST for the same process are shown.

Common Variables

EN

Name Meaning I/O Description Data type Valid range Default

EN Enable (Execu-
tion Condition)

Input TRUE: Instruction is executed.*

FALSE: Instruction is not executed.

BOOL TRUE or
FALSE

TRUE

ENO

Name Meaning I/O Description Data type Valid range Default

ENO Enable Output Output TRUE: Normal end.*

FALSE: Error end, execution in
progress, or execution
condition not met.

BOOL TRUE or
FALSE

Item Description

2-5

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

 U
sin

g
 th

is S
ectio

n

2

Execute is an input variable that gives the execution condition for some FB instructions.
Instruction execution starts when Execute changes to TRUE. After Execute changes to TRUE, execu-
tion of this instruction is continued until processing is completed even if the value of Execute changes to
FALSE or the instruction execution time exceeds the task period.

Done is an output variable that shows the completion of execution for some FB instructions.
Busy is an output variable that shows that instruction execution is in progress for some FB instructions.

*1 If the value of Execute is already TRUE when Controller operation starts, the instruction is not executed. To execute the
instruction in that case, first change the value of Execute to FALSE.

*2 Processing is completed to the end even if Execute changes to FALSE during execution.

*3 The value of Done changes to FALSE when the execution condition is no longer met after a normal end.
*4 If the execution condition is no longer met when a normal end occurs, the value of Done is TRUE for one task period and

it then changes to FALSE.

Error, ErrorID, and ErrorIDEx are output variables that show that an error occurred in the execution of
some FB instructions.

*1 The value of Error changes to FALSE when the execution condition is no longer met after an error end.

*2 If the execution condition is no longer met when an error end occurs, the value of Error is TRUE for one task period and it
then changes to FALSE.

Execute, Done, and Busy

Name Meaning I/O Description Data type Valid range
Initial
value

Execute Execute Input TRUE: Instruction is executed.*1

FALSE: Instruction is not exe-
cuted.*2

BOOL TRUE or
FALSE

FALSE

Done Done

Output

TRUE: Normal end.*3*4

FALSE: Error end, execution in
progress, or execution
condition not met.

BOOL
TRUE or
FALSE

Busy Busy TRUE: Execution processing is

in progress.

FALSE: Execution processing is
not in progress.

Error, ErrorID, and ErrorIDEx

Name Meaning I/O Description Data type Valid range
Initial
value

Error Error

Output

TRUE: Error end.*1*2

FALSE: Normal end, execution in
progress, or execution
condition not met.

BOOL
TRUE or
FALSE

ErrorID Error code This is the error ID for an error end.

The value is WORD#16#0 for a
normal end.

WORD

Depends on
the instruction.ErrorIDEx Expansion

error code
This is the error ID for an Expan-
sion Unit Hardware Error.

The value is DWORD#16#0 for a
normal end.

DWORD

2 Instruction Descriptions

2-6 NJ-series Instructions Reference Manual (W502)

Timing charts are provided below for Execute, Done, Busy, Error, ErrorID, and ErrorIDEx.

Normal End

Execute

Busy

Done

Error

ErrorID

ErrorIDEx

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

One task period

Execution starts when Execute
changes to TRUE. Busy changes to
TRUE, Done changes to FALSE,
and Error changes to FALSE.

Execute is FALSE at the end of
execution, so Done is TRUE for one
task period and then changes to
FALSE.

Instruction processing continues to the
end even if Execute changes to FALSE
during execution (when Busy is TRUE).

Execute changed to FALSE, so Done
changes to FALSE.

Normal end. Busy changes to FALSE
and Done changes to TRUE. Error
does not change (remains FALSE).

2-7

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

 U
sin

g
 th

is S
ectio

n

2

Error End

The valid range of a variable indicates the range of values that variable can take. The default value of a
variable indicates the value that is assigned to an input variable when the instruction is executed with-
out a parameter assigned to the input variable. These values are defined for each data type. If specific
values are not given for an instruction, then the valid ranges and default values of the data types are
applied. These variables are indicated by “depends on data type” in the valid range column and by “---”
in the input variable default column. The valid ranges and default values of the data types are given in
the following tables.

Valid Ranges and Default Values of Variables

Classifica-
tion

Data
type Valid range Default

Boolean BOOL TRUE or FALSE FALSE

Bit string

BYTE BYTE#16#00 to FF BYTE#16#00

WORD WORD#16#0000 to FFFF WORD#16#0000

DWORD DWORD#16#00000000 to FFFFFFFF DWORD#16#0000_0000

LWORD LWORD#16#0000000000000000 to
FFFFFFFFFFFFFFFF

LWORD#16#0000_0000_0000_0000

Execute

Busy

Done

Error

ErrorID

ErrorIDEx

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

One task period

Execution starts when Execute
changes to TRUE. Busy changes to
TRUE, Done changes to FALSE,
Error changes to FALSE, ErrorID
changes to WORD#16#0, and
ErrorIDEx changes to
DWORD#16#0.

Execute is FALSE at the end of
execution, so Error is TRUE for one task
period and then changes to FALSE.

Instruction processing continues to the
end even if Execute changes to FALSE
during execution (when Busy is TRUE).

Execute changed to FALSE, so Error
changes to FALSE. ErroriD and
ErrorIDEx do not change.

Error end. Busy changes to FALSE and
Error changes to TRUE. Done does not
change (remains FALSE). ErrorID and
ErrorIDEx output error IDs.

2 Instruction Descriptions

2-8 NJ-series Instructions Reference Manual (W502)

Integers

USINT USINT#0 to +255 USINT#0

UINT UINT#0 to +65535 UINT#0

UDINT UDINT#0 to +4294967295 UDINT#0

ULINT ULINT#0 to +18446744073709551615 ULINT#0

SINT SINT#−128 to +127 SINT#0

INT INT#−32768 to +32767 INT#0

DINT DINT#−2147483648 to +2147483647 DINT#0

LINT LINT#−9223372036854775808 to
+9223372036854775807

LINT#0

Real numbers

REAL REAL#−3.402823e+38 to −1.175494e-38,

0,

+1.175494e-38 to +3.402823e+38,

+∞/−∞

REAL#0

LREAL LREAL#−1.79769313486231e+308 to
−2.22507385850720e-308,

0,

+2.22507385850720e−308 to
+1.79769313486231e+308,

+∞/−∞

LREAL#0

Times, dura-
tions, dates,
and text
strings

TIME T#−9223372036854.775808ms

(T#−106751d_23h_47m_16s_854.775808ms) to
T#9223372036854.775807ms

(T#+106751d_23h_47m_16s_854.775807ms)

T#0s

DATE D#1970-01-01 to D#2106-02-06

(January 1, 1970 to February 6, 2106)

D#1970-01-01

TOD TOD#00:00:00.000000000 to
TOD#23:59:59.999999999

(0:00 and 0.000000000 to 23:59 and 59.999999999
seconds)

TOD#00:00:00.000000000

DT DT#1970-01-01-00:00:00.000000000 to DT#2106-02-
06-23:59:59.999999999

(0:00 and 0.000000000 on January 1, 1970 to 23:59
and 59.999999999 seconds on February 6, 2106)

DT#1970-01-01-00:00:00.000000000

STRING Character code: UTF-8

0 to 1,986 bytes (1,985 single-byte alphanumeric
characters plus the final NULL character)

''

Classifica-
tion

Data
type Valid range Default

2-9

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

 U
sin

g
 th

is S
ectio

n

2

Variables that use derivative data types (enumerations, structures, and unions) are specified as such in
the tables of variable data types. The notation is described below.

The data type for an enumerated variable is given within the table. The following is an example. Here,
the data type of the Out variable is enumerated type _eDAYOFWEEK. The enumerators are described
in the description of the function of the instruction.

The data type for a structure or union variable is given within the table. The following is an example.
Here, the data type of the In1 variable is structure _sPORT. Details on the members of a structure or
union are given in the description of the function of the instruction.

The tables also indicate any variables for which you can specify a structure, a structure member, a
union, or a union member as the parameter.
In the following example, you can specify a parameter with a basic data type, or you can specify a struc-
ture, a structure member, a union, or a union member for the In1 variable. To specify a structure or
union, specify only the structure or the union as the parameter. To specify a structure member or a
union member, specify the member as the parameter.

Derivative Data Types (Enumerations, Structures, and Unions)

Enumerations

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK OK

Out Refer to Function for the enumerators of the enumerated type _eDAYOFWEEK.

Structures and Unions

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In1 Refer to Function for details on the structure _sPORT.

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In1 OK

A structure, structure member, union, or union member can also be specified.

2 Instruction Descriptions

2-10 NJ-series Instructions Reference Manual (W502)

Array variable names are followed by “[]” and “(array)” is specified. For these variables, specify an ele-
ment of the array (i.e., specify the subscript) as the parameter.
An example is shown below. Here, the table shows that In1[] is a BYTE array.

The data type table indicates the arrays for which structures and unions can be used as elements, as
shown in the following example. For these variables, specify an element of the array (i.e., specify the
subscript) as the parameter.

The table indicates any variables for which you can specify either an array or an array element as the
parameter.
In the following example, you can specify a parameter with a basic data type, or you can specify an
array or an array element. To specify an array, specify only the array as the parameter. To specify an
array element, specify an element of the array (i.e., specify the subscript) as the parameter.

The errors that can occur for an instruction are given in the Precautions for Correct Use section. The fol-
lowing three errors, however, can be detected for any instruction. They are not listed in the Precautions
for Correct Use sections.

• Reading or writing elements that exceed the range of an array variable.
Example: Setting a[4] for an input variable for the array variable a[0..3].

• Passing parameters that are not variables to instructions for which array variables are defined for
input, output, or in-out variables.

• Assigning a text string that is longer than the defined number of bytes to a STRING variable.

• Assigning a text string that does not end in a NULL character to a STRING variable.

Array Specifications

B
o

o
lean

Bit strings Integers
R

eal
n

u
m

b
ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In1[] (array) OK

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In1[] (array) Arrays of structures or unions can also be specified.

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In1 An array or array element can also be specified.

Others

Errors Detected for All Instructions

2-11

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

 U
sin

g
 th

is S
ectio

n

2

• Assigning a text string that has character code error to a STRING variable.

• Dividing an integer variable by 0.

The amount of processing that is required for some instructions depends on the parameters that you
connect. If there is too much processing, the instruction execution time increases and the task period
may be exceeded. This will result in a Task Period Exceeded error. Adjust the amount of processing to
a suitable amount.

Precautions for All Instructions

2 Instruction Descriptions

2-12 NJ-series Instructions Reference Manual (W502)

L
ad

d
er D

iag
ram

 In
stru

ctio
n

s

2

2-13NJ-series Instructions Reference Manual (W502)

Ladder Diagram Instructions

Instruction Name Page

LD and LDN Load/
Load NOT

2-14

AND and ANDN AND/
AND NOT

2-16

OR and ORN OR/
OR NOT

2-18

Out and OutNot Output/
Output NOT

2-20

2 Instruction Descriptions

2-14 NJ-series Instructions Reference Manual (W502)

LD and LDN

None

LD
The LD instruction reads the value of the specified BOOL variable and outputs it to the next instruction.
If the value of the specified variable is TRUE, then TRUE is output. If the value is FALSE, then FALSE is
output. Use the LD instruction for the first NO bit from the bus bar or for the first NO bit of a logic block.

LDN
The LD instruction reads the inverse of the value of the specified BOOL variable and outputs it to the
next instruction. If the value of the specified variable is TRUE, then FALSE is output. If the value is
FALSE, then TRUE is output. Use the LDN instruction for the first NC bit from the bus bar or for the first
NC bit of a logic block.

The operation is as shown below if you do not specify upward or downward differentiation.

LD: Reads the value of a BOOL variable.

LDN: Reads the inverse of the value of a BOOL variable.

Instruction Name FB/FUN Graphic expression ST expression

LD Load --- None

LDN Load NOT --- None

Variables

Function

Instruction
Value of
variable

Output
value

LD
TRUE TRUE

FALSE FALSE

LDN
TRUE FALSE

FALSE TRUE

Variable

Downward
differentiation

Upward
differentiation

Variable Variable

VariableVariable Variable

Upward
differentiation

Downward
differentiation

2-15

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

L
ad

d
er D

iag
ram

 In
stru

ctio
n

s

2

LD
 and LD

N

If you specify upward or downward differentiation, the operation depends on the following: the value of
the variable the last time the instruction was executed and the current value of the variable. This is
shown below.

The following figure shows a programming example and timing chart.

• An error occurs in the following case and the output value from the last execution is retained.

• You specify an array element for the variable value and the element does not exist.

Example: A BOOL array a[0..5] is defined, but the instruction is executed using a[10] as the vari-
able.

• Do not use these instructions as the rightmost instruction on a rung. If you do, an error occurs on the
Sysmac Studio and you cannot transfer the user program to the Controller.

Instruction
Differentiation specifi-

cation
Value of variable at last execution and current

value of variable
Output value

LD

Upward differentiation
FALSE at the last execution → Currently TRUE TRUE

Other than the above. FALSE

Downward differentia-
tion

TRUE at the last execution → Currently FALSE TRUE

Other than the above. FALSE

LDN

Upward differentiation
FALSE at the last execution → Currently TRUE FALSE

Other than the above. TRUE

Downward differentia-
tion

TRUE at the last execution → Currently FALSE FALSE

Other than the above. TRUE

Precautions for Correct Use

Instruction execution

A

A

A

A

A

A

B1

B2

B3

B4

B5

B6

A

B1

B2

B3

B4

B5

B6

 ↑

 ↑

 ↑

 ↑

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

2 Instruction Descriptions

2-16 NJ-series Instructions Reference Manual (W502)

AND and ANDN

None

AND
The AND instruction takes the logical AND of the value of a specified BOOL variable and the execution
condition and outputs it to the next instruction. Use the AND instruction for a NO bit connected in series
with the previous instruction.

ANDN
The ANDN instruction takes the logical AND of the inverse of the value of a specified BOOL variable
and the execution condition and outputs it to the next instruction. Use the ANDN instruction for a NC bit
connected in series with the previous instruction.

The following figure shows a programming example of the AND instruction. It takes the logical AND of
variable A and variable B and outputs it to variable C.

AND: Takes the logical AND of the value of a BOOL variable and the execution condition.

ANDN: Takes the logical AND of the inverse of the value of a BOOL variable and the execution
condition.

Instruction Name FB/FUN Graphic expression ST expression

AND AND --- result:=vBool1 AND vBOOL2;
result:=vBool1 & vBool2;

ANDN AND NOT --- result:=vBool1 AND NOT
vBool2;

Variables

Function

Upward
differentiation

Downward
differentiation

Variable

Variable Variable

Upward
differentiation

Downward
differentiation

Variable

Variable Variable

BA C

LD
instruction

Out
instruction

AND
instruction

2-17

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

L
ad

d
er D

iag
ram

 In
stru

ctio
n

s

2

A
N

D
 and A

N
D

N

The operation is as shown below if you do not specify upward or downward differentiation.

If you specify upward or downward differentiation, the operation depends on the following: the value of
the variable the last time the instruction was executed, the current value of the variable, and the execu-
tion condition. This is shown below.

• An error occurs in the following case and the output value from the last execution is retained.

• You specify an array element for the variable value and the element does not exist.

Example: A BOOL array a[0..5] is defined, but the instruction is executed using a[10] as the vari-
able.

• Do not use these instructions as the rightmost instruction on a rung. If you do, an error occurs on the
Sysmac Studio and you cannot transfer the user program to the Controller.

• You cannot connect these instructions directly to the bus bar.

Instruction
Combination of variable value and execution

condition
Output
value

AND

Variable value: TRUE

Execution condition: TRUE

TRUE

Other than the above. FALSE

ANDN

Variable value: FALSE

Execution condition: TRUE

TRUE

Other than the above. FALSE

Instruction
Differentiation specifi-

cation
Combination of value of variable at last execution,
current value of variable, and execution condition

Output value

AND

Upward differentiation

Variable value: FALSE at the last execution →
Currently TRUE

Execution condition: TRUE

TRUE

Other than the above. FALSE

Downward differentia-
tion

Variable value: TRUE at the last execution →
Currently FALSE

Execution condition: TRUE

TRUE

Other than the above. FALSE

ANDN

Upward differentiation

Variable value: FALSE at the last execution →
Currently TRUE

Execution condition: TRUE FALSE

Variable value: Ignored

Execution condition: FALSE

Other than the above. TRUE

Downward differentia-
tion

Variable value: TRUE at the last execution →
Currently FALSE

Execution condition: TRUE FALSE

Variable value: Ignored

Execution condition: FALSE

Other than the above. TRUE

Precautions for Correct Use

2 Instruction Descriptions

2-18 NJ-series Instructions Reference Manual (W502)

OR and ORN

None

OR
The OR instruction takes the logical OR of the value of a specified BOOL variable and the execution
condition and outputs it to the next instruction. Use the OR instruction for a NO bit connected in parallel
with the previous instruction. Use the OR instruction to configure a logical OR between an NO bit and
one of the following: a LD or LDN instruction connected directly to the bus bar, or the logic block starting
with a LD or LDN instruction and ending with the instruction immediately before the OR instruction.

ORN
The ORN instruction takes the logical OR of the inverse of the value of a specified BOOL variable and
the execution condition and outputs it to the next instruction. Use the ORN instruction for a NC bit con-
nected in parallel with the previous instruction. Use the ORN instruction to configure a logical OR
between an NC bit and one of the following: a LD or LDN instruction connected directly to the bus bar,
or the logic block starting with a LD or LDN instruction and ending with the instruction immediately
before the ORN instruction.

The following figure shows a programming example of the OR instruction. It takes the logical OR of vari-
able A and variable B and outputs it to variable C.

OR: Takes the logical OR of the value of a BOOL variable and the execution condition.

ORN: Takes the logical OR of the inverse of the value of a BOOL variable and the execution condi-
tion.

Instruction Name FB/FUN Graphic expression ST expression

OR OR --- result:=vBool1 OR vBool2;

ORN OR NOT --- result:=vBool1 OR NOT
vBool2;

Variables

Function

Variable

Downward
differentiation

Upward
differentiation

Variable

Variable Variable

Variable

Variable

Downward
differentiation

Upward
differentiation

Variable

Downward
differentiation

Upward
differentiation

Variable

Variable

Variable

Variable

Variable

Downward
differentiation

Upward
differentiation

B

A C

LD instruction

Out instruction

OR instruction

2-19

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

L
ad

d
er D

iag
ram

 In
stru

ctio
n

s

2

O
R

 and O
R

N

The operation is as shown below if you do not specify upward or downward differentiation.

If you specify upward or downward differentiation, the operation depends on the following: the value of
the variable the last time the instruction was executed, the current value of the variable, and the execu-
tion condition. This is shown below.

• An error occurs in the following case and the output value from the last execution is retained.

• You specify an array element for the variable value and the element does not exist.

Example: A BOOL array a[0..5] is defined, but the instruction is executed using a[10] as the vari-
able.

• Do not use these instructions as the rightmost instruction on a rung. If you do, an error occurs on the
Sysmac Studio and you cannot transfer the user program to the Controller.

Instruction
Combination of variable value and execution

condition
Output
value

OR

Variable value: FALSE

Execution condition: FALSE

FALSE

Other than the above. TRUE

ORN

Variable value: TRUE

Execution condition: FALSE

FALSE

Other than the above. TRUE

Instruction
Differentiation specifi-

cation
Combination of value of variable at last execution,
current value of variable, and execution condition

Output value

OR

Upward differentiation

Variable value: FALSE at the last execution →
Currently TRUE

Execution condition: Ignored. TRUE

Variable value: Ignored

Execution condition: TRUE

Other than the above. FALSE

Downward differentia-
tion

Variable value: TRUE at the last execution →
Currently FALSE

Execution condition: Ignored. TRUE

Variable value: Ignored

Execution condition: TRUE

Other than the above. FALSE

ORN

Upward differentiation

Variable value: FALSE at the last execution →
Currently TRUE

Execution condition: FALSE

FALSE

Other than the above. TRUE

Downward differentia-
tion

Variable value: TRUE at the last execution →
Currently FALSE

Execution condition: FALSE

FALSE

Other than the above. TRUE

Precautions for Correct Use

2 Instruction Descriptions

2-20 NJ-series Instructions Reference Manual (W502)

Out and OutNot

None

Out
The Out instruction takes the logical result from the previous instruction and outputs it to a specified
BOOL variable.

The operation is as shown below if you do not specify upward or downward differentiation.

You can specify upward or downward differentiation for the Out instruction. If upward or downward dif-
ferentiation is specified, the output value is determined by changes in the result of logic processing from
the previous instruction between the last execution of the instruction and the current execution. The
operation is according to the current logical result from the previous instruction, as shown in the follow-
ing table.

Out: Takes the logical result from the previous instruction and outputs it to a BOOL variable.

OutNot: Takes the inverse of the logical result from the previous instruction and outputs it to a
BOOL variable.

Instruction Name FB/FUN Graphic expression ST expression

Out Output --- Variable:=(Logic expression
up to previous instruction);

OutNot Output NOT --- Variable:=NOT(Logic
expression up to previous
instruction);

Variables

Function

Logic processing result
from previous instruction

Output

TRUE TRUE

FALSE FALSE

Differentiation specification
Results of logic processing from the previous

execution and current execution
Output

Upward differentiation
FALSE at the last execution → Currently TRUE TRUE

Other than the above. FALSE

Downward differentiation
TRUE at the last execution → Currently FALSE TRUE

Other than the above. FALSE

Variable

Variable Variable

Upward
differentiation

Downward
differentiation

Variable

2-21

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

L
ad

d
er D

iag
ram

 In
stru

ctio
n

s

2

O
ut and O

utN
ot

OutNot
The OutNot instruction takes the inverse of the logical result from the previous instruction and outputs it
to a specified BOOL variable.

The following figure shows a programming example and timing chart.

• The Set and Reset instructions operate only when the input value changes to TRUE. They do not
operate when the input value is FALSE. When the input value is FALSE, the output does not change.

• The Out and OutNot instructions affect the output whether the logical result of the previous instruction
is TRUE or FALSE.

Logic processing result from
previous instruction

Output

TRUE FALSE

FALSE TRUE

Additional Information

Differences between the Set and Reset Instructions and the Out and
OutNot Instructions

Instruction executed

A B1

B4

B2

B3

A

B1

B2

B3

B4

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

2 Instruction Descriptions

2-22 NJ-series Instructions Reference Manual (W502)

• In the following case, an error occurs and nothing is output.

• You specify an array element for the variable value and the element does not exist.

Example: A BOOL array a[0..5] is defined, but the instruction is executed using a[10] as the vari-
able.

• The following connections are possible.

• You can connect another Out instruction after an Out instruction.

• You can connect an LD instruction and Out instruction after an Out instruction.

• The following connections are not possible.

• You cannot connect only an LD instruction after an Out instruction.

• Functions and function blocks cannot be connected after an Out instruction.

• Branches and joins cannot be used after Out instructions.

Precautions for Correct Use

BA C

BA C D

BA C

C D

BA
MOVE

EN ENO
In Out

BA

BA

DC

S
T

 S
tatem

en
t In

stru
ctio

n
s

2

2-23NJ-series Instructions Reference Manual (W502)

ST Statement Instructions

Instruction Name Page

IF If 2-24

CASE Case 2-28

WHILE While 2-32

REPEAT Repeat 2-34

RETURN Return 2-36

FOR Repeat Start 2-37

EXIT Break Loop 2-38

2 Instruction Descriptions

2-24 NJ-series Instructions Reference Manual (W502)

IF

The IF construct uses the evaluation result of a specified condition expression to select one of two
statements to execute.

None

The IF construct uses the evaluation result of a specified condition expression to select one of two
statements to execute. Use a condition expression that evaluates to TRUE or FALSE.

You can use the following operators in the logic expression.

Instruction Name FB/FUN Graphic expression ST expression

IF If --- None IF condition expression
THEN

statement;
ELSIF condition expression
THEN

statement;
ELSE

statement;
END_IF;

Variables

Function

Item used for condition
expression

Example Evaluation result

Logic expression

a>3 If the value of variable a is greater than 3, the result is TRUE. Oth-
erwise, the result is FALSE.

a=b If the values of variables a and b are equal, the result is TRUE. Oth-
erwise, the result is FALSE.

BOOL variable abc If the value of variable abc is TRUE, the result is TRUE. If it is
FALSE, the result is FALSE.

BOOL constant TRUE TRUE

Function with a BOOL
return value

FUN name If the function returns TRUE, the result is TRUE. If it returns FALSE,
the result is FALSE.

Operator Meaning Example Evaluation result

= Equals a=b If the values of variables a and b are equal, the result is TRUE.
Otherwise, the result is FALSE.

<> Not equals a<>b If the values of variables a and b are not equal, the result is
TRUE. Otherwise, the result is FALSE.

<

Comparison

a<b If the value of variable a is less than the value of variable b, the
result is TRUE. Otherwise, the result is FALSE.

<= a<=b If the value of variable a is less than or equal to the value of
variable b, the result is TRUE. Otherwise, the result is FALSE.

> a>b If the value of variable a is greater than the value of variable b,
the result is TRUE. Otherwise, the result is FALSE.

>= a>=b If the value of variable a is greater than or equal to the value of
variable b, the result is TRUE. Otherwise, the result is FALSE.

AND (&) Logical AND a AND b

a & b

The result is the logical AND of BOOL variables a and b.

2-25

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
T

 S
tatem

en
t In

stru
ctio

n
s

2

IF

The flowchart in the following example shows the evaluation results for condition expressions 1 and 2.
You can use more than one statement for each of statements 1 to 3.

IF condition expression 1 THEN
statement 1;

ELSIF condition expression 2 THEN
statement 2;

ELSE
statement 3;

END_IF;

• You can use the IF construct to build a hierarchy. The following example executes statement 11 if the
evaluation results of both condition expression 1 and condition expression 11 are TRUE.

IF condition expression 1 THEN
IF condition expression 11 THEN

statement 11;
ELSIF condition expression 12 THEN

statement 12;
ELSE

statement 13;
END_IF;

ELSIF condition expression 2 THEN
statement 2;

ELSE
statement 3;

END_IF;

OR Logical OR a OR b The result is the logical OR of BOOL variables a and b.

XOR Exclusive OR a XOR b The result is the logical exclusive OR of BOOL variables a and
b.

NOT NOT NOT a The result is the NOT of BOOL variable a.

Additional Information

Operator Meaning Example Evaluation result

FALSE

TRUE

FALSE

TRUE

Condition
expression 1

Condition
expression 2

Statement 1

Statement 3

Statement 2

2 Instruction Descriptions

2-26 NJ-series Instructions Reference Manual (W502)

You can use ELSIF more than once. The following processing flow is for this example.

IF condition expression 1 THEN
statement 1;

ELSIF condition expression 2 THEN
statement 2;

ELSIF condition expression 3 THEN
statement 3;

ELSE
statement 4;

END_IF;

• You do not use ELSIF if there is only one condition expression. You do not use ELSE if no processing
is performed when none of the condition expressions are TRUE. The following processing flow is for
this example.

IF condition expression THEN
statement;

END_IF;

• There are no restrictions on the statements that you can use. You can use the same types of state-
ments for the statements in the IF construct as you do for the statements outside the IF construct. For
example, you can use function block calls and FOR constructs.

• You must always use IF and END_IF. They must be paired.

• You can use a hierarchy that is 15 levels deep, but count all levels of IF, CASE, FOR, WHILE, and
REPEAT constructs.

Precautions for Correct Use

FALSE

TRUE

FALSE

TRUE

FALSE

TRUE

Condition
expression 1

Statement 1

Statement 3 Statement 4

Statement 2

Condition
expression 2

Condition
expression 3

FALSE

TRUE

Statement

Condition
expression

2-27

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
T

 S
tatem

en
t In

stru
ctio

n
s

2

IF

This example assigns INT#0 to variable def if the value of variable abc is less than INT#0. It assigns
INT#1 to variable def and INT#2 to variable ghi if the value of variable abc is INT#0. It assigns INT#3 to
variable def if the value of variable abc is none of the above.

Sample Programming

IF (abc<INT#0) THEN
 def:=INT#0;
ELSIF (abc=INT#0) THEN
 def:=INT#1;
 ghi:=INT#2;
ELSE
 def:=INT#3;
END_IF;

abc
def
ghi

0
0
0

INT
INT
INT

Variable Data type Initial value

2 Instruction Descriptions

2-28 NJ-series Instructions Reference Manual (W502)

CASE

You use the CASE construct to select the statement to execute based on the value of a specified inte-
ger expression.

None

You use the CASE construct to select the statement to execute based on the value of a specified inte-
ger expression.

You can use any of the following as the integer expression and values.

The flowchart in the following example shows the processing flow for an integer expression. You can
use more than one statement for each of the statements.

CASE integer expression OF
1 :

statement 1;
2 :

statement 2;
.
.
.
n :

statement n;
ELSE

statement m;
END_CASE;

Instruction Name FB/FUN Graphic expression ST expression

CASE Case --- None CASE integer expression
OF

value:
statement;

value:
statement;

·
·
·
ELSE

statement;
END_CASE;

Variables

Function

Allowed notation

Integer expression Integer variable, integer constant, integer expression, or a
function that returns an integer return value, enumeration
variable, enumeration expression, or enumerator

Values Integer constants

2-29

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
T

 S
tatem

en
t In

stru
ctio

n
s

2

C
A

S
E

• You can use the CASE construct to build a hierarchy. The following example executes statement 12 if
the value of integer expression 1 is 1 and the value of integer expression 11 is 2.

CASE integer expression 1 OF
1 :

CASE integer expression 1 OF
1 :

statement 11;
2 :

statement 12;
ELSE

statement 1m;
END_CASE;

2 :
statement 2;

3 :
statement 3;

ELSE
statement m;

END_CASE;

• You can use more than one value at the same time. Separate values with commas. The following
example executes statement 1 if the value of the integer expression is either 1 or 2.

CASE integer expression 1 OF
1,2 :

statement 1;
3 :

statement 2;
4 :

statement 3;
ELSE

statement m;
END_CASE;

Additional Information

Statement 1 Statement m Statement n Statement 2

Equal to
value 1?

FALSE

TRUE

FALSE

TRUE

FALSE

TRUE

Equal to
value 2?

Equal to
value n?

2 Instruction Descriptions

2-30 NJ-series Instructions Reference Manual (W502)

• You can use a range of consecutive values. Place two periods between the numbers to indicate con-
secutive values. The following example executes statement 1 if the value of the integer expression is
between 10 and 15, inclusive.

CASE integer expression 1 OF
10..15:

statement 1;
16:

statement 2;
17:

statement 3;
ELSE

statement m;
END_CASE;

• You can omit ELSE. If you do, none of the statements is executed if none of the values is equal to the
value of the integer expression.

• There are no restrictions on the statements that you can use. You can use the same types of state-
ments for the statements in the CASE construct as you do for the statements outside the CASE con-
struct. For example, you can use function block calls and FOR constructs.

• The following is different in comparison to a C language switch statement. With a C language switch
statement, all statements after a value that equals the integer expression are executed unless a
break statement is used. With the CASE statement, only the statements that correspond directly to
the value that equals the integer expression are executed. For example, in the following example,
statements 1 to 3 are executed for the C language switch statement. Here, only statement 1 is exe-
cuted for the CASE instruction.

• You must always use CASE and END_CASE. They must be paired.

• The data types of the integer expression and values can be different.

• Each value can be given only once.

• You can use a hierarchy that is 15 levels deep, but count all levels of IF, CASE, FOR, WHILE, and
REPEAT constructs.

Precautions for Correct Use

val=1;
switch val
{
 case 1:
 statement 1;
 case 2:
 statement 2;
 case 3:
 statement 3;
}

val:=1;
CASE val OF
 1:
 statement 1;
 2:
 statement 2;
 3:
 statement 3;
END_CASE;

C Language switch Statement CASE Instruction

2-31

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
T

 S
tatem

en
t In

stru
ctio

n
s

2

C
A

S
E

This example assigns INT#10 to variable def if the value of variable abc is INT#1, INT#20 if the value of
variable abc is INT#2, and INT#30 if the value of variable abc is INT#3. Otherwise, it assigns the value
of variable ghi to variable def.

This example assigns INT#10 to variable def if the value of variable abc is INT#1, INT#20 if the value of
variable abc is INT#2 or INT#5, and INT#30 if the value of variable abc is between INT#6 and INT#10,
inclusive. Otherwise, it does nothing.

Sample Programming

CASE abc OF
 INT#1:
 def:=INT#10;
 INT#2:
 def:=INT#20;
 INT#3:
 def:=INT#30;
 ELSE
 def:=ghi;
END_CASE;

abc
def
ghi

0
0
0

INT
INT
INT

Variable Data type Initial value

CASE abc OF
 INT#1:
 def:=INT#10;
 INT#2,INT#5:
 def:=INT#20;
 INT#6..INT#10:
 def:=INT#30;
END_CASE;

abc
def

0
0

INT
INT

Variable Data type Initial value

2 Instruction Descriptions

2-32 NJ-series Instructions Reference Manual (W502)

WHILE

The WHILE construct repeatedly executes a statement as long as the evaluation result of a specified
condition expression is TRUE.

None

The WHILE construct repeatedly executes a statement as long as the evaluation result of a specified
condition expression is TRUE. Use a condition expression that evaluates to TRUE or FALSE.

You can use the following operators in the logic expression.

Instruction Name FB/FUN Graphic expression ST expression

WHILE While --- None WHILE condition expression
DO

statement;
END_WHILE;

Variables

Function

Item used for condition
expression

Example Evaluation result

Logic expression

a>3 If the value of variable a is greater than 3, the result is TRUE. Oth-
erwise, the result is FALSE.

a=b If the values of variables a and b are equal, the result is TRUE. Oth-
erwise, the result is FALSE.

BOOL variable abc If the value of variable abc is TRUE, the result is TRUE. If it is
FALSE, the result is FALSE.

BOOL constant TRUE TRUE

Function with a BOOL
return value

FUN name If the function returns TRUE, the result is TRUE. If it returns FALSE,
the result is FALSE.

Operator Meaning Example Evaluation result

= Equals a=b If the values of variables a and b are equal, the result is TRUE.
Otherwise, the result is FALSE.

<> Not equals a<>b If the values of variables a and b are not equal, the result is
TRUE. Otherwise, the result is FALSE.

<

Comparison

a<b If the value of variable a is less than the value of variable b, the
result is TRUE. Otherwise, the result is FALSE.

<= a<=b If the value of variable a is less than or equal to the value of
variable b, the result is TRUE. Otherwise, the result is FALSE.

> a>b If the value of variable a is greater than the value of variable b,
the result is TRUE. Otherwise, the result is FALSE.

>= a>=b If the value of variable a is greater than or equal to the value of
variable b, the result is TRUE. Otherwise, the result is FALSE.

AND (&) Logical AND a AND b

a & b

The result is the logical AND of BOOL variables a and b.

OR Logical OR a OR b The result is the logical OR of BOOL variables a and b.

XOR Exclusive OR a XOR b The result is the logical exclusive OR of BOOL variables a and
b.

NOT NOT NOT a The result is the NOT of BOOL variable a.

2-33

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
T

 S
tatem

en
t In

stru
ctio

n
s

2

W
H

ILE

The following processing flow is for this example. You can use more than one statement.

WHILE condition expression DO
statement;

END_WHILE;

• The statement is not executed even once if the condition expression is FALSE the first time it is eval-
uated.

• There are no restrictions on the statements that you can use. You can use the same types of state-
ments for the statements in the WHILE construct as you do for the statements outside the WHILE
construct. For example, you can use function block calls and FOR constructs.

• You must always use WHILE and END_WHILE. They must be paired.

• You can use a hierarchy that is 15 levels deep, but count all levels of IF, CASE, FOR, WHILE, and
REPEAT constructs.

This example adds INT#7 to variable abc as long as the value of variable abc is less than or equal to
INT#1000.

Additional Information

Precautions for Correct Use

Sample Programming

FALSE

TRUE

Statement

Condition
expression

abc:=INT#0;
WHILE abc<=INT#1000 DO
 abc:=abc+INT#7;
END_WHILE;

abc 0INT

Variable Data type Initial value

2 Instruction Descriptions

2-34 NJ-series Instructions Reference Manual (W502)

REPEAT

The REPEAT construct executes a statement once and then executes it repeatedly until a specified
condition expression is TRUE.

None

The REPEAT construct executes a statement once and then executes it repeatedly until a specified
condition expression is TRUE. Use a condition expression that evaluates to TRUE or FALSE.

You can use the following operators in the logic expression.

Instruction Name FB/FUN Graphic expression ST expression

REPEAT Repeat --- None REPEAT
statement;

UNTIL condition expression
END_REPEAT;

Variables

Function

Item used for condition
expression

Example Evaluation result

Logic expression

a>3 If the value of variable a is greater than 3, the result is TRUE. Oth-
erwise, the result is FALSE.

a=b If the values of variables a and b are equal, the result is TRUE. Oth-
erwise, the result is FALSE.

BOOL variable abc If the value of variable abc is TRUE, the result is TRUE. If it is
FALSE, the result is FALSE.

BOOL constant TRUE TRUE

Function with a BOOL
return value

FUN name If the function returns TRUE, the result is TRUE. If it returns FALSE,
the result is FALSE.

Operator Meaning Example Evaluation result

= Equals a=b If the values of variables a and b are equal, the result is TRUE.
Otherwise, the result is FALSE.

<> Not equals a<>b If the values of variables a and b are not equal, the result is
TRUE. Otherwise, the result is FALSE.

<

Comparison

a<b If the value of variable a is less than the value of variable b, the
result is TRUE. Otherwise, the result is FALSE.

<= a<=b If the value of variable a is less than or equal to the value of
variable b, the result is TRUE. Otherwise, the result is FALSE.

> a>b If the value of variable a is greater than the value of variable b,
the result is TRUE. Otherwise, the result is FALSE.

>= a>=b If the value of variable a is greater than or equal to the value of
variable b, the result is TRUE. Otherwise, the result is FALSE.

AND (&) Logical AND a AND b

a & b

The result is the logical AND of BOOL variables a and b.

OR Logical OR a OR b The result is the logical OR of BOOL variables a and b.

XOR Exclusive OR a XOR b The result is the logical exclusive OR of BOOL variables a and
b.

NOT NOT NOT a The result is the NOT of BOOL variable a.

2-35

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
T

 S
tatem

en
t In

stru
ctio

n
s

2

R
E

P
E

AT

The following processing flow is for this example. You can use more than one statement.

REPEAT
statement;

UNTIL condition expression
END_REPEAT;

• The statement is executed once before the condition expression is evaluated. Therefore, the state-
ment is always executed at least once.

• There are no restrictions on the statements that you can use. You can use the same types of state-
ments for the statements in the REPEAT construct as you do for the statements outside the REPEAT
construct. For example, you can use function block calls and FOR constructs.

• You must always use REPEAT, UNTIL, and END_REPEAT. They must be used as a set.

• You can use a hierarchy that is 15 levels deep, but count all levels of IF, CASE, FOR, WHILE, and
REPEAT constructs.

This example adds INT#1 to variable abc until the value of variable abc exceeds INT#10.

Additional Information

Precautions for Correct Use

Sample Programming

FALSE

TRUECondition
expression

Statement

abc:=INT#0;
REPEAT
 abc:=abc+INT#1;
UNTIL abc>INT#10
END_REPEAT;

abc 0INT

Variable Data type Initial value

2 Instruction Descriptions

2-36 NJ-series Instructions Reference Manual (W502)

RETURN

Refer to RETURN on page 2-61 in the Sequence Control Instructions for a description of this instruc-
tion.

2-37

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
T

 S
tatem

en
t In

stru
ctio

n
s

2

F
O

R

FOR

Refer to FOR and NEXT on page 2-76 in the Sequence Control Instructions for a description of this
instruction.

2 Instruction Descriptions

2-38 NJ-series Instructions Reference Manual (W502)

EXIT

Refer to BREAK on page 2-81 in the Sequence Control Instructions for a description of this instruction.
The BREAK ladder diagram instruction and the EXIT structured text instruction function in the same
way.

S
eq

u
en

ce In
p

u
t In

stru
ctio

n
s

2

2-39NJ-series Instructions Reference Manual (W502)

Sequence Input Instructions

Instruction Name Page

R_TRIG (Up) and F_TRIG (Down) Up Trigger/
Down Trigger

2-40

TestABit and TestABitN Test A Bit/
Test A Bit NOT

2-43

2 Instruction Descriptions

2-40 NJ-series Instructions Reference Manual (W502)

R_TRIG (Up) and F_TRIG (Down)

R_TRIG
R_TRIG assigns TRUE to output signal Q for one task period only when input signal Clk changes to
TRUE. Otherwise, the value of Q is FALSE. In the first task period in which this instruction is executed,
the value of Q is FALSE regardless of the value of Clk. If the value of Clk is TRUE when the power sup-
ply is turned ON, the value of Q remains FALSE until the value of Clk changes to FALSE and then back
to TRUE.

Up
The functions of the R_TRIG instruction and the Up instruction are exactly the same. The Clk variable
of the R_TRIG instruction corresponds to the In variable of the Up instruction. The Q variable corre-
sponds to the Out variable.

R_TRIG (Up): Outputs TRUE for one task period only when the input signal changes to TRUE.

F_TRIG (Down): Outputs TRUE for one task period only when the input signal changes to FALSE.

Instruction Name FB/FUN Graphic expression ST expression

R_TRIG

Up Trigger

FB R_TRIG_instance(Clk, Q);

Up FUN None

F_TRIG

Down Trigger

FB F_TRIG_instance(Clk, Q);

Down FUN None

Variables

Name Meaning I/O Description Valid range Unit Default

Clk, In Input signal Input Input signal Depends on data type. --- ---

Q, Out Output signal Output Output signal Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

Clk, In OK

Q, Out OK

Function

R_TRIG

R_TRIG_instance

Clk Q

Up
In Out

F_TRIG

F_TRIG_instance

Clk Q

Down
In Out

2-41

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
eq

u
en

ce In
p

u
t In

stru
ctio

n
s

2

R
_T

R
IG

 (U
p) and F

_T
R

IG
 (D

ow
n)

The following figure shows a programming example and timing chart.

F_TRIG
F_TRIG assigns TRUE to output signal Q for one task period only when input signal Clk changes to
FALSE. Otherwise, the value of Q is FALSE. In the first task period in which this instruction is executed,
the value of Q is FALSE regardless of the value of Clk. If the value of Clk is FALSE when the power sup-
ply is turned ON, the value of Q remains FALSE until the value of Clk changes to TRUE and then back
to FALSE.

Down
The functions of the F_TRIG instruction and the Down instruction are exactly the same. The Clk vari-
able of the F_TRIG instruction corresponds to the In variable of the Down instruction. The Q variable
corresponds to the Out variable.

The following figure shows a programming example and timing chart.

R_TRIG_instance(A, abc);

LD ST

R_TRIG abcA
R_TRIG_instance

Clk Q

LD

abcA Up
In

TRUE
FALSE

TRUE
FALSE

Task period

Clk, In

Q, Out=abc

F_TRIG_instance(A, abc);

LD ST

F_TRIG abcA
F_TRIG_instance

Clk Q

LD

abcA Down
In

TRUE
FALSE

TRUE
FALSE

Task period

Clk, In

Q, Out=abc

2 Instruction Descriptions

2-42 NJ-series Instructions Reference Manual (W502)

• Detection of upward or downward differentiation depends on differences between the current value of
Clk or In and the value the last time the instruction was executed. Caution is required when using the
JMP instruction or other times that the instruction is not executed every task period.

• If power is interrupted, the value of Clk or In is not detected as FALSE. The value of Clk or In is
detected as FALSE only if the instruction evaluates the value of Clk or In while Clk or In is FALSE.

Precautions for Correct Use

2-43

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
eq

u
en

ce In
p

u
t In

stru
ctio

n
s

2

TestA
B

it and TestA
B

itN

TestABit and TestABitN

* If you omit the input parameter, the default value is not applied. A building error will occur.

TestABit: Outputs the value of the specified bit in a bit string.

TestABitN: Outputs the inverse of the value of the specified bit in a bit string.

Instruction Name FB/FUN Graphic expression ST expression

TestABit Test A Bit FUN Out:=TestABit (In, Pos);

TestABitN Test A Bit NOT FUN Out:=TestABitN (In, Pos);

Variables

Name Meaning I/O Description Valid range Unit Default

In Bit string
Input

Bit string Depends on data type.

*

Pos Bit position Specified bit position 0 to No. of bits in In − 1 0

Out Bit value Output TestABit

Value of specified bit

TestABitN

Inverse of value of specified
bit

Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK OK OK OK

Pos OK

Out OK

(@)TestABit

EN
In
Pos

Out

(@)TestABitN

EN
In
Pos

Out

2 Instruction Descriptions

2-44 NJ-series Instructions Reference Manual (W502)

TestABit
The TestABit instruction assigns the value of the bit at bit position Pos in the bit string In to the bit value
Out when EN is TRUE.
When EN is FALSE, the value of Out is FALSE.

TestABitN
The TestABitN instruction assigns the inverse of the value of the bit at bit position Pos in the bit string In
to the bit value Out when EN is TRUE.

When EN is FALSE, the value of Out is FALSE.

The following example shows the TestABit instruction when Pos is USINT#3.

• If this instruction is used in a ladder diagram, the value of Out changes to FALSE if an error occurs in
the previous instruction on the rung.

• An error occurs in the following case. Out will be FALSE.

• The value of Pos is greater than No. of bits in In − 1.

Function

Precautions for Correct Use

def:=TestABit(abc, USINT#3);

LD ST

USINT#3
abc

defTestABit

EN
In
Pos

In=abc Out=def TRUE1 0

Pos=USINT#3

Bit 0Most-significant bit

0 0 1 0 1 1

S
eq

u
en

ce O
u

tp
u

t In
stru

ctio
n

s

2

2-45NJ-series Instructions Reference Manual (W502)

Sequence Output Instructions

Instruction Name Page

RS Reset-Priority Keep 2-46

SR Set-Priority Keep 2-48

Set and Reset Set/Reset 2-50

SetBits and ResetBits Set Bits/Reset Bits 2-53

SetABit and ResetABit Set A Bit/Reset A Bit 2-55

OutABit Output A Bit 2-57

2 Instruction Descriptions

2-46 NJ-series Instructions Reference Manual (W502)

RS
The RS instruction retains the value of a BOOL variable. It gives priority to the Reset input if both the
Set input and Reset input are TRUE.

The RS instruction forms a self-holding output that gives priority to resetting. The following table shows
the relationship between the inputs are outputs.

Instruction Name FB/FUN Graphic expression ST expression

RS Reset-Priority Keep FB RS_instance(Set, Reset1,
Q1);

Variables

Name Meaning I/O Description Valid range Unit Default

Set Set
Input

Set input
Depends on data type. --- 0

Reset1 Reset Reset input

Q1 Keep Output Keep output Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

Set OK

Reset1 OK

Q1 OK

Function

Value of Set Value of Reset1 Value of Q1

TRUE TRUE FALSE

TRUE FALSE TRUE

FALSE TRUE FALSE

FALSE FALSE Not changed.

RS
 Set Q1
 Reset1

RS_instance

2-47

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
eq

u
en

ce O
u

tp
u

t In
stru

ctio
n

s

2

R
S

The following figure shows a programming example and timing chart.

• The RS instruction behaves like the following self-holding rung.

• However, if the RS instruction is in a master control region and the master control region is reset,
the behavior will not be the same as the above self-holding rung.

• Never use an NC bit directly from an external device for the Reset1 input. The internal power supply
in the Controller will not turn OFF immediately when the AC power is interrupted (even for momentary
interruptions), and the input from the Input Unit may change to ON first. This could cause the Reset1
input to change to TRUE.

• If this instruction is used in a ladder diagram, the value of Q1 is retained if an error occurs in the pre-
vious instruction on the rung.

• If this instruction is not executed due to the execution of a jump instruction (e.g., the JMP instruction),
Q1 retains the value from the last execution.

• If this instruction is in a master control region and the master control region is reset, the operation is
as follows:

• If the value of Reset1 is TRUE, the value of Q1 is retained. If the value of Reset1 is FALSE, the
value of Q1 changes to FALSE.

• FALSE is input to the instruction that is connected to Q1 even if the value of Q1 is TRUE.

Additional Information

Instruction/rung Value of B Value of abc

RS instruction TRUE Not changed.

FALSE FALSE

Self-holding rung TRUE FALSE

FALSE

Precautions for Correct Use

RS_instance(A, B, abc);

LD ST

B

A abcRS
 Set Q1
 Reset1

RS_instance

Set=A

Reset1=B

TRUE
FALSE

TRUE
FALSE

Q1=abc
TRUE
FALSE

A B abc

abc

2 Instruction Descriptions

2-48 NJ-series Instructions Reference Manual (W502)

SR
The SR instruction retains the value of a BOOL variable. It gives priority to the Set input if both the Set
input and Reset input are TRUE.

The SR instruction forms a self-holding output that gives priority to setting. The following table shows
the relationship between the inputs are outputs.

Instruction Name FB/FUN Graphic expression ST expression

SR Set-Priority Keep FB SR_instance(Set1, Reset,
Q1);

Variables

Name Meaning I/O Description Valid range Unit Default

Set1 Set
Input

Set input
Depends on data type. --- 0

Reset Reset Reset input

Q1 Keep Output Keep output Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

Set1 OK

Reset OK

Q1 OK

Function

Value of Set1 Value of Reset Value of Q1

TRUE TRUE TRUE

TRUE FALSE TRUE

FALSE TRUE FALSE

FALSE FALSE Not changed.

SR
 Set1 Q1
 Reset

SR_instance

2-49

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
eq

u
en

ce O
u

tp
u

t In
stru

ctio
n

s

2

S
R

The following figure shows a programming example and timing chart.

• The SR instruction behaves like the following self-holding rung.

• However, if the SR instruction is in a master control region and the master control region is reset,

the behavior will not be the same as the above self-holding rung.

• Never use an NC bit directly from an external device for the Reset input. The internal power supply in
the Controller will not turn OFF immediately when the AC power is interrupted (even for momentary
interruptions), and the input from the Input Unit may change to ON first. This could cause the Reset
input to change to TRUE.

• If this instruction is used in a ladder diagram, the value of Q1 is retained if an error occurs in the pre-
vious instruction on the rung.

• If this instruction is not executed due to the execution of a jump instruction (e.g., the JMP instruction),
Q1 retains the value from the last execution.

• If this instruction is in a master control region and the master control region is reset, the operation is
as follows:

• If the value of Reset is TRUE, the value of Q1 is retained. If the value of Reset is FALSE, the value
of Q1 changes to FALSE.

• FALSE is input to the instruction that is connected to Q1 even if the value of Q1 is TRUE.

Additional Information

Instruction/rung Value of B Value of abc

SR instruction TRUE Not changed.

FALSE FALSE

Self-holding rung TRUE FALSE

FALSE

Precautions for Correct Use

SR_instance(A, B, abc);

LD ST

B

A abcSR
 Set1 Q1
 Reset

SR_instance

Set1=A

Reset=B

TRUE
FALSE

TRUE
FALSE

Q1=abc
TRUE
FALSE

A

B

abc

abc

2 Instruction Descriptions

2-50 NJ-series Instructions Reference Manual (W502)

Set and Reset

Set
The Set instruction changes Out to TRUE if the input is TRUE. If Out is TRUE, the Set instruction will
not change it to FALSE even if the input changes to FALSE. Use the Reset instruction to change Out
to FALSE.

Reset
The Reset instruction changes Out to FALSE if the input is TRUE. If Out is FALSE, the Reset
instruction will not change it to TRUE even if the input changes to FALSE. Use the Set instruction to
change Out to TRUE.

The operation is as shown below if you do not specify upward or downward differentiation.

Set: Changes a BOOL variable to TRUE.

Reset: Changes a BOOL variable to FALSE.

Instruction Name FB/FUN Graphic expression ST expression

Set Set --- None

Reset Reset --- None

Variables

Name Meaning I/O Description Valid range Unit Default

Out Output Output Output Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

Out OK

Function

Instruction Input Output value

Set
TRUE TRUE

FALSE Not changed.

Reset
TRUE FALSE

FALSE Not changed.

Out
Out Out

S
PS NS

Downward
differentiation

Upward
differentiation

Out
Out Out

R
PR NR

Downward
differentiation

Upward
differentiation

2-51

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
eq

u
en

ce O
u

tp
u

t In
stru

ctio
n

s

2

S
et and R

eset

If you specify upward or downward differentiation, the operation depends on the following: the value of
the input for the last execution and the current value of the input. This is shown below.

The following figure shows a programming example and timing chart.

Instruction
Differentiation speci-

fication
Value of input at last execution and current value Output value

Set

Upward differentiation
FALSE at the last execution → Currently TRUE TRUE

Other than the above. Not changed.

Downward differentia-
tion

TRUE at the last execution → Currently FALSE TRUE

Other than the above. Not changed.

Reset

Upward differentiation
FALSE at the last execution → Currently TRUE FALSE

Other than the above. Not changed.

Downward differentia-
tion

TRUE at the last execution → Currently FALSE FALSE

Other than the above. Not changed.

LD

B

A abc

abc

S

R

A

B

TRUE
FALSE

TRUE
FALSE

abc
TRUE
FALSE

LD

B

A abc

abc

PS

PR

A

B

TRUE
FALSE

TRUE
FALSE

abc
TRUE
FALSE

LD

B

A abc

abc

NS

NR

A

B

TRUE
FALSE

TRUE
FALSE

abc
TRUE
FALSE

2 Instruction Descriptions

2-52 NJ-series Instructions Reference Manual (W502)

• The Set and Reset instructions operate only when the input value changes to TRUE. They do not
operate when the input value is FALSE. When the input value is FALSE, the output does not change.

• The Out instruction changes the specified variable to TRUE when the result from the previous
instruction is TRUE and to FALSE when the result from the previous instruction is FALSE. It operates
both when the input is TRUE and when it is FALSE.

• The SR and RS instructions require that the Set input and Reset input are in the same place in the
program. You can place the Set and Reset instructions in different places.

• If this instruction is in a master control region and the master control region is reset, the value of Out
is retained.

• If this instruction is not executed due to the execution of a jump instruction (e.g., the JMP instruction),
the value of Out is retained.

• These instructions will not change the value of Out if you specify upward differentiation and the input
is TRUE immediately after the power turns ON. The input must first change to FALSE and then to
TRUE before the value of Out changes.

• These instructions will change the value of Out if you do not specify upward differentiation and the
input is TRUE immediately after the power turns ON. In this case it is not necessary for the input to
change to FALSE first.

Additional Information

Differences between the Set and Reset Instructions and the Out
Instruction

Differences between the Set and Reset Instructions and the SR and
RS Instructions

Precautions for Correct Use

2-53

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
eq

u
en

ce O
u

tp
u

t In
stru

ctio
n

s

2

S
etB

its and R
esetB

its

SetBits and ResetBits

SetBits
The SetBits instruction changes the value of Size bits from the bit position Pos in the bit string InOut
to TRUE. The status of the other bits will not change.

SetBits: Changes consecutive bits in bit string data to TRUE.

ResetBits: Changes consecutive bits in bit string data to FALSE.

Instruction Name FB/FUN Graphic expression ST expression

SetBits Set Bits FUN SetBits(InOut, Pos, Size);

ResetBits Reset Bits FUN ResetBits(InOut, Pos, Size);

Variables

Name Meaning I/O Description Valid range Unit Default

InOut Bit string In-out Bit string Depends on data type. --- ---

Pos Bit position

Input

Specified bit position 0 to No. of bits in InOut
− 1

0

Size Number of
bits

Number of bits 0 to No. of bits in InOut 1

Out Return
value

Output Always TRUE TRUE only --- ---
B

o
o

lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

InOut OK OK OK OK

Pos OK

Size OK

Out OK

Function

(@)SetBits
EN ENO
InOut

Pos
Size

Out

(@)ResetBits
EN ENO
InOut

Pos
Size

Out

2 Instruction Descriptions

2-54 NJ-series Instructions Reference Manual (W502)

ResetBits
The ResetBits instruction changes the value of Size bits from the bit position Pos in the bit string
InOut to FALSE. The status of the other bits will not change.

The following example shows the SetBits instruction when Pos is USINT#3 and Size is USINT#2.

Use these instructions to globally set variables with AT specification in memory areas that handle data
by word (e.g., the DM Area) to TRUE or FALSE.

• If this instruction is in a master control region and the master control region is reset, the value of
InOut is retained.

• If this instruction is not executed due to the execution of a jump instruction (e.g., the JMP instruction),
the value of InOut is retained.

• The value of InOut does not change if the value of Size is 0.

• Return value Out is not used when the instruction is used in ST.

• An error occurs in the following cases. ENO will be FALSE, and Out and InOut will not change.

• The value of Pos is greater than No. of bits in InOut − 1.

• The value of Size is outside of the valid range.

• The value of Pos or Size exceeds the number of bits in InOut.

Additional Information

Precautions for Correct Use

SetBits(abc, USINT#3, USINT#2);

LD ST

abc
USINT#3
USINT#2

abc

SetBits
EN ENO
InOut

Pos
Size

InOut=abc

Pos=USINT#3

Size=USINT#2

1 1 0 0 0 0 0 1 1 1 0 1 1 0 0 1

Most-significant bit Bit 0

2-55

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
eq

u
en

ce O
u

tp
u

t In
stru

ctio
n

s

2

S
etA

B
it and R

esetA
B

it

SetABit and ResetABit

SetABit
The SetABit instruction changes the value of the bit at bit position Pos in the bit string InOut to
TRUE.

The bits that are not specified do not change.
Even if EN changes to FALSE after execution, the Pos bit in InOut will not change.

SetABit: Changes the specified bit in bit string data to TRUE.

ResetABit: Changes the specified bit in bit string data to FALSE.

Instruction Name FB/FUN Graphic expression ST expression

SetABit Set A Bit FUN SetABit (InOut, Pos);

ResetABit Reset A Bit FUN ResetABit (InOut, Pos);

Variables

Name Meaning I/O Description Valid range Unit Default

InOut Bit string In-out Bit string Depends on data type. --- ---

Pos Bit position Input Specified bit position 0 to No. of bits in InOut
− 1

--- 0

Out Return
value

Output Always TRUE TRUE only --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

InOut OK OK OK OK

Pos OK

Out OK

Function

(@)SetABit
EN ENO
InOut

Pos Out

(@)ResetABit
EN ENO
InOut

Pos Out

2 Instruction Descriptions

2-56 NJ-series Instructions Reference Manual (W502)

ResetABit
The ResetABit instruction changes the value of the bit at bit position Pos in the bit string InOut to
FALSE.

The bits that are not specified do not change.
Even if EN changes to FALSE after execution, the Pos bit in InOut will not change.

The following example shows the SetABit instruction when Pos is USINT#3.

• The SetABit and ResetABit instructions change the value of the specified bit to either TRUE or
FALSE.

• With the OutABit instruction, however, you can dynamically change the value to which the specified
bit is set.

• If this instruction is in a master control region and the master control region is reset, the value of
InOut is retained.

• If this instruction is not executed due to the execution of a jump instruction (e.g., the JMP instruction),
the value of InOut is retained.

• Return value Out is not used when the instruction is used in ST.

• An error occurs in the following case. ENO will be FALSE, and Out and InOut will not change.

• The value of Pos is greater than No. of bits in In − 1.

Additional Information

Differences between the SetABit and ResetABit Instructions and the
OutABit Instruction

Precautions for Correct Use

SetABit(abc, USINT#3);

LD ST

abc
USINT#3

abc

SetABit
EN ENO
InOut

Pos

InOut=abc

Pos=USINT#3

1 1 0 0 0 0 0 1 1 1 0 0 1 0 0 1

Most-significant bit Bit 0

2-57

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
eq

u
en

ce O
u

tp
u

t In
stru

ctio
n

s

2

O
utA

B
it

OutABit

The OutABit instruction changes the specified bit in bit string data to TRUE or FALSE.

Instruction Name FB/FUN Graphic expression ST expression

OutABit Output A Bit FUN OutABit (InOut, Pos, BitVal);

Variables

Name Meaning I/O Description Valid range Unit Default

InOut Bit string In-out Bit string Depends on data type. --- ---

Pos Bit position
Input

Specified bit position 0 to No. of bits in InOut
− 1 ---

0

BitVal Set value Value to set Depends on data type. TRUE

Out Return
value

Output Always TRUE TRUE only --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

InOut OK OK OK OK

Pos OK

BitVal OK

Out OK

(@)OutABit
EN ENO
InOut

Pos
BitVal

Out

2 Instruction Descriptions

2-58 NJ-series Instructions Reference Manual (W502)

The OutABit instruction stores the value of set value BitVal at bit position Pos in the bit string InOut.
Only the bit at Pos changes.

The following example is for when Pos is USINT#2 and BitVal is TRUE.

• The SetABit and ResetABit instructions change the value of the specified bit to either TRUE or
FALSE.

• With the OutABit instruction, however, you can dynamically change the value to which the specified
bit is set if you change the value of BitVal.

• If this instruction is in a master control region and the master control region is reset, the value of
InOut is retained.

• If this instruction is not executed due to the execution of a jump instruction (e.g., the JMP instruction),
the value of InOut is retained.

• Return value Out is not used when the instruction is used in ST.

• An error will occur in the following case. ENO will be FALSE, and Out and InOut will not change.

• The value of Pos is greater than No. of bits in InOut − 1.

Function

Additional Information

Differences between the SetABit and ResetABit Instructions and the
OutABit Instruction

Precautions for Correct Use

OutABit(abc, USINT#2, TRUE);

LD ST

abc
USINT#2

TRUE

abc

OutABit
EN ENO
InOut

Pos
BitVal

InOut=abc

Pos=USINT#2

1 1 0 0 0 0 0 1 1 1 0 0 0 1 0 1

Most-significant bit Bit 0

S
eq

u
en

ce C
o

n
tro

l In
stru

ctio
n

s

2

2-59NJ-series Instructions Reference Manual (W502)

Sequence Control Instructions

Instruction Name Page

End End 2-60

RETURN Return 2-61

MC and MCR Master Control Start/
Master Control End

2-62

JMP Jump 2-74

FOR and NEXT Repeat Start/
Repeat End

2-76

BREAK Break Loop 2-81

2 Instruction Descriptions

2-60 NJ-series Instructions Reference Manual (W502)

End

The End instruction ends execution of a program in the current task period.

None

The End instruction ends execution of a program in the current task period.

The following figure shows a programming example. When the End instruction is executed in the exam-
ple, the SR instruction that follows it is not executed.

• This instruction must be used only in a program.

• If this instruction is used in a function, function block, or inline ST, a building error will occur.

• You must connect this instruction to the left bus bar.

Instruction Name FB/FUN Graphic expression ST expression

End End FUN None

Variables

Function

Precautions for Correct Use

End
EN ENO

LD

End
EN ENO

B

A abcSR
 Set1 Q1
 Reset

SR_instance

2-61

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
eq

u
en

ce C
o

n
tro

l In
stru

ctio
n

s

2

R
E

T
U

R
N

RETURN

The RETURN instruction ends a function or function block and returns processing to the calling instruc-
tion.

None

The RETURN instruction ends a function or function block and returns processing to the calling instruc-
tion.

The following figure shows a programming example. When the RETURN instruction is executed in the
example, the SR instruction that follows it is not executed.

• Observe the following precautions if you use this instruction in a ladder diagram.

• Use this instruction only in functions and function blocks. If you use it in a program, a building error
will occur.

• Always connect this instruction directly to the left bus bar.

• Before you execute this instruction set the return values, output variables, and ENO value of the
POU.

• If you use this instruction too often, the flow of processing will be difficult to understand. Use it with
caution.

Instruction Name FB/FUN Graphic expression ST expression

RETURN Return FUN RETURN;

Variables

Function

Precautions for Correct Use

RETURN
EN ENO

RETURN;

LD ST

B

A abcSR
 Set1 Q1
 Reset

SR_instance

SR_instance(A, B, abc);

RETURN
EN ENO

2 Instruction Descriptions

2-62 NJ-series Instructions Reference Manual (W502)

MC and MCR

* The number is automatically registered by the Sysmac Studio. You do not need to set it.

Master control is used to stop processing or place in an equivalent status all POUs in a specified region
of a program. You can use master control to easily control the execution conditions for a relatively long
segment of processing.

The region in the program for which master control is applied is called the master control region. You
place the MC instruction at the start of the master control region and the MCR instruction at the end.
When the value of the master control input In changes to FALSE, the outputs for all LD instructions that
are connected to the left bus bar in the master control region are forced to change to FALSE. This is
called a master control reset.

When master control is reset, the POUs that follow the LD instructions, as a rule, operate as if the exe-
cution condition is FALSE. There are, however, some POUs that operate differently. This is explained
later.

MC: Marks the starting point of a master control region and resets the master control region.

MCR: Marks the end point of a master control region.

Instruction Name FB/FUN Graphic expression ST expression

MC Master Control
Start

--- None

MCR Master Control End --- None

Variables

Name Meaning I/O Description Valid range Unit Default

In (MC
instruction
only)

Master
control
input

Input

FALSE: Resets the master
control region.

Depends on data type.

TRUE

MCNo Master
control
number

Master control number 0 to 14* 1

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In (MC
instruction
only)

OK

MCNo OK

Function

MC
In ENO
MCNo

MCR
EN ENO
MCNo

2-63

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
eq

u
en

ce C
o

n
tro

l In
stru

ctio
n

s

2

M
C

 and M
C

R

If the value of In is TRUE, then master control is not reset. The POUs in the master control region oper-
ate normally.

The operation of the POUs when master control is reset depends on the POU as described in the fol-
lowing table.

POU Operation during a Master Control Reset

POU Operation

Out and OutABit instructions FALSE is output to the specified variable.

OutNot instruction FALSE is output to the specified variable.

Set and Reset instructions The output from before the master control reset is retained.

TON instruction The instruction operates with a FALSE value for timer input In. That
means that the timer is reset. The value of elapsed time ET changes to 0
and the value of timer output Q changes to FALSE.

TOF instruction The instruction operates with a TRUE value for timer input In. That means
that the timer is reset. The value of elapsed time ET changes to 0 and the
value of timer output Q changes to TRUE. However, if an Out instruction
is connected to Q, the execution condition to the Out instruction is
FALSE.

TP instruction The instruction operates with a FALSE value for timer input In. That
means that the timer is reset.

Timing active: The value of elapsed time ET is incremented to the
end and then returns to 0. The value of timer output
Q is TRUE until the end of timing, and then it
changes to FALSE.

Timing not active: The value of ET changes to 0 and the value of Q
changes to FALSE.

However, if an Out instruction is connected to Q, the execution condition
to the Out instruction is FALSE even while timing is active.

AccumulationTimer instruction The instruction operates with a FALSE value for timer input In. That
means that the timer stops. The values of elapsed time ET and timer out-
put Q are retained. However, if an Out instruction is connected to Q, the
execution condition to the Out instruction is FALSE even if the value of Q
is TRUE. However, reset Reset is enabled.

Timer instructions The instruction operates with a FALSE value for timer input In. That
means that the timer is reset. Remaining time ET is set to the value of set
time PT, and the value of timer output Q changes to FALSE.

CTU, CTD, and CTUD instructions These instructions are not executed. If one of these instructions was
operating before the master control reset, the count value from before the
reset will be held and the Counter Completion Flag Q will be FALSE.

JMP instruction This instruction is not executed.

FOR and NEXT instructions These instructions are not executed.

Master control region

UINT#1

UINT#1

A

MC
In ENO
MCNo

MCR
EN ENO
MCNo

The value that is output from the LD instruction changes
to FALSE regardless of the value of variable A.

2 Instruction Descriptions

2-64 NJ-series Instructions Reference Manual (W502)

The operation of some typical instructions is described below.

Out
FALSE is output while the master control is reset.

OutNot
FALSE is output while the master control is reset. Caution is required because this operation of the
OutNot instruction is different from when the output of the previous LD instruction is FALSE.

Set and Reset
The previous value of the output is retained while the master control is reset.

BREAK instruction This instruction is not executed.

Function blocks that are executed
over more than one task period (i.e.,
instructions with Done, Busy, and
Error output variables)

The power flow from the left bus bar changes to FALSE. If the instruction
was operating before the master control reset, execution of the instruction
is continued until processing is completed. Busy, Done, and Error outputs
will be made, but FALSE will always be output if the next instruction is an
output instruction. If a variable is directly connected to Busy, Done, or
Error, the proper value for the instruction specifications will be assigned to
that variable. You can also get the value of Busy, Done, or Error in the
form instance_name.output_variable.

Other functions These are not executed.

Other function blocks The power flow from the left bus bar changes to FALSE.

POU Operation

A

UINT#1

UINT#1

B

MC
In ENO
MCNo

MCR
EN ENO
MCNo

MC_ON

 A

 B

MC_ON

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

Master control reset

Output from
LD instruction

A

UINT#1

UINT#1

B

MC
In ENO
MCNo

MCR
EN ENO
MCNo

MC_ON

 A

 B

MC_ON

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

Master control reset

Output from
LD instruction

2-65

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
eq

u
en

ce C
o

n
tro

l In
stru

ctio
n

s

2

M
C

 and M
C

R

CTU, CTD, and CTUD
The previous counter value is retained while the master control is reset. When the master control
reset is cleared, counting continues from the counter value that was retained.

A

UINT#1

UINT#1

B

MC
In ENO
MCNo

MCR
EN ENO
MCNo

MC_ON

 A

 B

MC_ON

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

Master control reset

Output from
LD instruction

MC_ON

 A

 B

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

Master control reset

Output from
LD instruction

S

A

UINT#1

UINT#1

B

MC
In ENO
MCNo

MCR
EN ENO
MCNo

MC_ON

 A

 B

MC_ON

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

Master control reset

Output from
LD instruction

MC_ON

 A

 B

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

Master control reset

Output from
LD instruction

R

2 Instruction Descriptions

2-66 NJ-series Instructions Reference Manual (W502)

The POUs that are given in the following table have upward or downward differentiation specifications.

When the master control is reset or the reset is cleared, the execution conditions for these POUs
change. That means that the upward or downward differentiation conditions for these POUs may be
met. If the upward or downward differentiation conditions are met, then the instructions are executed
accordingly. The operation of some typical instructions is described below.

R_TRIG (Up)
When the master control is reset, the execution condition changes to FALSE. If the execution condi-
tion is TRUE when the master control reset is cleared, the input upward differentiation condition is
met and the instruction operates accordingly.

Operation of POUs with Input Upward Differentiation or Input
Downward Differentiation

Differentiation Instructions

Input upward differentiation • LD, LDN, AND, ANDN, OR, ORN, and OUT with upward differentiation spec-
ifications

• R_TRIG (Up)
• Functions with an @ input upward differentiation option

• Functions blocks (e.g., counter instructions) with input upward differentiation
specifications

Input downward differentiation • LD, LDN, AND, ANDN, OR, ORN, and OUT with downward differentiation
specifications

• F_TRIG (Down)

• Functions with a % input downward differentiation option

A

UINT#1

UINT#1

B

B

MC
In ENO
MCNo

MCR
EN ENO
MCNo

MC_ON

CTU
 CU Q
 Reset CV
 PV

CTU_instance
MC_ON

 A

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

Master control reset

Output from
LD instruction

A

B

UINT#1

UINT#1

MC
In ENO
MCNo

MCR
EN ENO
MCNo

MC_ON

 A

 B

MC_ON

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

Master control reset

Input upward differentiation condition met.

Output from
LD instruction

R_TRIG

R_TRIG_instance

Clk Q

2-67

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
eq

u
en

ce C
o

n
tro

l In
stru

ctio
n

s

2

M
C

 and M
C

R

F_TRIG (Down)
When the master control is reset, the execution condition changes to FALSE. If the previous execution
condition was TRUE, then the input downward differentiation condition is met. However, the value of the
output from the F_TRIG (Down) instruction during the master control reset is forced to change to
FALSE, so the output value changes to FALSE.

Set and Reset with Input Upward Differentiation Specification
The previous value of the output is retained while the master control is reset. When the master con-
trol reset is cleared, the execution condition changes to TRUE and the instruction operates.

A

B

UINT#1

UINT#1

MC
In ENO
MCNo

MCR
EN ENO
MCNo

MC_ON

 A

 B

MC_ON

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

Master control reset

Output from
LD instruction

F_TRIG

F_TRIG_instance

Clk Q

The input downward differentiation
condition is met, but master control is
reset, so the output is FALSE.

A

UINT#1

UINT#1

B

MC
In ENO
MCNo

MCR
EN ENO
MCNo

MC_ON

 A

 B

MC_ON

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

Master control reset

Output from
LD instruction

MC_ON

 A

 B

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

Master control reset

Output from
LD instruction

S

Here, the input upward differentiation condition is met
and the output value changes to TRUE.

2 Instruction Descriptions

2-68 NJ-series Instructions Reference Manual (W502)

Set and Reset with Input Downward Differentiation Specification
When the master control is reset, the execution condition changes to FALSE. If the previous execu-
tion condition was TRUE, then the input downward differentiation condition is met. However, during
the master control reset, the previous output value is retained, so as a result the value of the output
is retained.

A

UINT#1

UINT#1

B

MC
In ENO
MCNo

MCR
EN ENO
MCNo

MC_ON

 A

 B

MC_ON

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

Master control reset

Output from
LD instruction

MC_ON

 A

 B

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

Master control reset

Output from
LD instruction

PR

Here, the input upward differentiation condition is met
and the output value changes to FALSE.

A

UINT#1

UINT#1

MC
In ENO
MCNo

MCR
EN ENO
MCNo

MC_ON

 A

 B

MC_ON

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

Master control reset

Output from
LD instruction

B

NS

The input downward differentiation
condition is met, but master control is
reset, so the output is retained.

A

UINT#1

UINT#1

MC
In ENO
MCNo

MCR
EN ENO
MCNo

MC_ON

 A

 B

MC_ON

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

Master control reset

Output from
LD instruction

B

NR

The input downward differentiation
condition is met, but master control
is reset, so the output is retained.

2-69

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
eq

u
en

ce C
o

n
tro

l In
stru

ctio
n

s

2

M
C

 and M
C

R

CTU, CTD, and CTUD
When the master control is reset, the value of the counter input changes to FALSE. If the value of
the counter input is TRUE when the master control reset is cleared, the input upward differentiation
condition is met and the instruction counts.

Always use the MC and MCR instructions as a pair in the same POU. The same value is used for
master control number MCNo for both of the paired MC and MCR instructions. The user does not
set the value of MCNo. It is automatically registered by the Sysmac Studio.

The MC and MCR instructions can be nested to up to 15 levels.

The following figure shows a programming example.

If the value of bit A is FALSE, the master control region is reset. While the master control region is in
a reset state, the TON and MOVE instructions are not executed. Also the Out instruction and OutNot
instruction will output FALSE to bits D and E.

A

UINT#1

UINT#1

B

B

MC
In ENO
MCNo

MCR
EN ENO
MCNo

MC_ON

CTU
 CU Q
 Reset CV
 PV

CTU_instance
MC_ON

 A

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

Master control reset

Output from
LD instruction

Input upward differentiation condition met.

UINT#1

UINT#1

UINT#2

UINT#2

MCR
EN ENO
MCNo

MCR
EN ENO
MCNo

MC
In ENO
MCNo

MC
In ENO
MCNo

2 Instruction Descriptions

2-70 NJ-series Instructions Reference Manual (W502)

• These instructions must be used in a ladder diagram. They cannot be used in ST. They also cannot
be used in inline ST in a ladder diagram.

• Always use the MC and MCR instructions as a pair in the same POU.

• Always place the MCR instruction after the MC instruction.

• Do not nest the MC and MCR instructions to more than 15 levels.

• If there is inline ST in the master control region, the inline ST is not executed when the master control
region is reset.

Precautions for Correct Use

These are not executed.

FALSE is output.

A

UINT#1

UINT#1

abcB

defT#10ms

C

TON
In Q
PT ET

TON_instance

INT#0 array[position]

Reset.

 UINT#0
UINT#10
 UINT#1

 position

FOR
EN ENO
InitVal Index
EndVal
StepVal

NEXT
EN ENO

D

E

MOVE
EN ENO
In Out

MC
In ENO
MCNo

MCR
EN ENO
MCNo

2-71

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
eq

u
en

ce C
o

n
tro

l In
stru

ctio
n

s

2

M
C

 and M
C

R

• If you use the MC and MCR instructions and the JMP instruction together, the operation is as follows:

• The following figure shows an MC-MCR pair inside a JMP-Label pair. Here, the jump is executed
regardless of the value of In.

• The following figure shows a JMP-Label pair inside an MC-MCR pair. Here, operation is as given
in the following table.

Value of In Operation

TRUE Master control region is not reset. The jump is made.

FALSE Master control region is reset. The jump is not made.

Label

Flow of processing

JMP instruction executed.

Not executed due
to JMP instruction.

Instructions after the label
are executed.

Label:

UINT#1

UINT#1

MCR
EN ENO
MCNo

MC
In ENO
MCNo

Label

Label:

UINT#1

UINT#1

UINT#1

UINT#1

MCR
EN ENO
MCNo

MC
In ENO
MCNo

Label

Label:

MCR
EN ENO
MCNo

MC
In ENO
MCNo

Flow of processing

● In = TRUE ● In = FALSE

MC instruction not executed.

MCR instruction not executed.

Instructions after the label
are executed.

Not executed due
to JMP instruction.

JMP instruction executed.

Flow of processing
MC instruction
executed.

MCR instruction
executed.

Not executed due
to MC instruction.

2 Instruction Descriptions

2-72 NJ-series Instructions Reference Manual (W502)

• The instructions are in the following order in the following figure: JMP instruction, MC instruction,
Label, and MCR instruction. First, the jump is made. As a result, the MC instruction is not exe-
cuted. Therefore, the instructions after the Label instruction are executed. If the value of In is
FALSE, the MCR instruction is executed, but nothing changes.

• The instructions are in the following order in the following figure: MC instruction, JMP instruction,
MCR instruction, and Label. Here, operation is as given in the following table.

Value of In Operation

TRUE Master control region is not reset. The jump is made.

FALSE Master control region is reset. The jump is not made.

Flow of processing

● In = TRUE ● In = FALSE

JMP instruction executed.

MCR instruction
not executed.

Instructions after the
label are executed.

Not executed due
to JMP instruction.

MC instruction
not executed.

Instructions after the
label are executed.

Flow of processing

JMP instruction
executed.

MCR instruction
executed, but
nothing changes.

Not executed due
to JMP instruction.

Label

Label:

UINT#1

UINT#1

MCR
EN ENO
MCNo

MC
In ENO
MCNo

Label

Label:

UINT#1

UINT#1

MCR
EN ENO
MCNo

MC
In ENO
MCNo

MC instruction
not executed.

Flow of processing

● In = TRUE ● In = FALSE

MC instruction
not executed.

MCR instruction
not executed.

Instructions after the
label are executed.

Not executed due
to JMP instruction.

JMP instruction executed.

MCR instruction
executed.

Flow of processing

MC instruction
executed.

JMP instruction
not executed.

Label

Label:

UINT#1

UINT#1

MCR
EN ENO
MCNo

MC
In ENO
MCNo

Label

Label:

UINT#1

UINT#1

MCR
EN ENO
MCNo

MC
In ENO
MCNo

Not executed due
to MC instruction.

2-73

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
eq

u
en

ce C
o

n
tro

l In
stru

ctio
n

s

2

M
C

 and M
C

R

• If you use the MC and MCR instructions and the FOR and NEXT instructions together, the operation
is as follows:

• The following figure shows an MC-MCR pair inside a FOR-NEXT pair. Here, operation is as given
in the following table.

• The following figure shows a FOR-NEXT pair inside an MC-MCR pair. Here, operation is as given
in the following table.

• A building error occurs if the FOR, NEXT, MC, and MCR instructions are used in either of the follow-
ing orders.

FOR, MC, NEXT, MCR, or MC, FOR, MCR, NEXT

Value of In Operation

TRUE Master control region is not reset. The FOR loop is executed.

FALSE Master control region is reset. The FOR loop is executed, but the
instructions between the MC and MCR instructions are not exe-
cuted.

Value of In Operation

TRUE Master control region is not reset. The FOR loop is executed.

FALSE Master control region is reset. The FOR loop is not executed.

Flow of processing

● In = TRUE ● In = FALSE

Flow of processing

NEXT

FOR

UINT#1

UINT#1

MCR
EN ENO
MCNo

MC
In ENO
MCNo

NEXT

FOR

UINT#1

UINT#1

MCR
EN ENO
MCNo

MC
In ENO
MCNo

MC instruction
not executed.

MCR instruction
not executed.

MCR instruction
executed.

MC instruction
executed.

Not executed due
to MC instruction.

FOR instruction executed. FOR instruction
executed.

Flow of processing

● In = TRUE ● In = FALSE

Flow of processing

NEXT

FOR

UINT#1

UINT#1

MCR
EN ENO
MCNo

MC
In ENO
MCNo

NEXT

FOR

UINT#1

UINT#1

MCR
EN ENO
MCNo

MC
In ENO
MCNo

MC instruction
not executed.

MCR instruction
not executed.

MCR instruction
executed.

MC instruction
executed.

Not executed due
to MC instruction.

FOR instruction executed. FOR instruction
not executed.

2 Instruction Descriptions

2-74 NJ-series Instructions Reference Manual (W502)

JMP

The JMP instruction moves processing to the specified jump destination.

None

When the execution condition is TRUE, the JMP instruction moves processing to the jump destination
specified by a Label in a ladder diagram. The label can be any text string.

The following figure shows a programming example. This example uses the text string STEP1 as the
label. When the JMP instruction is executed, processing moves to the location marked STEP1. In this
example, the Out instruction between the JMP instruction and the Label is not executed, and the value
of variable B is retained.

• You can also jump to a Label instruction above the JMP instruction in the section.

• You can use the same Label instruction as the jump destination for more than one JMP instruction.

• You cannot omit labels. If you omit a label, a building error will occur.

• Place the JMP and Label instructions in the same POU and in the same section.

• Do not set the same Label instruction more than once in the same section.

• You cannot jump into a FOR-NEXT loop from outside the loop.

Instruction Name FB/FUN Graphic expression ST expression

JMP Jump FUN None

Variables

Function

Additional Information

Precautions for Correct Use

Label

LD

A B

STEP1

Not executed and value of variable B retained.

STEP1
DC

2-75

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
eq

u
en

ce C
o

n
tro

l In
stru

ctio
n

s

2

JM
P

• The following restrictions apply to the characters that can be used as labels.

• Variable names cannot be used as labels.

Item Specification

Maximum number of bytes 127 bytes

127 characters when converted to ACSII

31 characters when converted to Japanese characters (including single-byte
kana)

Character code UTF-8

Applicable characters Not case sensitive.

English alphanumeric characters and other language characters.

Symbols: _ (underbar) and ~ (tilda)

Prohibited text strings • Any text string that starts with ASCII characters 0 to 9 (character codes
16#30 to 16#39)

• A text string that consists of only a single _ (underbar) ASCII character
• Any text string that includes two or more consecutive _ (underbar) ASCII

characters
• Any text string that starts with an _ (underbar) ASCII character

• Any text string that ends with an _ (underbar) ASCII character

• Any text string that starts with ‘P_’

Prohibited characters Blank space ! " # $ & ' () * + , - . / : ; < = > ? @ [] ^ ` %

2 Instruction Descriptions

2-76 NJ-series Instructions Reference Manual (W502)

FOR and NEXT

*1 If you omit an input parameter, the default value is not applied. A building error will occur.

*2 If you omit the input parameter in a ladder diagram, the default value is not applied. A building error will occur. If you omit
the input parameter in ST, a default value of 1 is applied.

FOR: Marks the starting position for repeat processing and specifies the repeat condition.

NEXT: Marks the ending position for repeat processing.

Instruction Name FB/FUN Graphic expression ST expression

FOR Repeat Start FUN FOR Index:=InitVal TO End-
Val BY StepVal DO

expression
END_FOR*;

* In ST, do not use NEXT to
mark the ending position
of repeat processing. Use
END_FOR instead.

NEXT Repeat End FUN

Variables

Name Meaning I/O Description Valid range Unit Default

InitVal Initial value

Input

Value to set the Index to
when repetition is started.

Depends on data type.

*1
EndVal End value Value of Index where repeti-

tion is stopped

StepVal Increment Value to add to Index each
time processing is repeated

Depends on the data
type (but 0 is not
allowed)

*2

Index Control
variable

Output Loop index Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

InitVal OK OK OK OK OK OK OK OK

EndVal Must be the same data type as InitVal.

StepVal Must be the same data type as InitVal.

Index Must be the same data type as InitVal.

FOR
EN ENO
InitVal Index
EndVal
StepVal

NEXT
EN ENO

2-77

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
eq

u
en

ce C
o

n
tro

l In
stru

ctio
n

s

2

F
O

R
 and N

E
X

T

The FOR and NEXT instructions repeat the processing that you place between them. (FOR and
END_FOR are used in ST.) The processing procedure for a FOR-NEXT loop is as follows:

1 The value of InitVal is set in control variable Index.

2 The value of Index is checked to see if it is equal to or greater than InitVal and equal to or less

than EndVal (or equal to or greater than EndVal and equal to or less than InitVal). If it is, the pro-
cess moves to step 3. If it is not, repeat processing is ended and the next instruction after the
NEXT instruction (or the END_FOR instruction in ST) is moved to.

3 The processing between the FOR instruction and the NEXT instruction (or the END_FOR

instruction in ST) is executed once.

4 The value of StepVal is added to Index.

5 The process returns to step 2.

The following example is for when InitVal is INT#0, EndVal is INT#9, and StepVal is INT#1. The MOVE
instruction is executed 10 times and INT#0 is assigned to array variables AryOut[0] to AryOut[9].

• Execute a BREAK instruction (or an EXIT instruction in ST) to cancel repeat processing. The pro-
cessing between the BREAK instruction and the NEXT instruction will not be executed.

• The value of StepVal can be negative. The value of InitVal can be larger than the value of EndVal.

Function

Additional Information

FOR position:=INT#0 TO INT#9 BY INT#1 DO
 AryOut[position]:=INT#0;
END_FOR;

LD ST

INT#0 AryOut[position]

 INT#0
 INT#9
 INT#1

 position

FOR
EN ENO
InitVal Index
EndVal
StepVal

NEXT
EN ENO

MOVE
EN ENO
In Out

2 Instruction Descriptions

2-78 NJ-series Instructions Reference Manual (W502)

• FOR-NEXT loops (or FOR-END_FOR loops in ST) can be nested. In the following figure, the pro-
cesses are performed in the following order.

Process A → Process B → Process B → Process C → Process A → Process B → Process B → Pro-
cess C → Process A → Process B → Process B → Process C

• In a ladder diagram, connect the FOR and NEXT instructions directly to the left bus bar.

• If you use this instruction in ST, you can use a function or expression that returns an integer for
InitVal. You cannot use a function or expression for EndVal or StepVal.

• Always use the FOR and NEXT instructions (FOR and END_FOR statements in ST) as a pair. A pro-
gramming error will occur if there is not the same number of both instructions.

• Always use the FOR-NEXT pair (the FOR-END_FOR pair in ST) in the same program section.

• If the value of InitVal is less than the value of EndVal, use a positive number for the value of StepVal.
If the value of InitVal is greater than the value of EndVal, use a negative number for the value of
StepVal.

• Set the condition to end repetition carefully so that you do not create an infinite loop.

Example: If the values that are given in the following table are used for the input parameters to
the variables, the value of Index will never be greater than the value of EndVal because
the maximum value of SINT data is 255. Therefore, an infinite loop is created.

• The FOR-NEXT loops can be nested up to 15 levels, but count all nesting levels for the following
instructions: IF, CASE, FOR, WHILE, and REPEAT.

• If loops are nested, you will need one BREAK instruction (or one EXIT instruction in ST) for each
nesting level to cancel all repeat processing.

• Do not use Jump Instructions (e.g., the JMP instruction) to interrupt repeat processing. Always use a
BREAK instruction (or an EXIT instruction in ST) to cancel repeat processing.

• You can change the values of StepVal and EndVal during repeat processing. You cannot change the
value of InitVal during repeat processing.

• If the value of StepVal is 0, a task execution timeout occurs.

• Use the same data type for InitVal, EndVal, StepVal, and Index. Otherwise, a building error will occur.

Precautions for Correct Use

Variable Value of input parameter

InitVal SINT#0

EndVal SINT#255

StepVal SINT#1

Index ---

Process
A

Process
B

Process
C

NEXT

NEXT

FOR

FOR

InitVal=INT#0
EndVal=INT#2
StepVal=INT#1

InitVal=INT#0
EndVal=INT#1
StepVal=INT#1

2-79

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
eq

u
en

ce C
o

n
tro

l In
stru

ctio
n

s

2

F
O

R
 and N

E
X

T

• The value of Index after repeat processing is different in a ladder diagram and ST. In a ladder dia-
gram, the value of StepVal is not added to Index at the end of repeat processing. In ST, the value of
StepVal is added to Index at the end of repeat processing. Processing is repeated the same number
of times.

The following example is for when InitVal is 1, EndVal is 100 and StepVal is 1.
Ladder diagram: The value of Index will be 100 after 100 repetitions.
ST: The value of Index will be 101 after 100 repetitions.

• Caution is required when you specify upward or downward differentiation for a LD, AND, or OR
instruction in a FOR loop in a ladder diagram and an array is used for the LD, AND, or OR instruction.

For upward or downward differentiation, the value of the specified variable at the previous execution
is compared with the value of the specified variable at the current execution to determine upward or
downward differentiation. Normally, the value of the specified variable does not change every time
the instruction is executed. However, if an array is specified in a FOR loop, the array element
changes each time the instruction is executed. Therefore, upward or downward differentiation is
determined by comparing different array elements. In the following programming, the LD instruction
in the third execution of the FOR loop (x = 2) compares the current value x[2] to the value of the
specified variable the last time the LD instruction was executed, x[1], to determine that the value did
not change to TRUE. As a result, Count1[2] is not incremented.

 DINT#0
 DINT#10
 DINT#1

 i

FOR
EN ENO
InitVal Index
EndVal
StepVal

NEXT
EN ENO

x[i]

x[i]

Count1[i]

AllSet

Upward differentiation is determined by comparing x[i] to x[i−1].

Inc
EN ENO
InOut

2 Instruction Descriptions

2-80 NJ-series Instructions Reference Manual (W502)

In the following programming, upward differentiation of x[i] is determined by the R_TRIG instruction.
An instance of the R_TRIG instruction is provided for each element of x[i], so it is possible to detect
which element of x[i] changed its value. As a result, Count2[0] to Count2[10] are all incremented.

 DINT#0
 DINT#10
 DINT#1

 i

FOR
EN ENO
InitVal Index
EndVal
StepVal

NEXT
EN ENO

x[i]

Count2[i]

AllSet

x[i]

Inc
EN ENO
InOut

R_TRIG

R_TRIG_instance[i]

R_TRIG_instance[i].Q

Clk Q

The value of Clk at the previous
execution and the current value of Clk
for R_TRIG_instance[i] are compared
to determine upward differentiation.

2-81

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
eq

u
en

ce C
o

n
tro

l In
stru

ctio
n

s

2

B
R

E
A

K

BREAK

The BREAK instruction is used to cancel repeat processing from the lowest level FOR instruction to the
NEXT instruction.

None

The BREAK (EXIT) instruction cancels the repeat processing from the lowest level FOR instruction to
the NEXT instruction (the END_FOR instruction for ST). It moves processing to the next instruction
after the NEXT instruction. The processing between the BREAK instruction and the NEXT instruction
(or the EXIT instruction in ST) will not be executed.

The following figure shows a programming example. When the FOR loop is executed, the value of vari-
able A is checked each time. If the value of variable A is TRUE, the repeat processing is ended immedi-
ately. In this example, the Out instruction after the BREAK instruction is not executed, and the value of
variable C is retained. (In ST, the EXIT instruction is used instead of the BREAK instruction.)

Instruction Name FB/FUN Graphic expression ST expression

BREAK Break Loop FUN FOR Index:=0 TO 9 BY 1
DO

IF Error[index] THEN
EXIT*;

END_IF
END_FOR;

* In ST, use EXIT instead of
BREAK for the BREAK
LOOP instruction. The
meaning is the same.

Variables

Function

BREAK
EN ENO

FOR position:=INT#0 TO INT#10 BY INT#1 DO
 IF (A=TRUE) THEN
 EXIT;
 END_IF;
 C:=B;
END_FOR;

LD ST

A

 INT#0
INT#10
 INT#1

 position

FOR
EN ENO
InitVal Index
EndVal
StepVal

NEXT
EN ENO

BREAK
EN ENO

B C

2 Instruction Descriptions

2-82 NJ-series Instructions Reference Manual (W502)

• Always place this instruction between the FOR and NEXT instructions (or the FOR and END_FOR
instructions in ST).

• If FOR-NEXT loops (or FOR-END_FOR loops in ST) are nested, you will need one BREAK instruc-
tion (or one EXIT instruction in ST) for each nesting level to cancel all repeat processing.

• Do not use Jump Instructions (e.g., the JMP instruction) to interrupt repeat processing. Always use a
BREAK instruction (or an EXIT instruction in ST) to cancel repeat processing.

Precautions for Correct Use

C
o

m
p

ariso
n

 In
stru

ctio
n

s

2

2-83NJ-series Instructions Reference Manual (W502)

Comparison Instructions

Instruction Name Page

EQ (=) Equal 2-84

NE (<>) Not Equal 2-86

LT (<), LE (<=), GT (>), and GE (>=) Less Than/Less Than Or Equal/
Greater Than/Greater Than Or Equal

2-88

EQascii Text String Comparison Equal 2-91

NEascii Text String Comparison Not Equal 2-93

LTascii, LEascii, GTascii, and GEascii Text String Comparison Less Than/Text String
Comparison Less Than or Equal
Text String Comparison Greater Than/Text String
Comparison Greater Than or Equal

2-95

Cmp Compare 2-98

ZoneCmp Zone Comparison 2-100

TableCmp Table Comparison 2-102

AryCmpEQ and AryCmpNE Array Comparison Equal/
Array Comparison Not Equal

2-105

AryCmpLT, AryCmpLE, AryCmpGT, and
AryCmpGE

Array Comparison Less Than/Array Comparison
Less Than Or Equal
Array Comparison Greater Than/Array Compari-
son Greater Than Or Equal

2-107

AryCmpEQV and AryCmpNEV Array Value Comparison Equal/Array Value Com-
parison Not Equal

2-110

AryCmpLTV, AryCmpLEV, AryCmpGTV,
and AryCmpGEV

Array Value Comparison Less Than/Array Value
Comparison Less Than Or Equal
Array Value Comparison Greater Than/Array Value
Comparison Greater Than Or Equal

2-112

2 Instruction Descriptions

2-84 NJ-series Instructions Reference Manual (W502)

EQ (=)

The EQ (=) instruction determines if the contents of two or more variables are all equivalent.

* If you omit the input parameter that connects to InN, the default value is not applied, and a building error will occur. For
example, if N is 3 and the input parameters that connect to In1 and In2 are omitted, the default values are applied, but if the
input parameter that connects to In3 is omitted, a building error will occur.

The EQ (=) instruction determines if the contents of from two to five variables In1 to InN are all equiva-
lent. The comparison result Out is TRUE only when all values are equivalent. Otherwise, the value of
Out is FALSE.

The following example is for when In1 is INT#3, In2 is INT#5 and In3 is INT#10. The value of variable
abc will be FALSE.

Instruction Name FB/FUN Graphic expression ST expression

EQ (=) Equal FUN Out:=(In1=In2) & (In2=In3)
& ··· &
(InN-1=InN);

Variables

Name Meaning I/O Description Valid range Unit Default

In1 to InN Comparison
data

Input Values to compare, N = 2 to
5

Depends on data type. --- 0*

Out Comparison
result

Output Comparison result Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In1 to InN OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

Enumerations can also be specified.

Out OK

Function

(@)=
EN
In1
 :
InN

:

(@)EQ
EN
In1
 :
InN

:

Out

Out

2-85

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
p

ariso
n

 In
stru

ctio
n

s

2

E
Q

 (=
)

• The functions of the EQ instruction and the = instruction are exactly the same. Use the form that is
easier to use.

• Use the EQascii instruction (page 2-91) to determine if text strings are equal.

• If the data types of In1 to InN are different, they will be expanded to a data type that includes the
ranges of all of the data types.

• You cannot compare bit string data (BYTE, WORD, DWORD, or LWORD) with integers. You cannot
compare bit string data to real number data (SINT, INT, DINT, LINT, USINT, UDINT, ULINT, REAL,
and LREAL).

• Signed integers (SINT, INT, DINT, and LINT) cannot be compared to unsigned integers (USINT, UINT,
UDINT, and ULINT).

• You can compare enumerations only to other enumerations.

• If In1 to InN are real numbers, error may cause unexpected processing results. This can occur, for
example, when they contain non-terminating decimal numbers.

• Two values that are positive infinity or two values that are negative infinity are equivalent.

• If any of the values of In1 to InN is nonnumeric data, the value of Out is FALSE.

• If this instruction is used in a ladder diagram, the value of Out changes to FALSE if an error occurs in
the previous instruction on the rung.

Additional Information

Precautions for Correct Use

abc:=(INT#3=INT#5)&(INT#5=INT#10);

LD ST

INT#3
INT#5

INT#10

abcEQ
EN
In1
In2
In3

2 Instruction Descriptions

2-86 NJ-series Instructions Reference Manual (W502)

NE (<>)

The NE (<>) instruction determines if the contents of two variables are not equivalent.

* If you omit an input parameter, the default value is not applied. A building error will occur.

The NE (<>) instruction determines if the contents of two variables In1 and In2 are not equivalent. If
they are not equivalent, the comparison result Out is TRUE. If they are equivalent, Out is FALSE.

The following example is for when In1 equals In2 (both have a value of INT#5). The value of variable
abc will be FALSE.

Instruction Name FB/FUN Graphic expression ST expression

NE (<>) Not Equal FUN Out:=(In1<>In2);

Variables

Name Meaning I/O Description Valid range Unit Default

In1 and In2 Comparison
data

Input Values to compare Depends on data type. --- *

Out Comparison
result

Output Comparison result Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In1 and In2 OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

Enumerations can also be specified.

Out OK

Function

(@)<>
EN
In1
In2

(@)NE
EN
In1
In2

Out

Out

abc:=(INT#5<>INT#5);

LD ST

INT#5
INT#5

abcNE
EN
In1
In2

2-87

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
p

ariso
n

 In
stru

ctio
n

s

2

N
E

 (<
>

)

• The functions of the NE instruction and the <> instruction are exactly the same. Use the form that is
easier to use.

• Use the NEascii instruction (page 2-93) to determine if text strings are not equal.

• If the data types of In1 and In2 are different, the smaller one is expanded to a data type that includes
the ranges of both of the data types.

• You cannot compare bit string data (BYTE, WORD, DWORD, or LWORD) with integers (SINT, INT,
DINT, LINT, USINT, UDINT, ULINT). You cannot compare bit string data with real number data (REAL
and LREAL).

• Signed integers (SINT, INT, DINT, and LINT) cannot be compared to unsigned integers (USINT, UINT,
UDINT, and ULINT).

• You can compare enumerations only to other enumerations.

• If In1 and In2 are real numbers, error may cause unexpected processing results. This can occur, for
example, when they contain non-terminating decimal numbers.

• Two values that are positive infinity or two values that are negative infinity are equivalent.

• If the value of either In1 or In2 is nonnumeric data, the value of Out is FALSE.

• If this instruction is used in a ladder diagram, the value of Out changes to FALSE if an error occurs in
the previous instruction on the rung.

Additional Information

Precautions for Correct Use

2 Instruction Descriptions

2-88 NJ-series Instructions Reference Manual (W502)

LT (<), LE (<=), GT (>), and GE (>=)
These instructions compare the sizes of two or more values.

LT (<): Performs a less than comparison.

LE (<=): Performs a less than or equal comparison.

GT (>): Performs a greater than comparison.

GE (>=): Performs a greater than or equal comparison.

Instruction Name FB/FUN Graphic expression ST expression

LT (<) Less Than FUN Out:=(In1<In2) & (In2<In3)
& ··· &
(InN-1<InN);

LE (<=) Less Than Or
Equal

FUN Out:=(In1<=In2) &
(In2<=In3) & ··· &
(InN-1<=InN);

GT (>) Greater Than FUN Out:=(In1>In2) & (In2>In3)
& ··· &
(InN-1>InN);

GE (>=) Greater Than Or
Equal

FUN Out:=(In1>=In2) &
(In2>=In3) & ··· &
(InN-1>=InN);

(@)<
EN
In1
 :
InN

:

(@)LT
EN
In1
 :
InN

:

Out

Out

(@)<=
EN
In1
 :
InN

:

(@)LE
EN
In1
 :
InN

:

Out

Out

(@)>
EN
In1
 :
InN

:

(@)GT
EN
In1
 :
InN

:

Out

Out

(@)>=
EN
In1
 :
InN

:

(@)GE
EN
In1
 :
InN

:

Out

Out

2-89

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
p

ariso
n

 In
stru

ctio
n

s

2

LT
 (<

), LE
 (<

=
), G

T
 (>

), and G
E

 (>
=

)

* If you omit the input parameter that connects to InN, the default value is not applied, and a building error will occur. For
example, if N is 3 and the input parameters that connect to In1 and In2 are omitted, the default values are applied, but if the
input parameter that connects to In3 is omitted, a building error will occur.

These instructions compare the values of In1 to InN (N = 2 to 5).

The output value Out is shown below for each instruction.

The following example shows the LE instruction when In1 is INT#3, In2 is INT#5 and In3 is INT#10. The
value of variable abc will be TRUE.

• The functions of the LT and < instructions, the LE and <= instructions, the GT and > instructions, and
the GE and >= instructions are exactly the same. Use the form that is easier to use.

• Use the LTascii, LEascii, GTascii, and GEascii instructions (page 2-95) to compare the sizes of text
strings.

Variables

Name Meaning I/O Description Valid range Unit Default

In1 to InN Comparison
data

Input Values to compare, N = 2 to
5

Depends on data type. --- 0*

Out Comparison
result

Output Comparison result Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In1 to InN OK OK OK OK OK OK OK OK OK OK

Out OK

Function

Instruction Value of Out

LT (<) If In1 < In2 < ... < InN, Out is TRUE. Otherwise, it is FALSE.

LE (<=) If In1 <= In2 <= ... <= InN, Out is TRUE. Otherwise, it is FALSE.

GT (>) If In1 > In2 > ... > InN, Out is TRUE. Otherwise, it is FALSE.

GE (>=) If In1 >= In2 >= ... >= InN, Out is TRUE. Otherwise, it is FALSE.

Additional Information

abc:=(INT#3<= INT#5)&(INT#5<=INT#10);

LD ST

INT#3
INT#5

INT#10

abcLE
EN
In1
In2
In3

2 Instruction Descriptions

2-90 NJ-series Instructions Reference Manual (W502)

• If the data types of In1 to InN are different, they will be expanded to a data type that includes the
ranges of all of the data types.

• Signed integers (SINT, INT, DINT, and LINT) cannot be compared to unsigned integers (USINT, UINT,
UDINT, and ULINT).

• If In1 to InN2 are real numbers, error may cause unexpected processing results. This can occur, for
example, when they contain non-terminating decimal numbers.

• Two values that are positive infinity or two values that are negative infinity are equivalent.

• If any of the values of In1 to InN is nonnumeric data, the value of Out is FALSE.

• If this instruction is used in a ladder diagram, the value of Out changes to FALSE if an error occurs in
the previous instruction on the rung.

Precautions for Correct Use

2-91

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
p

ariso
n

 In
stru

ctio
n

s

2

E
Q

ascii

EQascii

The EQascii instruction determines if two or more text strings are all equivalent.

* If you omit the input parameter that connects to InN, the default value is not applied, and a building error will occur. For
example, if N is 3 and the input parameters that connect to In1 and In2 are omitted, the default values are applied, but if the
input parameter that connects to In3 is omitted, a building error will occur.

The EQascii instruction determines if from two to five text strings In1 to InN are all equivalent. If the are
all equivalent, comparison result Out changes to TRUE. Otherwise, the value of Out is FALSE. “Equiva-
lent” means that both the lengths and contents of the text strings are the same.

The following example is for when In1 is “A”, In2 is “AB”, and In3 is “ABC”. The value of variable abc will
be FALSE.

Instruction Name FB/FUN Graphic expression ST expression

EQascii Text String Com-
parison Equal

FUN Out:=EQascii(In1, ··,
InN);

Variables

Name Meaning I/O Description Valid range Unit Default

In1 to InN Comparison
text strings

Input Text strings to compare, N =
2 to 5

Depends on data type. --- '' *

Out Comparison
result

Output Comparison result Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In1 to InN OK

Out OK

Function

(@)EQascii
EN Out
In1
 :
InN

:

abc:=EQascii(’A’, ‘AB’, ‘ABC’);

LD ST

‘A’
‘AB’

‘ABC’

abcEQascii
EN
In1
In2
In3

2 Instruction Descriptions

2-92 NJ-series Instructions Reference Manual (W502)

The text string comparison instructions are convenient when you want to reorder text strings according
to the character codes. For example, the character codes for alphabet characters are in the same order
as the alphabet characters. This allows you to alphabetize.

• Do not use this instruction as the rightmost instruction on a rung. If you do, an error occurs on the
Sysmac Studio and you cannot transfer the user program to the Controller.

• If this instruction is used in a ladder diagram, the value of Out changes to FALSE if an error occurs in
the previous instruction on the rung.

• Specify text strings that contain only ASCII characters for In1 to InN.

• An error occurs in the following case. Out will be FALSE.

• One of the text strings in In1 to InN does not end in a NULL character.

Additional Information

Precautions for Correct Use

2-93

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
p

ariso
n

 In
stru

ctio
n

s

2

N
E

ascii

NEascii

The NEascii instruction determines if two text strings are not equivalent.

* If you omit an input parameter, the default value is not applied. A building error will occur.

The NEascii instruction determines if two text strings In1 and In2 are not equivalent. If they are different,
comparison result Out will be TRUE. If they are the same, comparison result Out will be FALSE. “Equiv-
alent” means that both the lengths and contents of the text strings are the same.

The following example is for when In1 is “A” and In2 is “AB”. The value of variable abc will be TRUE.

Instruction Name FB/FUN Graphic expression ST expression

NEascii Text String Com-
parison Not
Equal

FUN Out:=NEascii(In1, In2);

Variables

Name Meaning I/O Description Valid range Unit Default

In1 and In2 Comparison
text strings

Input Text strings to compare Depends on data type. --- *

Out Comparison
result

Output Comparison result Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In1 and In2 OK

Out OK

Function

(@)NEascii
EN Out
In1
In2

abc:=NEascii(’A’, ‘AB’);

LD ST

‘A’
‘AB’

abcNEascii
EN
In1
In2

2 Instruction Descriptions

2-94 NJ-series Instructions Reference Manual (W502)

The text string comparison instructions are convenient when you want to reorder text strings according
to the character codes. For example, the character codes for alphabet characters are in the same order
as the alphabet characters. This allows you to alphabetize.

• Do not use this instruction as the rightmost instruction on a rung. If you do, an error occurs on the
Sysmac Studio and you cannot transfer the user program to the Controller.

• If this instruction is used in a ladder diagram, the value of Out changes to FALSE if an error occurs in
the previous instruction on the rung.

• Specify text strings that contain only ASCII characters for In1 and In2.

• An error occurs in the following case. Out will be FALSE.

• The text string in In1 or In2 does not end in a NULL character.

Additional Information

Precautions for Correct Use

2-95

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
p

ariso
n

 In
stru

ctio
n

s

2

LTascii, LE
ascii, G

Tascii, and G
E

ascii

LTascii, LEascii, GTascii, and
GEascii

These instructions compare the sizes of two or more text strings.

* If you omit the input parameter that connects to InN, the default value is not applied, and a building error will occur. For
example, if N is 3 and the input parameters that connect to In1 and In2 are omitted, the default values are applied, but if the
input parameter that connects to In3 is omitted, a building error will occur.

LTascii: Performs a less than comparison.

LEascii: Performs a less than or equal comparison.

GTascii: Performs a greater than comparison.

GEascii: Performs a greater than or equal comparison.

Instruction Name FB/FUN Graphic expression ST expression

LTascii Text String Com-
parison Less
Than

FUN Out:=LTascii(In1, ···, InN);

LEascii Text String Com-
parison Less
Than or Equal

FUN Out:=LEascii(In1, ···, InN);

GTascii Text String Com-
parison Greater
Than

FUN Out:=GTascii(In1, ···, InN);

GEascii Text String Com-
parison Greater
Than or Equal

FUN Out:=GEascii(In1, ···, InN);

Variables

Name Meaning I/O Description Valid range Unit Default

In1 to InN Comparison
text strings

Input Text strings to compare, N =
2 to 5

Depends on data type. --- ''*

Out Comparison
result

Output Comparison result Depends on data type. --- ---

(@)LTascii
EN Out
In1
 :
InN

:

(@)LEascii
EN Out
In1
 :
InN

:

(@)GTascii
EN Out
In1
 :
InN

:

(@)GEascii
EN Out
In1
 :
InN

:

2 Instruction Descriptions

2-96 NJ-series Instructions Reference Manual (W502)

These instructions compare the sizes of from two to five text strings in In1 to InN (N = 2 to 5). The out-

put value Out is shown below for each instruction.

The sizes of the character codes are compared. The comparison procedure is as follows:

First, the first character codes in all of the text strings are compared. If the character codes are different,
the result of the size comparison for the text strings is determined by the size relationship between
those character codes. If the character codes are the same, comparison continues in order to the other
characters until a different character code is found. If the lengths of the text strings are different, NULL
characters (16#00) are added to the shorter text string to complete the comparison.

The relationships between various text strings are as follows:

'AD'(16#414400) < 'BC'(16#424400)

'ADC' (16#41444300)< 'B'(16#42000000)

'ABC' (16#41424300)< 'ABD'(16#41424400)

'ABC' (16#41424300)> 'AB'(16#41420000)

'AB' (16#414200)= 'AB'(16#414200)

If the text string contains multi-byte characters, the characters are separated into individual bytes before
comparison. For example, the two-byte character 16#C281 is handled as 16#C2 and 16#81.

The following example for the LEascii instruction is for when In1 is “AB”, In2 is “AC”, and In3 is “AC”.
The value of variable abc will be TRUE.

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In1 to InN OK

Out OK

Function

Instruction Value of Out

LTascii If In1 < In2 <...< InN, Out is TRUE. Otherwise, it is FALSE.

LEascii If In1 ≤ In2 ≤...≤ InN, Out is TRUE. Otherwise, it is FALSE.

GTascii If In1 > In2 >...> InN, Out is TRUE. Otherwise, it is FALSE.

GEascii If In1 ≥ In2 ≥...≥ InN, Out is TRUE. Otherwise, it is FALSE.

abc:=LEascii(’AB’, ‘AC’, ‘AC’);

LD ST

‘AB’
‘AC’
‘AC’

abcLEascii
EN
In1
In2
In3

2-97

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
p

ariso
n

 In
stru

ctio
n

s

2

LTascii, LE
ascii, G

Tascii, and G
E

ascii

The text string comparison instructions are convenient when you want to reorder text strings according
to the character codes. For example, the character codes for alphabet characters are in the same order
as the alphabet characters. This allows you to alphabetize.

• Do not use this instruction as the rightmost instruction on a rung. If you do, an error occurs on the
Sysmac Studio and you cannot transfer the user program to the Controller.

• If this instruction is used in a ladder diagram, the value of Out changes to FALSE if an error occurs in
the previous instruction on the rung.

• Specify text strings that contain only ASCII characters for In1 to InN.

• An error occurs in the following case. Out will be FALSE.

• One of the text strings in In1 to InN does not end in a NULL character.

Additional Information

Precautions for Correct Use

2 Instruction Descriptions

2-98 NJ-series Instructions Reference Manual (W502)

Cmp

The Cmp instruction compares two values.

* If you omit the input parameter, the default value is not applied. A building error will occur.

Instruction Name FB/FUN Graphic expression ST expression

Cmp Compare FUN Out:=Cmp(In1, In2, OutEQ,
OutGT, OutGE, OutNE,
OutLT, OutLE);

You can omit Out.

Variables

Name Meaning I/O Description Valid range Unit Default

In1 and In2 Comparison
data

Input Values to compare Depends on data type. --- *

Out Return value

Output

Always TRUE TRUE only

--- ---

OutEQ Equal flag Equal flag

Depends on data type.

OutGT Greater than
flag

Greater than flag

OutGE Greater than or
equal flag

Greater than or equal flag

OutNE Not equal flag Not equal flag

OutLT Less than flag Less than flag

OutLE Less than or
equal flag

Less than or equal flag
B

o
o

lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In1 and In2 OK OK OK OK OK OK OK OK OK OK

Out OK

OutEQ OK

OutGT OK

OutGE OK

OutNE OK

OutLT OK

OutLE OK

(@)Cmp
EN ENO
In1 Out
In2 OutEQ
 OutGT
 OutGE
 OutNE
 OutLT
 OutLE

2-99

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
p

ariso
n

 In
stru

ctio
n

s

2

C
m

p

The Cmp instruction compares two values (In1 and In2) and outputs flag values.

The values of the flags are as follows:

The following example is for when In1 is INT#10 and In2 is INT#20. The values of variables def, ghi, and
jkl will be FALSE, and the values of abc, mno, pqr, and stu will be TRUE.

• If the data types of In1 and In2 are different, the smaller one is expanded to a data type that includes
the ranges of both of the data types.

• If In1 and In2 are real numbers, error may cause unexpected processing results. This can occur, for
example, when they contain non-terminating decimal numbers.

• Signed integers (SINT, INT, DINT, and LINT) cannot be compared to unsigned integers (USINT, UINT,
UDINT, and ULINT).

• Two values that are positive infinity or two values that are negative infinity are equivalent.

• If the value of either In1 or In2 is nonnumeric data, the values of OutEQ, OutGT, OutGE, OutNE,
OutLT, and OutLE are FALSE.

Function

Flag Value

OutEQ If In1 equals In2, the flag shows TRUE. Otherwise the flag shows FALSE.

OutGT If In1 is greater than In2, the flag shows TRUE. Otherwise the flag shows
FALSE.

OutGE If In1 is greater than or equal to In2, the flag shows TRUE. Otherwise the
flag shows FALSE.

OutNE If In1 is not equal to In2, the flag shows TRUE. Otherwise the flag shows
FALSE.

OutLT If In1 is less than In2, the flag shows TRUE. Otherwise the flag shows
FALSE.

OutLE If In1 is less than or equal to In2, the flag shows TRUE. Otherwise the flag
shows FALSE.

Precautions for Correct Use

abc:=Cmp(INT#10, INT#20, def, ghi, jkl, mno, pqr, stu);

LD ST

abc
def
ghi
jkl
mno
pqr
stu

INT#10
INT#20

Cmp
EN ENO
In1
In2 OutEQ
 OutGT
 OutGE
 OutNE
 OutLT
 OutLE

2 Instruction Descriptions

2-100 NJ-series Instructions Reference Manual (W502)

ZoneCmp

The ZoneCmp instruction determines if the comparison data is within the specified maximum and mini-
mum values.

* If you omit an input parameter, the default value is not applied. A building error will occur.

Instruction Name FB/FUN Graphic expression ST expression

ZoneCmp Zone Comparison FUN Out:=ZoneCmp(MN, In,
MX);

Variables

Name Meaning I/O Description Valid range Unit Default

MN Minimum value

Input

Minimum value

Depends on data type. ---

0

In Comparison
data

Value to compare *

MX Maximum value Maximum value 0

Out Comparison
result

Output Comparison result Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

MN OK OK OK OK OK OK OK OK OK OK

In OK OK OK OK OK OK OK OK OK OK

MX OK OK OK OK OK OK OK OK OK OK

Out OK

(@)ZoneCmp
EN Out
MN
In
MX

2-101

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
p

ariso
n

 In
stru

ctio
n

s

2

Z
oneC

m
p

The ZoneCmp instruction determines if comparison data In is between maximum value MX and mini-
mum value MN. If MX ≥ In ≥ MN, Out will be TRUE. Otherwise, Out will be FALSE.

The following example is for when MN is INT#10, In is INT#20 and MX is INT#30. The value of variable
abc will be TRUE.

• If the data types of In, MX, and MN are different, they will be expanded to a data type that includes
the ranges of all of the data types.

• If In, MX, and MN are real numbers, error may cause unexpected processing results. This can occur,
for example, when they contain non-terminating decimal numbers.

• Signed integers (SINT, INT, DINT, and LINT) cannot be compared to unsigned integers (USINT, UINT,
UDINT, and ULINT).

• Two values that are positive infinity or two values that are negative infinity are equivalent.

• If the value of In is nonnumeric data, the value of Out is FALSE.

• If this instruction is used in a ladder diagram, the value of Out changes to FALSE if an error occurs in
the previous instruction on the rung.

• An error occurs in the following cases. Out will be FALSE.

• The value of MN is greater than the value of MX.

• Either MX or MN contains nonnumeric data.

Function

Precautions for Correct Use

abc:=ZoneCmp(INT#10, INT#20, INT#30);

LD ST

abc

INT#10
INT#20
INT#30

ZoneCmp
EN
MN
In
MX

2 Instruction Descriptions

2-102 NJ-series Instructions Reference Manual (W502)

TableCmp

The TableCmp instruction compares the comparison data with multiple defined ranges in a comparison
table.

* If you omit an input parameter, the default value is not applied. A building error will occur.

Instruction Name FB/FUN Graphic expression ST expression

TableCmp Table Comparison FUN Out:=TableCmp(In, Table,
Size, AryOut);

Variables

Name Meaning I/O Description Valid range Unit Default

In Comparison
data

Input

Value to compare

Depends on data type. ---

*
Table[]
(two-
dimen-
sional
array)

Comparison
table

Two-dimensional array that
contains the elements for
the defined ranges

Size Comparison
size

Number of elements in
Table[] to which to compare
In

1

AryOut[]
(array)

Individual com-
parison results
array

In-out Comparison results for
Table[] elements

TRUE: Condition met.

FALSE: Condition not met.

Depends on data type. --- ---

Out Comparison
result

Output TRUE: In meets all compari-
son conditions for elements
of Table[].

FALSE: The comparison
condition is not met for one
or more sets of elements.

Depends on data type. --- ---

(@)TableCmp
EN
In
Table
Size
AryOut

Out

2-103

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
p

ariso
n

 In
stru

ctio
n

s

2

TableC
m

p

The TableCmp instruction compares comparison data In with the number of defined ranges specified by
the value of Size in comparison table Table[].

Table[] is a two-dimensional array. The first dimension contains the numbers of the defined ranges. In
the second dimension, element 0 is set value A of the defined range and element 1 is set value B of the
defined range.

Set value A and set value B define range as shown below. Set value A and set value B are always
included in the range.

The results of comparing In and Table[] are stored in individual comparison results array AryOut[]. If In
is within the defined range for element i, ArayOut[i] will be TRUE. If it is not within the range, ArayOut[i]
will be FALSE. If all Size elements of AryOut[] are TRUE, comparison result Out will be TRUE. Other-
wise, it will be FALSE.

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK OK OK OK OK OK OK OK OK OK

Table[]
(two-
dimen-
sional
array)

Must be a two-dimensional array with elements that have the same data type as In.

Size OK

AryOut[]
(array)

OK

Out OK

Function

Set value B

Range 0

Range Size − 1

Range 1

Set value A

Table[Size-1,0] Table[Size-1,1]

Table[1,0] Table[1,1]

Table[0,0] Table[0,1]

Set value A ≥ Set value B

Defined
range

Defined range Defined
range

Set value A ≤ Set value B

Set value B Set value A Set value B Set value A

2 Instruction Descriptions

2-104 NJ-series Instructions Reference Manual (W502)

The following example is for when In is INT#120 and Size is UINT#3.

• Use the same data type for In and Table[]. Otherwise, a compiling error will occur.

• Use a two-dimensional array for Table[]. A compiling error will occur if you use any other size of array.

• If an array with more than two dimensions is used for Table[], the elements in the third and higher
dimensions are ignored.

• If the AryOut[] array is larger than the value of Size, the comparison results will be stored in AryOut[0]
to AryOut[Size−1]. Other elements of the array will not change.

• Signed integers (SINT, INT, DINT, and LINT) cannot be compared to unsigned integers (USINT, UINT,
UDINT, and ULINT).

• If real numbers are compared, error may cause unexpected processing results. This can occur, for
example, when they contain non-terminating decimal numbers.

• If the value of Size is 0, the value of Out will be FALSE and AryOut[] will not change.

• If this instruction is used in a ladder diagram, the value of Out changes to FALSE if an error occurs in
the previous instruction on the rung.

• An error occurs in the following cases. Out will be FALSE.

• If the value of Size exceeds the size of the AryOut[] array.

• If the value of Size exceeds the size of the first dimension of the Table[] array.

• The size of the second dimension of Table [] is 1.

Precautions for Correct Use

ghi:=TableCmp(INT#120, abc[1,2], UINT#3, def[3]);

LD ST

ghi

INT#120
abc[1,2]

def[3] def[3]

UINT#3

TableCmp
EN
In
Table
Size
AryOut

Table[0,0]=abc[1,2]

Table[1,0]=abc[2,2]

Table[2,0]=abc[3,2]

Table[0,1]=abc[1,3] AryOut[0]=def[3]

AryOut[1]=def[4]

AryOut[2]=def[5]

0 99

TRUE

FALSE

FALSE

Table[1,1]=abc[2,3]100 199

Table[2,1]=abc[3,3]200 299

Out=ghi FALSE

Size=UINT#3

In=INT#120

2-105

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
p

ariso
n

 In
stru

ctio
n

s

2

A
ryC

m
pE

Q
 and A

ryC
m

pN
E

AryCmpEQ and AryCmpNE
These instructions compare the values of the elements of two arrays.

* If you omit an input parameter, the default value is not applied. A building error will occur.

AryCmpEQ: Determines if the elements are equal.

AryCmpNE: Determines if the elements are not equal.

Instruction Name FB/FUN Graphic expression ST expression

AryCmpEQ Array Comparison
Equal

FUN AryCmpEQ(In1, In2, Size,
AryOut);

AryCmpNE Array Comparison
Not Equal

FUN AryCmpNE(In1, In2, Size,
AryOut);

Variables

Name Meaning I/O Description Valid range Unit Default

In1[] and
In2[]
(arrays)

Comparison
arrays

Input

Arrays containing the ele-
ments to compare

Depends on data type.

*

Size Number of
comparison
elements

Number of elements to com-
pare

Depends on data type. 1

AryOut[]
(array)

Comparison
results array

In-out Comparison results array Depends on data type. --- ---

Out Return value Output Always TRUE TRUE only --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In1[] (array) OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

In2[] (array) Must be an array with the same data type as In1[].

Size OK

AryOut[]
(array)

OK

Out OK

(@)AryCmpEQ
EN ENO
In1 Out
In2
Size
AryOut

(@)AryCmpNE
EN ENO
In1 Out
In2
Size
AryOut

2 Instruction Descriptions

2-106 NJ-series Instructions Reference Manual (W502)

These instructions compare the values of the elements with the same element numbers in two arrays
(In1[0] to In1[Size−1] and In2[0] and In2[Size−1]). The comparison results are stored in comparison
results array AryOut[] in the elements with the corresponding element numbers (AryOut[0] to Ary-
Out[Size −1]).

The value of AryOut[i] is as follows for each instruction:

The following example shows the AryCmpEQ instruction when Size is UINT#3.

• Use the same data type for In1[] and In2[].

• Use an AryOut[] array that is at least as large as the value of Size.

• If In1[] and In2[] contain real numbers, error may cause unexpected processing results. This can
occur, for example, when they contain non-terminating decimal numbers.

• If the value of Size is 0, the value of Out will be TRUE and AryOut[] will not change.

• Return value Out is not used when the instruction is used in ST.

• An error occurs in the following cases. ENO will be FALSE, and AryOut[] will not change.

• If In1[] and In2[] contain different data types.

• If the In1[], In2[], or AryOut[] array is smaller than the value of Size.

Function

Instruction Value of AryOut[i]

AryCmpEQ If In1[i] = In2[i], the result is TRUE. Otherwise, it is FALSE.

AryCmpNE If In1[i] ≠ In2[i], the result is TRUE. Otherwise, it is FALSE.

Precautions for Correct Use

AryCmpEQ(abc[1], def[2], UINT#3, ghi[3]);

LD ST

abc[1]
def[2]

ghi[3] ghi[3]

UINT#3

AryCmpEQ
EN ENO
In1
In2
Size
AryOut

In1[0]=abc[1]
In1[1]=abc[2]
In1[2]=abc[3]

In2[0]=def[2]
In2[1]=def[3]
In2[2]=def[4]

AryOut[0]=ghi[3]
AryOut[1]=ghi[4]
AryOut[2]=ghi[5]

Size=UINT#3

100
120
140

100
130
160

TRUE
FALSE
FALSE

2-107

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
p

ariso
n

 In
stru

ctio
n

s

2

A
ryC

m
pLT, A

ryC
m

pLE
, A

ryC
m

pG
T, and A

ryC
m

pG
E

AryCmpLT, AryCmpLE,
AryCmpGT, and AryCmpGE

These instructions compare the values of the elements of two arrays.

AryCmpLT: Performs a less than comparison.

AryCmpLE: Performs a less than or equal comparison.

AryCmpGT: Performs a greater than comparison.

AryCmpGE: Performs a greater than or equal comparison.

Instruction Name FB/FUN Graphic expression ST expression

AryCmpLT Array Comparison
Less Than

FUN AryCmpLT(In1, In2, Size,
AryOut);

AryCmpLE Array Comparison
Less Than Or Equal

FUN AryCmpLE(In1, In2, Size,
AryOut);

AryCmpGT Array Comparison
Greater Than

FUN AryCmpGT(In1, In2, Size,
AryOut);

AryCmpGE Array Comparison
Greater Than Or
Equal

FUN AryCmpGE(In1, In2, Size,
AryOut);

(@)AryCmpLT
EN ENO
In1 Out
In2
Size
AryOut

(@)AryCmpLE
EN ENO
In1 Out
In2
Size
AryOut

(@)AryCmpGT
EN ENO
In1 Out
In2
Size
AryOut

(@)AryCmpGE
EN ENO
In1 Out
In2
Size
AryOut

2 Instruction Descriptions

2-108 NJ-series Instructions Reference Manual (W502)

* If you omit an input parameter, the default value is not applied. A building error will occur.

Variables

Name Meaning I/O Description Valid range Unit Default

In1[] and
In2[]
(arrays)

Comparison
arrays

Input

Arrays containing the ele-
ments to compare

Depends on data type.

*

Size Number of
comparison
elements

Number of elements to com-
pare

Depends on data type. 1

AryOut[]
(array)

Comparison
results array

In-out Comparison results array Depends on data type. --- ---

Out Return value Output Always TRUE TRUE only --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In1[] (array) OK OK OK OK OK OK OK OK OK

In2[] (array) Must be an array with the same data type as In1[].

Size OK

AryOut[]
(array)

OK

Out OK

2-109

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
p

ariso
n

 In
stru

ctio
n

s

2

A
ryC

m
pLT, A

ryC
m

pLE
, A

ryC
m

pG
T, and A

ryC
m

pG
E

These instructions compare the values of the elements with the same element numbers in two arrays
(In1[0] to In1[Size −1] and In2[0] and In2[Size −1]). The comparison results are stored in comparison
results array AryOut[] in the elements with the corresponding element numbers (AryOut[0] to Ary-
Out[Size −1]).

The value of AryOut[i] is as follows for each instruction:

The following example shows the AryCmpLT instruction when Size is UINT#3.

• Use the same data type for In1[] and In2[].

• Use an AryOut[] array that is at least as large as the value of Size.

• If In1[] and In2[] contain real numbers, error may cause unexpected processing results. This can
occur, for example, when they contain non-terminating decimal numbers.

• If the value of Size is 0, the value of Out will be TRUE and AryOut[] will not change.

• Return value Out is not used when the instruction is used in ST.

• An error occurs in the following cases. ENO will be FALSE, and AryOut[] will not change.

• If In1[] and In2[] contain different data types.

• If the In1[], In2[], or AryOut[] array is smaller than the value of Size.

Function

Instruction Value of AryOut[i]

AryCmpLT If In1[i] < In2[i], the result is TRUE. Otherwise, it is FALSE.

AryCmpLE If In1[i] <= In2[i], the result is TRUE. Otherwise, it is FALSE.

AryCmpGT If In1[i] > In2[i], the result is TRUE. Otherwise, it is FALSE.

AryCmpGE If In1[i] >= In2[i], the result is TRUE. Otherwise, it is FALSE.

Precautions for Correct Use

AryCmpLT(abc[1], def[2], UINT#3, ghi[3]);

LD ST

abc[1]
def[2]

ghi[3] ghi[3]

UINT#3

AryCmpLT
EN ENO
In1
In2
Size
AryOut

In1[0]=abc[1]
In1[1]=abc[2]
In1[2]=abc[3]

In2[0]=def[2]
In2[1]=def[3]
In2[2]=def[4]

AryOut[0]=ghi[3]
AryOut[1]=ghi[4]
AryOut[2]=ghi[5]

Size=UINT#3

110
120
140

100
130
160

FALSE
TRUE
TRUE

2 Instruction Descriptions

2-110 NJ-series Instructions Reference Manual (W502)

AryCmpEQV and AryCmpNEV
These instructions compare a value to the values of the elements of an array.

* If you omit an input parameter, the default value is not applied. A building error will occur.

AryCmpEQV: Determines if the elements are equal.

AryCmpNEV: Determines if the elements are not equal.

Instruction Name FB/FUN Graphic expression ST expression

AryCmpEQV Array Value Com-
parison Equal

FUN AryCmpEQV(In1, In2, Size,
AryOut);

AryCmpNEV Array Value Com-
parison Not Equal

FUN AryCmpNEV(In1, In2, Size,
AryOut);

Variables

Name Meaning I/O Description Valid range Unit Default

In1[] (array) Comparison
array

Input

Array containing the ele-
ments to compare

Depends on data type.

*

In2 Comparison
value

Value to compare

Size Number of
comparison
elements

Number of elements to com-
pare

Depends on data type. 1

AryOut[]
(array)

Comparison
results array

In-out Comparison results array Depends on data type. --- ---

Out Return value Output Always TRUE TRUE only --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In1[] (array) OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

In2 Must be same data type as the elements of In1[].

Size OK

AryOut[]
(array)

OK

Out OK

(@)AryCmpEQV
EN ENO
In1 Out
In2
Size
AryOut

(@)AryCmpNEV
EN ENO
In1 Out
In2
Size
AryOut

2-111

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
p

ariso
n

 In
stru

ctio
n

s

2

A
ryC

m
pE

Q
V

 and A
ryC

m
pN

E
V

These instructions compare comparison value In2 with the specified elements in an array (In1[0] to
In1[Size −1]). The comparison results are stored in comparison results array AryOut[] in the elements
with the corresponding element numbers (AryOut[0] to AryOut[Size −1]).

The value of AryOut[i] is as follows for each instruction:

The following example shows the AryCmpEQV instruction when In2 is INT#10 and Size is UINT#3.

• Use the same data type for In1[] and In2.

• Use an AryOut[] array that is at least as large as the value of Size.

• If In1[] contains real numbers and In2 is a real number, error may cause unexpected processing
results. This can occur, for example, when they contain non-terminating decimal numbers.

• If the value of Size is 0, the value of Out will be TRUE and AryOut[] will not change.

• Return value Out is not used when the instruction is used in ST.

• An error occurs in the following case. ENO will be FALSE, and AryOut[] will not change.

• If the In1[] or AryOut[] array is smaller than the value of Size.

Function

Instruction Value of AryOut[i]

AryCmpEQV If In1[i] = In2, the result is TRUE. Otherwise, it is FALSE.

AryCmpNEV If In1[i] ≠ In2, the result is TRUE. Otherwise, it is FALSE.

Precautions for Correct Use

AryCmpEQV(abc[1], INT#10, UINT#3, def[2]);

LD ST

abc[1]
INT#10

def[2] def[2]

UINT#3

AryCmpEQV
EN ENO
In1
In2
Size
AryOut

In1[0]=abc[1]
In1[1]=abc[2]
In1[2]=abc[3]

In2=INT#10
In2=INT#10
In2=INT#10

AryOut[0]=def[2]
AryOut[1]=def[3]
AryOut[2]=def[4]

Size=UINT#3

10
20
30

TRUE
FALSE
FALSE

2 Instruction Descriptions

2-112 NJ-series Instructions Reference Manual (W502)

AryCmpLTV, AryCmpLEV,
AryCmpGTV, and AryCmpGEV

These instructions compare a value to the values of the elements of an array.

AryCmpLTV: Performs a less than comparison.

AryCmpLEV: Performs a less than or equal comparison.

AryCmpGTV: Performs a greater than comparison.

AryCmpGEV: Performs a greater than or equal comparison.

Instruction Name FB/FUN Graphic expression ST expression

AryCmpLTV Array Value Com-
parison Less Than

FUN AryCmpLTV(In1, In2, Size,
AryOut);

AryCmpLEV Array Value Com-
parison Less Than
Or Equal

FUN AryCmpLEV(In1, In2, Size,
AryOut);

AryCmpGTV Array Value Com-
parison Greater
Than

FUN AryCmpGTV(In1, In2, Size,
AryOut);

AryCmpGEV Array Value Com-
parison Greater
Than Or Equal

FUN AryCmpGEV(In1, In2, Size,
AryOut);

(@)AryCmpLTV
EN ENO
In1 Out
In2
Size
AryOut

(@)AryCmpLEV
EN ENO
In1 Out
In2
Size
AryOut

(@)AryCmpGTV
EN ENO
In1 Out
In2
Size
AryOut

(@)AryCmpGEV
EN ENO
In1 Out
In2
Size
AryOut

2-113

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
p

ariso
n

 In
stru

ctio
n

s

2

A
ryC

m
pLT

V, A
ryC

m
pLE

V, A
ryC

m
pG

T
V, and A

ryC
m

pG
E

V

* If you omit an input parameter, the default value is not applied. A building error will occur.

Variables

Name Meaning I/O Description Valid range Unit Default

In1[] (array) Comparison
array

Input

Array containing the ele-
ments to compare

Depends on data type.

*

In2 Comparison
value

Value to compare

Size Number of
comparison
elements

Number of elements to com-
pare

Depends on data type. 1

AryOut[]
(array)

Comparison
results array

In-out Comparison results array Depends on data type. --- ---

Out Return value Output Always TRUE TRUE only --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In1[] (array) OK OK OK OK OK OK OK OK OK

In2 Must be same data type as the elements of In1[].

Size OK

AryOut[]
(array)

OK

Out OK

2 Instruction Descriptions

2-114 NJ-series Instructions Reference Manual (W502)

These instructions compare comparison value In2 with the specified elements in an array (In1[0] to
In1[Size − 1]). The comparison results are stored in comparison results array AryOut[] in the elements
with the corresponding element numbers (AryOut[0] to AryOut[Size −1]).

The value of AryOut[i] is as follows for each instruction:

The following example shows the AryCmpLEV instruction when In2 is INT#20 and Size is UINT#3.

• Use the same data type for In1[] and In2.

• Use an AryOut[] array that is at least as large as the value of Size.

• If In1[] contains real numbers and In2 is a real number, error may cause unexpected processing
results. This can occur, for example, when they contain non-terminating decimal numbers.

• If the value of Size is 0, the value of Out will be TRUE and AryOut[] will not change.

• Return value Out is not used when the instruction is used in ST.

• An error occurs in the following case. ENO will be FALSE, and AryOut[] will not change.

• If the In1[] or AryOut[] array is smaller than the value of Size.

Function

Instruction Value of AryOut[i]

AryCmpLTV If In1[i] < In2, the result is TRUE. Otherwise, it is FALSE.

AryCmpLEV If In1[i] <= In2, the result is TRUE. Otherwise, it is FALSE.

AryCmpGTV If In1[i] > In2, the result is TRUE. Otherwise, it is FALSE.

AryCmpGEV If In1[i] >= In2, the result is TRUE. Otherwise, it is FALSE.

Precautions for Correct Use

AryCmpLEV(abc[1], INT#20, UINT#3, def[2]);

LD ST

abc[1]
INT#20

def[2] def[2]

UINT#3

AryCmpLEV
EN ENO
In1
In2
Size
AryOut

In1[0]=abc[1]
In1[1]=abc[2]
In1[2]=abc[3]

In2=INT#20
In2=INT#20
In2=INT#20

AryOut[0]=def[2]
AryOut[1]=def[3]
AryOut[2]=def[4]

Size=UINT#3
10
20
30

TRUE
TRUE
FALSE

T
im

er In
stru

ctio
n

s

2

2-115NJ-series Instructions Reference Manual (W502)

Timer Instructions

Instruction Name Page

TON On-Delay Timer 2-116

TOF Off-Delay Timer 2-120

TP Timer Pulse 2-123

AccumulationTimer Accumulation Timer 2-126

Timer Hundred-ms Timer 2-129

2 Instruction Descriptions

2-116 NJ-series Instructions Reference Manual (W502)

TON

The TON instruction outputs TRUE when the set time elapses after the timer starts.

* T#0ms to T#106751d_23h_47m_16s_854.775807ms

The TON instruction outputs TRUE when the set time elapses after the timer starts. Set the time in
nanoseconds (ns). The timing accuracy is 100 ns. The timer starts when timer input In changes to
TRUE. Elapsed time ET is incremented as time elapses. When ET reaches set time PT, timer output Q
changes to TRUE. ET is not incremented after that. The timer is reset when In changes to FALSE. ET
changes to 0 and Q changes to FALSE.

If the timer is started and then In changes to FALSE before ET reaches PT, the timer is reset.

Instruction Name FB/FUN Graphic expression ST expression

TON On-Delay Timer FB TON_instance (In, PT, Q,
ET);

Variables

Name Meaning I/O Description Valid range Unit Default

In Timer input

Input

TRUE: Timer start signal

FALSE: Timer reset signal

Depends on data type. --- FALSE

PT Set time Time from when timer starts
until Q changes to TRUE

* ms 0

Q Timer
output

Output

TRUE: Timer output ON

FALSE: Timer output OFF

Depends on data type. ---

ET Elapsed

time
Elapsed time since timer
started

* ms

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK

PT OK

Q OK

ET OK

Function

TON
In Q
PT ET

TON_instance

2-117

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

T
im

er In
stru

ctio
n

s

2

TO
N

The following figure shows a programming example and timing chart when PT is T#10ms. Variable abc
will change to TRUE 10 ms after variable A changes to TRUE.

• Use the TP instruction (page 2-123) for a timer that changes the timer output to TRUE when timing
starts and then changes the timer output to FALSE when the set time is reached.

• Use the TOF instruction (page 2-120) for a timer that starts when In changes to FALSE and then
changes the timer output to FALSE when the elapsed time reaches the set time.

• To reduce timer execution time, use the Timer instruction (page 2-129), which times in increments of
100 ms.

• ET and Q are updated only when the instruction is executed. Therefore, Q does not change to TRUE
precisely when the elapsed time from when the timer starts reaches PT. Q changes to TRUE the next
time the instruction is executed after the elapsed time from when the timer starts reaches PT. The
change in Q can therefore occur with a delay of up to one task period.

• Set PT and ET in nanoseconds (ns), but remember the timing accuracy is 100 ns.

• The timer starts as soon as operation starts if In is already TRUE.

• If T#0ms or a negative number is set for PT, Q will change to TRUE as soon as the value of In
changes to TRUE.

• You can change the value of PT while the value of In is TRUE. Operation is as follows:

• If this instruction is in a master control region and the master control region is reset, the timer is reset.
The value of ET changes to 0 and the value of Q changes to FALSE.

Additional Information

Precautions for Correct Use

Timer status Value of Q
Value of PT after it is

changed
Operation

After comple-
tion of timing

TRUE --- The value of Q remains TRUE.
The value of ET also does not change. (It remains at
the value of PT before it was changed.)

Timing in
progress

FALSE PT ≥ ET Timing is continued. When the value of ET reaches
the value of PT, the value of Q changes to TRUE and
ET is no longer incremented.

PT < ET The value of Q changes to TRUE immediately. Incre-
menting ET stops immediately.

TON_instance(A, T#10ms, abc, def);

LD ST

abcA

defT#10ms

TON
In Q
PT ET

TON_instance

In=A

Q=abc

TRUE

FALSE

TRUE

FALSE

ET=def

PT=T#10ms

2 Instruction Descriptions

2-118 NJ-series Instructions Reference Manual (W502)

• If this instruction is not executed due to the execution of a jump instruction (e.g., the JMP instruction),
the value of ET is not updated. However, timing still continues. Therefore, ET is updated to the correct
value the next time the instruction is executed.

• If this instruction is used in a ladder diagram, the value of Q changes to FALSE if an error occurs in
the previous instruction on the rung.

Measuring Time with One On-Delay Timer
The value of TimeUp will change to TRUE 1 second after the value of Trigger changes to TRUE.

The following ST programming performs the same operation.

Measuring Time with Multiple On-Delay Timers
In this example, a total of 100 instances of the On-Delay Timer instruction, TON_instance[0] to
TON_instance[99], are programmed. Each timer starts when the value of the corresponding timer
input Input[0] to Input[99] changes to TRUE.
The timers for the first 10 instances, TON_instance[0] to TON_instance[9], change the correspond-
ing values in TimeUp[i] to TRUE i+1 seconds (i = 0 to 9) after execution is started.
The timers for the remaining 90 instances, TON_instance[10] to TON_instance[99], change the cor-
responding values in TimeUp[i] (i = 10 to 99) to TRUE as soon as execution is started.

Sample Programming

Variable Data type Initial value

LD

TimeUpTrigger

T#1s

TON
In Q
PT ET

TON_instance

Trigger
TimeUp
TON_instance

False
False

Execution condition
Timer output

BOOL
BOOL
TON

Comment

Execution condition
Timer output

Variable Data type Initial value

ST

Trigger
TimeUp
TON_instance

False
False

BOOL
BOOL
TON

IF (Trigger=TRUE) THEN
 TON_instance(In:=TRUE, PT:=T#1s, Q=>TimeUp);
ELSE
 TON_instance(In:=FALSE, Q=>TimeUp);
END_IF;

Comment

Variable Data type Initial value

ST

Trigger
TimeUp
TON_instance

False
False

BOOL
BOOL
TON

TON_instance(In:=Trigger, PT:=T#1s, Q=>TimeUp);

Comment
Execution condition
Timer output

2-119

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

T
im

er In
stru

ctio
n

s

2

TO
N

TON_instance[0]

TimeUp[0]1s TRUE

TON_instance[1]

TimeUp[1]2s TRUE

TON_instance[9]

: : :

TimeUp[9]10s TRUE

TON_instance[99]

: : :

TimeUp[99]0s

TON_instance[10]

TimeUp[10]0s TRUE

TRUE

Variable Data type Initial value

LD

TimeUp[i]Input[i]

TimePT[i]

TON
In Q
PT ET

TON_instance[i]

i UINT#0
UINT#99
 UINT#1

Input
TimeUp
TimePT

TON_instance
i

[100(False)]
[100(False)]
[T#1s, T#2s, T#3s, T#4s, T#5s, T#6s,
 T#7s, T#8s, T#9s, T#10s, 90(T#0s)]

0

ARRAY[0..99] OF BOOL
ARRAY[0..99] OF BOOL
ARRAY[0..99] OF TIME

ARRAY[0..99] OF TON
UINT

FOR
EN ENO
InitVal Index
EndVal
StepVal

NEXT
EN ENO

Timer input
Timer output
Set time

Index

Comment

Variable Data type Initial value

ST

FOR i:=0 TO 99 DO
 TON_instance[i](
 In := Input[i],
 PT:= TimePT[i],
 Q =>TimeUp[i]);
END_FOR;

Input
TimeUp
TimePT

TON_instance
i

[100(False)]
[100(False)]
[T#1s, T#2s, T#3s, T#4s, T#5s, T#6s,
 T#7s, T#8s, T#9s, T#10s, 90(T#0s)]

0

ARRAY[0..99] OF BOOL
ARRAY[0..99] OF BOOL
ARRAY[0..99] OF TIME

ARRAY[0..99] OF TON
UINT

Timer input
Timer output
Set time

Index

Comment

2 Instruction Descriptions

2-120 NJ-series Instructions Reference Manual (W502)

TOF

The TOF instruction outputs FALSE when the set time elapses after the timer starts.

* T#0ms to T#106751d_23h_47m_16s_854.775807ms

The TOF instruction outputs FALSE when the set time elapses after the timer starts. Set the time in
nanoseconds (ns). The timing accuracy is 100 ns. The timer starts when timer input In changes to
FALSE. Elapsed time ET is incremented as time elapses. When ET reaches set time PT, timer output Q
changes to FALSE. ET is not incremented after that. The timer is reset when In changes to TRUE. ET
changes to 0 and Q changes to TRUE.

If the timer is started and then In changes to FALSE before ET reaches PT, the timer is reset.

Instruction Name FB/FUN Graphic expression ST expression

TOF Off-Delay Timer FB TOF_instance (In, PT, Q,
ET);

Variables

Name Meaning I/O Description Valid range Unit Default

In Timer input

Input

TRUE: Timer reset signal

FALSE: Timer start signal

Depends on data type. --- FALSE

PT Set time Time from when timer starts
until Q changes to FALSE

* ms 0

Q Timer
output

Output

TRUE: Timer output ON

FALSE: Timer output OFF

Depends on data type. ---

ET Elapsed

time
Elapsed time since timer
started

* ms

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK

PT OK

Q OK

ET OK

Function

TOF
In Q
PT ET

TOF_instance

2-121

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

T
im

er In
stru

ctio
n

s

2

TO
F

The following figure shows a programming example and timing chart for a PT of T#10ms. Variable abc
will change to FALSE 10 ms after variable A changes to FALSE.

• Use the TP instruction (page 2-123) for a timer that changes the timer output to TRUE when timing
starts and then changes the timer output to FALSE when the set time is reached.

• Use the TON instruction (page 2-116) for a timer that starts when In changes to TRUE and then
changes the timer output to TRUE when the elapsed time reaches the set time.

• ET and Q are updated only when the instruction is executed. Therefore, Q does not change to FALSE
precisely when the elapsed time from when the timer starts reaches PT. Q changes to FALSE the
next time the instruction is executed after the elapsed time from when the timer starts reaches PT.
The change in Q can therefore occur with a delay of up to one task period.

• Set PT and ET in nanoseconds (ns), but remember the timing accuracy is 100 ns.

• If T#0ms or a negative number is set for PT, Q will change to FALSE as soon as the value of In
changes to FALSE.

• The value of Q changes to TRUE immediately after execution of this instruction regardless of the
value of In. Q is FALSE from only when the timer is started until the time that is set with PT elapses.

• You can change the value of PT while the value of In is FALSE. Operation is as follows:

• If this instruction is in a master control region and the master control region is reset, the operation is
as follows:

• The value of ET changes to 0 and the value of Q changes to TRUE.

• If an Out instruction is connected to Q, the execution condition to the Out instruction is FALSE.

• Timing starts as soon as the reset is released.

Additional Information

Precautions for Correct Use

Timer status Value of Q
Value of PT after it is

changed
Operation

After comple-
tion of timing

FALSE --- The value of Q remains FALSE.
The value of ET also does not change. (It remains at
the value of PT before it was changed.)

Timing in
progress

TRUE

PT ≥ ET Timing is continued. When the value of ET reaches
the value of PT, the value of Q changes to FALSE
and ET is no longer incremented.

PT < ET The value of Q changes to FALSE immediately.
Incrementing ET stops immediately.

TOF_instance(A, T#10ms, abc, def);

LD ST

abcA

defT#10ms

TOF
In Q
PT ET

TOF_instance

In=A

Q=abc

TRUE

FALSE

TRUE

FALSE

ET=def

PT=T#10ms

2 Instruction Descriptions

2-122 NJ-series Instructions Reference Manual (W502)

• If this instruction is not executed due to the execution of a jump instruction (e.g., the JMP instruction),
the value of ET is not updated. However, timing still continues. Therefore, ET is updated to the correct
value the next time the instruction is executed.

• If this instruction is used in a ladder diagram, the value of Q changes to FALSE if an error occurs in
the previous instruction on the rung.

2-123

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

T
im

er In
stru

ctio
n

s

2

T
P

TP

The TP instruction outputs TRUE while the set time elapses after the timer starts.

* T#0ms to T#106751d_23h_47m_16s_854.775807ms

The TP instruction outputs TRUE while the set time elapses after the timer starts. Set the time in nano-
seconds (ns). The timing accuracy is 100 ns. The timer starts when timer input In changes to TRUE and
timer output Q changes to TRUE. Elapsed time ET is incremented as time elapses. When ET reaches
set time PT, timer output Q changes to FALSE. ET is not incremented after that. The timer is reset when
In changes to FALSE. ET changes to 0. The timer is not reset even if In changes to FALSE after the
timer starts but before ET reaches PT.

Instruction Name FB/FUN Graphic expression ST expression

TP Timer Pulse FB TP_instance (In, PT, Q,
ET);

Variables

Name Meaning I/O Description Valid range Unit Default

In Timer input

Input

TRUE: Timer start signal

FALSE: Timer reset signal

Depends on data type. --- FALSE

PT Set time Time that Q remains at
TRUE

* ms 0

Q Timer
output

Output

TRUE: Timer output ON

FALSE: Timer output OFF

Depends on data type. ---

ET Elapsed

time
Elapsed time since timer
started

* ms

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK

PT OK

Q OK

ET OK

Function

TP
In Q
PT ET

TP_instance

2 Instruction Descriptions

2-124 NJ-series Instructions Reference Manual (W502)

The following figure shows a programming example and timing chart for a PT of T#10ms. Variable abc
changes to TRUE as soon as variable A changes to TRUE. Variable abc changes to FALSE 10 ms later.

• Use the TON instruction (page 2-116) for a timer that starts when In changes to TRUE and then
changes the timer output to TRUE when the elapsed time reaches the set time.

• Use the TOF instruction (page 2-120) for a timer that starts when In changes to FALSE and then
changes the timer output to FALSE when the elapsed time reaches the set time.

• ET and Q are updated only when the instruction is executed. Therefore, Q does not change to FALSE
precisely when the elapsed time from when the timer starts reaches PT. Q changes the next time the
instruction is executed after the elapsed time from when the timer starts reaches PT. The change in Q
can therefore occur with a delay of up to one task period.

• Set PT and ET in nanoseconds (ns), but remember the timing accuracy is 100 ns.

• The timer starts as soon as operation starts if In is already TRUE.

• If T#0ms or a negative number is set for PT, Q will not change to TRUE even if the value of In
changes to TRUE.

• You can change the value of PT while the value of In is TRUE. Operation is as follows:

• If this instruction is in a master control region and the master control region is reset, timing is contin-
ued to the end if the timer is operating. Then, the value of ET changes to 0 and the value of Q
changes to FALSE. However, if an Out instruction is connected to Q, the execution condition to the
Out instruction is FALSE even if the value of Q is TRUE.

Additional Information

Precautions for Correct Use

Timer status Value of Q
Value of PT after it is

changed
Operation

After comple-
tion of timing

FALSE --- The value of Q remains FALSE.
The value of ET also does not change. (It remains at
the value of PT before it was changed.)

Timing in
progress

TRUE

PT ≥ ET Timing is continued. When the value of ET reaches
the value of PT, the value of Q changes to FALSE
and ET is no longer incremented.

PT < ET The value of Q changes to FALSE immediately.
Incrementing ET stops immediately.

TP_instance(A, T#10ms, abc, def);

LD ST

abcA

defT#10ms

TP
In Q
PT ET

TP_instance

In=A

Q=abc

TRUE

FALSE

TRUE

FALSE

ET=def

PT=T#10ms

2-125

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

T
im

er In
stru

ctio
n

s

2

T
P

• If this instruction is not executed due to the execution of a jump instruction (e.g., the JMP instruction),
the value of ET is not updated and timing is not performed. Timing restarts when the instruction is
executed again.

• If this instruction is used in a ladder diagram, the value of Q changes to FALSE if an error occurs in
the previous instruction on the rung.

2 Instruction Descriptions

2-126 NJ-series Instructions Reference Manual (W502)

AccumulationTimer

The AccumulationTimer instruction totals the time that the timer input is TRUE.

* T#0ms to T#106751d_23h47m_16s_854.775807ms

The AccumulationTimer instruction totals the time that the timer input is TRUE. Set the time in nanosec-
onds (ns). The timing accuracy is 100 ns. If reset Reset is FALSE, the timer starts when In changes to
TRUE. Total time ET is incremented as time elapses. The timer stops when In changes to FALSE. ET is
held. When In changes to TRUE again, the timer starts again. ET is incremented from the value that
was previously held. When ET reaches set time PT, timer output Q changes to TRUE. ET is not incre-
mented after that. The timer is reset when Reset changes to TRUE.
ET changes to 0 and Q changes to FALSE.

Instruction Name FB/FUN Graphic expression ST expression

AccumulationTimer Accumulation Timer FB AccumulationTimer_instanc
e(In, PT, Reset, Q, ET);

Variables

Name Meaning I/O Description Valid range Unit Default

In Timer input

Input

TRUE: Timer operates

FALSE: Timer stops

Depends on data type. --- FALSE

PT Set time Maximum time * ms 0

Reset Reset TRUE: Timer reset

FALSE: Timer not reset

Depends on data type. --- FALSE

Q Timer
output

Output

TRUE: ET reached PT.

FALSE: ET has not reached
PT.

Depends on data type. ---

ET Total time Total time * ms

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK

PT OK

Reset OK

Q OK

ET OK

Function

AccumulationTimer
In Q
PT ET
Reset

AccumulationTimer_instance

2-127

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

T
im

er In
stru

ctio
n

s

2

A
ccum

ulationT
im

er

The following figure shows a programming example and timing chart for a PT of T#10ms. Variable abc
changes to TRUE when variable A is TRUE for a total of 10 ms (i.e., the total time).

Use the TON instruction (page 2-116) for a timer that resets the timer output and elapsed time when In
changes to FALSE.

• ET and Q are updated only when the instruction is executed. Therefore, Q does not change to TRUE
precisely when the total time of timer operation reaches PT. Q changes the next time the instruction is
executed after the total time of timer operation reaches PT. The change in Q can therefore occur with
a delay of up to one task period.

• Set PT and ET in nanoseconds (ns), but remember the timing accuracy is 100 ns.

• If In and Reset are both TRUE, Reset has priority. That is, ET changes to 0 and Q changes to FALSE.

• The timer starts as soon as operation starts if In is already TRUE.

• If T#0ms or a negative number is set for PT, Q will change to TRUE as soon as the value of In
changes to TRUE.

• You can change the value of PT before the value of ET reaches the value of PT. Operation is as fol-
lows:

Additional Information

Precautions for Correct Use

Timer status Value of Q
Value of PT after it is

changed
Operation

After comple-
tion of timing

TRUE --- The value of Q remains TRUE.
The value of ET also does not change. (It remains at
the value of PT before it was changed.)

Timing in
progress

FALSE

PT ≥ ET When the value of In changes to TRUE, timing is
continued. When the value of ET reaches the value
of PT, the value of Q changes to TRUE and ET is no
longer incremented.

PT < ET When the value of In changes to TRUE, the value of
Q changes to TRUE immediately. Incrementing ET
stops immediately.

AccumulationTimer_instance(A, T#10ms, abc, def, ghi);

LD ST

abc

A

ghi

def

T#10ms

AccumulationTimer
In Q
PT ET
Reset

AccumulationTimer_instance

In=A

Q=def

TRUE

FALSE

ET=ghi

PT=T#10ms

Reset=abc

TRUE

FALSE

TRUE

FALSE

2 Instruction Descriptions

2-128 NJ-series Instructions Reference Manual (W502)

• If this instruction is in a master control region and the master control region is reset, the operation is
as follows:

• The timer stops. The values of ET and Q at that time are retained.

• When the master control reset is cleared, ET is incremented again from the value that was
retained.

• If an Out instruction is connected to Q, the execution condition to the Out instruction is FALSE
even if the value of Q is TRUE.

• Reset is enabled.

• If this instruction is not executed due to the execution of a jump instruction (e.g., the JMP instruction),
the value of ET is not updated. However, timing still continues. Therefore, ET is updated to the correct
value the next time the instruction is executed.

• If this instruction is used in a ladder diagram, the value of Q changes to FALSE if an error occurs in
the previous instruction on the rung.

2-129

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

T
im

er In
stru

ctio
n

s

2

T
im

er

Timer

The Timer instruction outputs TRUE when the set time elapses after the timer starts. Set the time in
increments of 100 ms. The timing accuracy is 100 ms.

* If you omit an input parameter, the default value is not applied. A building error will occur.

The Timer instruction outputs TRUE when the set time elapses after the timer starts. Set the time in
increments of 100 ms. The timing unit is 100 ms.

Instruction Name FB/FUN Graphic expression ST expression

Timer Hundred-ms Timer FUN Out:=Timer (In, PT, Tim-
erDat, Q, ET);

Variables

Name Meaning I/O Description Valid range Unit Default

In Timer input

Input

TRUE: Timer start specifica-
tion

FALSE: Timer reset specifi-
cation Depends on data type.

--- FALSE

PT Set time Time from when timer starts
until Q changes to TRUE

ms *

TimerDat Timer status In-out Current status of timer --- --- ---

Out Return value

Output

TRUE: Make timer output
TRUE

FALSE: Make timer output
FALSE Depends on data type.

Q Timer output Same meaning as Out.

ET Remaining
time

Remaining time ms
B

o
o

lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK

PT OK

TimerDat Structure _sTimer

Out OK

Q OK

ET OK

Function

Timer
In Out
PT Q
TimerDat

 ET

2 Instruction Descriptions

2-130 NJ-series Instructions Reference Manual (W502)

The timer is reset when timer input In changes to FALSE. Remaining time ET is set to set time PT, and
timer output Q changes to FALSE.

The timer starts when In changes to TRUE. The value of ET is timed down. When the value of ET
reaches 0, timer output Q changes to TRUE. ET is not timed down after that.

The timer is reset if In changes to FALSE after the timer starts but before ET reaches 0.

The data type of timer status TimerDat is structure _sTimer.

The following figure shows a programming example and timing chart when PT is UINT#10. Variable ghi
will change to TRUE 1,000 ms (1 s) after variable A changes to TRUE.

For more precise timing, use the TON instruction (page 2-116), which is set in increments of 100 nano-
seconds (ns). The TON instruction times in increments of 100 nanoseconds (ns) when the instruction is
executed, so it is more precise than the Timer instruction. However, the execution time of the Timer
instruction is shorter.

• Timing is performed at the beginning of the POU that contains this instruction. Therefore, the value of
ET will be the same regardless of where the instruction is executed in the POU.

• Q is updated when the instruction is executed. Therefore, Q does not change to TRUE precisely
when the time that is set with PT elapses after the timer starts. Q changes to TRUE the next time the
instruction is executed after the time that is set with PT elapses after the timer starts. The change in
Q can therefore occur with a delay of up to one task period.

• Although TimerDat is an in-out variable, it is not necessary to pass any values. Create a memory
area for the size of the _sTimer structure and pass it to the instruction.

• Do not change the contents of TimerDat.

• The timer starts as soon as operation starts if In is already TRUE.

• If the value of PT changes, the new value is used from the next time that the timer is reset. The value
is not updated while timing is in progress.

• If this instruction is in a master control region and the master control region is reset, the timer is reset.
ET is set to the value of PT and the value of Q changes to FALSE.

• If this instruction is not executed due to the execution of a jump instruction (e.g., the JMP instruction),
the value of ET is not updated. However, timing still continues. Therefore, ET is updated to the correct
value the next time the instruction is executed.

Additional Information

Precautions for Correct Use

def:=Timer(A, UINT#10, abc, ghi, jkl);

LD ST

abc abc

A def

ghiUINT#10

jkl

Timer
In
PT Q
TimerDat

 ET

In=A

Q=ghi

TRUE

FALSE

TRUE

FALSE

ET=jkl

PT=UINT#10

2-131

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

T
im

er In
stru

ctio
n

s

2

T
im

er

• If this instruction is used in a ladder diagram, the values of Q and Out change to FALSE if an error
occurs in the previous instruction on the rung.

2 Instruction Descriptions

2-132 NJ-series Instructions Reference Manual (W502)

C
o

u
n

ter In
stru

ctio
n

s

2

2-133NJ-series Instructions Reference Manual (W502)

Counter Instructions

Instruction Name Page

CTD Down-counter 2-134

CTD_** Down-counter Group 2-136

CTU Up-counter 2-138

CTU_** Up-counter Group 2-140

CTUD Up-down Counter 2-142

CTUD_** Up-down Counter Group 2-146

2 Instruction Descriptions

2-134 NJ-series Instructions Reference Manual (W502)

CTD

The CTD instruction decrements the counter value when the counter input signal is received. The pre-
set value and counter value must have an INT data type.

The CTD instruction creates a down counter. The preset value and counter value must have an INT
data type.

When load signal Load changes to TRUE, counter value CV is set to the value of preset value PV and
counter output Q changes to FALSE. When counter input signal CD changes to TRUE, CV is decre-
mented. When the value of CV reaches 0 or less, the value of Q changes to TRUE.

After the value of CV reaches 0 or less, CV does not change even if CD changes to TRUE.

CD is ignored while Load is TRUE. CV is not decremented.

Instruction Name FB/FUN Graphic expression ST expression

CTD Down-counter FB CTD_instance (CD, Load,
PV, Q, CV);

Variables

Name Meaning I/O Description Valid range Unit Default

CD Counter
input

Input

Counter input

Depends on data type.

FALSE

Load Load signal TRUE: Set CV to PV.

PV Preset
value

Counter preset value 0 to 32767 0

Q Counter
output

Output

TRUE: Counter output ON

FALSE: Counter output OFF

Depends on data type.

--- ---
CV Counter

value
Counter present value 0 to 32767

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

CD OK

Load OK

PV OK

Q OK

CV OK

Function

CTD
 CD Q
 Load CV
 PV

CTD_instance

2-135

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

u
n

ter In
stru

ctio
n

s

2

C
T

D

The following figure shows a programming example and timing chart for a PV of LINT#5.

• Use the CTU instruction (page 2-138) to create a counter that increments the counter value each
time the counter input signal is received.

• Use the CTUD instruction (page 2-142) to create a counter that is both incremented and decre-
mented.

• Change Load to TRUE and then back to FALSE to restart a counter that has completed counting
down.

• Even when PV is set to a negative value, CV is set to the value of PV when the value of Load
changes to TRUE. The value of CV will be 0 or less, so the value of Q changes to TRUE immediately.
After that, the value of CV is not decremented even if the value of CD changes.

• If the value of CD is FALSE and the power supply is interrupted or the operating mode is changed to
PROGRAM mode, the value of CV is decremented once if the value of CD is TRUE when instruction
execution is restarted.

• If this instruction is used in a ladder diagram, the value of Q changes to FALSE if an error occurs in
the previous instruction on the rung.

Additional Information

Precautions for Correct Use

CTD_instance(A, abc, LINT#5, def, ghi);

LD ST

A def

ghi
LINT#5

abc

CTD
 CD Q
 Load CV
 PV

CTD_instance

When CV reaches 0, Q
changes to TRUE.

CV is decremented as soon as
Load changes to FALSE.

When Load changes to TRUE, CV
is set to the value of PV and Q
changes to FALSE.

CD=A

Load=abc

TRUE

FALSE

TRUE

FALSE

CV=ghi

PV=LINT#5

Q=def
TRUE

FALSE

0

2 Instruction Descriptions

2-136 NJ-series Instructions Reference Manual (W502)

CTD_**

The CTD_** instruction decrements the counter value when the counter input signal is received. The
preset value and counter value must be one of the following data types: DINT, LINT, UDINT, or ULINT.

* Negative numbers are excluded.

A CTD_** instruction creates a down counter. The preset value and counter value must be one of the
following data types: DINT, LINT, UDINT, or ULINT. The name of the instruction is determined by the
data type of PV and CV. For example, if they are the CV data type, the instruction is CTD_LINT.

When load signal Load changes to TRUE, counter value CV is set to the value of preset value PV and
counter output Q changes to FALSE. When counter input signal CD changes to TRUE, CV is decre-
mented. When the value of CV reaches 0 or less, the value of Q changes to TRUE.

Instruction Name FB/FUN Graphic expression ST expression

CTD_** Down-counter
Group

FB CTD_**_instance (CD,
Load, PV, Q, CV);
"**" must be DINT, LINT,
UDINT, or ULINT.

Variables

Name Meaning I/O Description Valid range Unit Default

CD Counter
input

Input

Counter input

Depends on data type.

FALSE
Load Load signal TRUE: Set CV to PV.

PV Preset
value

Counter preset value Depends on data type.* 0

Q Counter
output

Output

TRUE: Counter output ON

FALSE: Counter output OFF

Depends on data type.

--- ---
CV Counter

value
Counter present value Depends on data type.*

B
o

o
lean

Bit string Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

CD OK

Load OK

PV OK OK OK OK

Q OK

CV Must be the same data type as PV

Function

"**" must be DINT, LINT, UDINT,
or ULINT.

CTD_**
 CD Q
 Load CV
 PV

CTD_**_instance

2-137

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

u
n

ter In
stru

ctio
n

s

2

C
T

D
_**

After the value of CV reaches 0 or less, CV does not change even if CD changes to TRUE.

CD is ignored while Load is TRUE. CV is not decremented.

The following figure shows a CTD_LINT programming example and timing chart for a PV of LINT#5.

• Use the CTU instruction (page 2-138) to create a counter that increments the counter value each
time the counter input signal is received.

• Use the CTUD instruction (page 2-142) to create a counter that is both incremented and decre-
mented.

• Change Load to TRUE and then back to FALSE to restart a counter that has completed counting
down.

• Use the same data type for PV and CV.

• Even when PV is set to a negative value, CV is set to the value of PV when the value of Load
changes to TRUE. The value of CV will be 0 or less, so the value of Q changes to TRUE immediately.
After that, the value of CV is not decremented even if the value of CD changes.

• If the value of CD is FALSE and the power supply is interrupted or the operating mode is changed to
PROGRAM mode, the value of CV is decremented once if the value of CD is TRUE when instruction
execution is restarted.

• If this instruction is used in a ladder diagram, the value of Q changes to FALSE if an error occurs in
the previous instruction on the rung.

Additional Information

Precautions for Correct Use

CTD_LINT_instance(A, abc, LINT#5, def, ghi);

LD ST

A def

ghi
LINT#5

abc

CTD_LINT
 CD Q
 Load CV
 PV

CTD_LINT_instance

When CV reaches 0, Q
changes to TRUE.

CV is decremented as soon as
Load changes to FALSE.

When Load changes to TRUE,
CV is set to the value of PV and
Q changes to TRUE.

CD=A

Load=abc

TRUE

FALSE

TRUE

FALSE

CV=ghi

PV=LINT#5

Q=def
TRUE

FALSE

0

2 Instruction Descriptions

2-138 NJ-series Instructions Reference Manual (W502)

CTU

The CTU instruction increments the counter value when the counter input signal is received. The preset
value and counter value must have an INT data type.

The CTU instruction creates an up counter. The preset value and counter value must have an INT data
type.

When reset signal Reset changes to TRUE, counter value CV changes to 0 and counter output Q
changes to FALSE. When counter input signal CU changes to TRUE, CV is incremented. When the
value of CV reaches the value of PV or higher, the value of Q changes to TRUE.

After the value of CV reaches the value of PV or higher, the value of CV does not change even if the
value of CU changes to TRUE.

CU is ignored while Reset is TRUE. CV is not incremented.

Instruction Name FB/FUN Graphic expression ST expression

CTU Up-counter FB CTU_instance (CU, Reset,
PV, Q, CV);

Variables

Name Meaning I/O Description Valid range Unit Default

CU Counter
input

Input

Counter input

Depends on data type.

FALSE
Reset Reset

signal
TRUE: Reset CV to 0.

PV Preset
value

Counter preset value 0 to 32767 0

Q Counter
output

Output

TRUE: Counter output ON

FALSE: Counter output OFF

Depends on data type.

--- ---
CV Counter

value
Counter present value 0 to 32767

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

CU OK

Reset OK

PV OK

Q OK

CV OK

Function

CTU
 CU Q
 Reset CV
 PV

CTU_instance

2-139

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

u
n

ter In
stru

ctio
n

s

2

C
T

U

The following figure shows a programming example and timing chart for a PV of LINT#5.

• Use the CTD instruction (page 2-134) to create a counter that decrements the counter value each
time the counter input signal is received.

• Use the CTUD instruction (page 2-142) to create a counter that is both incremented and decre-
mented.

• Change Reset to TRUE and then back to FALSE to restart a counter that has completed counting up.

• Even when PV is set to a negative value, CV is set to 0 when the value of Reset changes to TRUE.
The value of CV will be higher than the value of PV, so the value of Q changes to TRUE immediately.
After that, the value of CV is not incremented even if the value of CU changes.

• The following operation is performed if the value of PV changes while the value of Reset is FALSE.

• If the value of CU is FALSE and the power supply is interrupted or the operating mode is changed to
PROGRAM mode, the value of CV is incremented once if the value of CU is TRUE when instruction
execution is restarted.

• If this instruction is used in a ladder diagram, the value of Q changes to FALSE if an error occurs in
the previous instruction on the rung.

Additional Information

Precautions for Correct Use

Value of PV Meaning

Larger than the current value of CV The count operation is continued.

Equal to or smaller than the current
value of CV

The count operation is ended. The value of Q changes to TRUE. The
current value of CV is retained. It does not change.

CTU_instance(A, abc, LINT#5, def, ghi);

LD ST

A def

ghi
LINT#5

abc

CTU
 CU Q
 Reset CV
 PV

CTU_instance

When CV reaches PV , Q
changes to TRUE.

CV is incremented as soon as Reset
changes to FALSE.

When Reset changes to TRUE,
CV is reset to 0 and Q changes to
FALSE.

CU=A

Reset=abc

TRUE

FALSE

TRUE

FALSE

CV=ghi

PV=LINT#5

Q=def
TRUE

FALSE

0

2 Instruction Descriptions

2-140 NJ-series Instructions Reference Manual (W502)

CTU_**

The CTU_** instruction increments the counter value when the counter input signal is received. The
preset value and counter value must be one of the following data types: DINT, LINT, UDINT, or ULINT.

* Negative numbers are excluded.

A CTU_** instruction creates an up counter. The preset value and counter value must be one of the fol-
lowing data types: DINT, LINT, UDINT, or ULINT. The name of the instruction is determined by the data
type of PV and CV. For example, if they are the LINT data type, the instruction is CTU_LINT.

When reset signal Reset changes to TRUE, counter value CV changes to 0 and counter output Q
changes to FALSE. When counter input signal CU changes to TRUE, CV is incremented. When the
value of CV reaches the value of PV or higher, the value of Q changes to TRUE.

Instruction Name FB/FUN Graphic expression ST expression

CTU_** Up-counter Group FB CTU_**__instance (CU,
Reset, PV, Q, CV);
"**" must be DINT, LINT,
UDINT, or ULINT.

Variables

Name Meaning I/O Description Valid range Unit Default

CU Counter
input

Input

Counter input

Depends on data type.

FALSE
Reset Reset

signal
TRUE: Reset CV to 0.

PV Preset
value

Counter preset value Depends on data type.* 0

Q Counter
output

Output

TRUE: Counter output ON

FALSE: Counter output OFF

Depends on data type.

--- ---
CV Counter

value
Counter present value Depends on data type.*

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

CU OK

Reset OK

PV OK OK OK OK

Q OK

CV Must be the same data type as PV

Function

"**" must be DINT, LINT, UDINT,
or ULINT.

CTU_**
 CU Q
 Reset CV
 PV

CTU_**_instance

2-141

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

u
n

ter In
stru

ctio
n

s

2

C
T

U
_**

After the value of CV reaches the value of PV or higher, the value of CV does not change even if the
value of CU changes to TRUE.

CU is ignored while Reset is TRUE. CV is not incremented.

The following figure shows a CTU_LINT programming example and timing chart for a PV of LINT#5.

• Use the CTD instruction (page 2-134) to create a counter that decrements the counter value each
time the counter input signal is received.

• Use the CTUD instruction (page 2-142) to create a counter that is both incremented and decre-
mented.

• Change Reset to TRUE and then back to FALSE to restart a counter that has completed counting up.

• Even when PV is set to a negative value, CV is set to 0 when the value of Reset changes to TRUE.
The value of CV will be higher than the value of PV, so the value of Q changes to TRUE immediately.
After that, the value of CV is not incremented even if the value of CU changes.

• Use the same data type for PV and CV.

• The following operation is performed if the value of PV changes while the value of Reset is FALSE.

• If the value of CU is FALSE and the power supply is interrupted or the operating mode is changed to
PROGRAM mode, the value of CV is incremented once if the value of CU is TRUE when instruction
execution is restarted.

• If this instruction is used in a ladder diagram, the value of Q changes to FALSE if an error occurs in
the previous instruction on the rung.

Additional Information

Precautions for Correct Use

Value of PV Meaning

Larger than the current value of CV The count operation is continued.

Equal to or smaller than the current
value of CV

The count operation is ended. The value of Q changes to TRUE. The
current value of CV is retained. It does not change.

CTU_LINT_instance(A, abc, LINT#5, def, ghi);

LD ST

A def

ghi
LINT#5

abc

CTU_LINT
 CU Q
 Reset CV
 PV

CTU_LINT_instance

When CV reaches PV, Q
changes to TRUE.

When Reset changes to TRUE,
CV is reset to 0 and Q changes to
FALSE.

CV is incremented as soon as Reset
changes to FALSE.

CU=A

Reset=abc

TRUE

FALSE

TRUE

FALSE

CV=ghi

PV=LINT#5

Q=def
TRUE

FALSE

0

2 Instruction Descriptions

2-142 NJ-series Instructions Reference Manual (W502)

CTUD

The CTUD instruction creates an up-down counter that operates according to an up-counter input and a
down-counter input. The preset value and counter value must have an INT data type.

Instruction Name FB/FUN Graphic expression ST expression

CTUD Up-down Counter FB CTUD_instance (CU, CD,
Reset, Load, PV, QU, QD,
CV);

Variables

Name Meaning I/O Description Valid range Unit Default

CU Up-counter
input

Input

Up counter input

Depends on data type.

FALSE

CD Down-
counter
input

Down counter input

Reset Reset
signal

TRUE: Reset CV to 0.

Load Load signal TRUE: CV set to PV.

PV Preset
value

The final counter value
when operating as an up
counter

The initial counter value
when operating as a down
counter

0 to 32767 0

QU Up-counter
output

Output

TRUE: up-counter output
ON

FALSE: up-counter output
OFF

Depends on data type.

--- ---
QD Down-

counter
output

TRUE: down-counter output
ON

FALSE: down-counter out-
put OFF

CV Counter
value

Counter present value 0 to 32767

B
o

o
lean

Bit string Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

CU OK

CD OK

Reset OK

Load OK

CTUD
 CU QU
 CD QD
 Reset CV
 Load
 PV

CTUD_instance

2-143

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

u
n

ter In
stru

ctio
n

s

2

C
T

U
D

The CTUD instruction creates an up-down counter that operates according to an up-counter input sig-
nal and a down-counter input signal. It has the functions of both an up counter and a down counter. The
preset value and counter value must have an INT data type.

When reset signal Reset changes to TRUE, counter value CV changes to 0 and up-counter output QU
changes to FALSE. When up-counter input signal CU changes to TRUE, CV is incremented. When the
value of CV reaches the value of PV or higher, the value of QU changes to TRUE. After the value of CV
reaches the value of PV or higher, the value of CV does not change even if the value of CU changes to
TRUE.

When load signal Load changes to TRUE, counter value CV changes to the value of preset value
PV and down-counter output QD changes to FALSE. When down-counter input signal CD changes to
TRUE, CV is decremented. When the value of CV reaches 0 or less, the value of QD changes to TRUE.
After the value of CV reaches 0 or less, CV does not change even if CD changes to TRUE.

CU and CD are ignored while Load and Reset are TRUE. CV is not incremented or decremented. If
both CU and CD change to TRUE at the same time, CV will not change. If Reset and Load are both
TRUE, Reset has priority and the value of CV changes to 0. If Reset changes to TRUE, CV changes to
0, and so QD changes to TRUE. If Load changes to TRUE, the value of CV changes to PV, and so QU
changes to TRUE.

PV OK

QU OK

QD OK

CV OK

Function

Operation as an Up Counter

Operation as a Down Counter

Common Operation for Up and Down Counters

B
o

o
lean

Bit string Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

2 Instruction Descriptions

2-144 NJ-series Instructions Reference Manual (W502)

The following table shows the relationship between Reset, Load, CV, QU, and QD. This assumes that
the value of PV is larger than 0.

The following figure shows a programming example and timing chart for a PV of INT#3.

Reset Load CV QU QD Operation

FALSE FALSE

0 or
lower

FALSE TRUE Only up counter operation is performed.

• CV is incremented when CU changes to TRUE. It is
not decremented when CD changes to TRUE.

Between
0 and PV

FALSE FALSE Both up and down counter operation is performed.

• CV is incremented when CU changes to TRUE and
decremented when CD changes to TRUE.

PV or
higher

TRUE FALSE Only down counter operation is performed.

• CV is decremented when CD changes to TRUE. It is
not incremented when CU changes to TRUE.

TRUE FALSE 0 FALSE TRUE The up counter is reset.

• The value of CV is set to 0.

FALSE TRUE PV TRUE FALSE The down counter is reset.

• The value of CV is set to PV.

TRUE TRUE 0 FALSE TRUE The up counter is reset. Reset take priority over Load.

• The value of CV is set to 0.

CTUD_instance(A, B, abc, def, INT#3, ghi, jkl, mno);

LD ST

A

jkl

ghi

mno

INT#3

abc
def

B

CTUD
 CU QU
 CD QD
 Reset CV
 Load
 PV

CTUD_instance

2-145

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

u
n

ter In
stru

ctio
n

s

2

C
T

U
D

Use the CTD instruction (page 2-134) or CTU instruction (page 2-138) to create a counter that only
decrements or only increments.

• If you change Reset to TRUE to reset the up-counter operation, QU will change to FALSE and QD will
change to TRUE.

• If you change Load to TRUE to reset the down-counter operation, QD will change to FALSE and QU
will change to TRUE.

• Even when PV is set to a negative value, CV is set to the value of PV when the value of Load
changes to TRUE. The value of CV will be 0 or less, so the value of QD changes to TRUE immedi-
ately. After that, the value of CV is not decremented even if the value of CD changes. When the value
of Reset changes to TRUE, the value of CV changes to 0. The value of CV will be the value of PV or
higher, so the value of QU changes to TRUE immediately. After that, the value of CV is not incre-
mented even if the value of CU changes.

• You can change the value of PV during execution of the instruction. If the new value of PV is less than
the current value of CV, the value of QU changes to TRUE immediately.

• If the value of CU or CD is FALSE and the power supply is interrupted or the operating mode is
changed to PROGRAM mode, the value of CV is incremented or decremented once if the value of
CU or CD is TRUE when instruction execution is restarted.

Additional Information

Precautions for Correct Use

When CV reaches PV, QU
changes to TRUE.

When Reset changes to TRUE, CV changes to 0,
QU changes to FALSE, and QD changes to TRUE.

When Load changes to TRUE, CV changes to PV . This causes QU
to change to TRUE and QD to change to FALSE.

When CV reaches 0, QD changes to TRUE.

When CD changes to TRUE, CV is decremented.

When Reset changes to FALSE, the counter inputs are
enabled. When CU changes to TRUE, CV is
incremented. This causes QD to change to FALSE.

CU=A

CD=B

CV=mno

QU=ghi

QD=jkl

Reset=abc

Load=def

PV=INT#3

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

0

2 Instruction Descriptions

2-146 NJ-series Instructions Reference Manual (W502)

CTUD_**

The CTUD_** instruction creates an up-down counter that operates according to an up-counter input
and a down-counter input. The preset value and counter value must be one of the following data types:
DINT, LINT, UDINT, or ULINT.

* Negative numbers are excluded.

Instruction Name FB/FUN Graphic expression ST expression

CTUD_** Up-down Counter
Group

FB CTUD_**_instance (CU,
CD, Reset, Load, PV, QU,
QD, CV);
“**” must be DINT, LINT,
UDINT, or ULINT.

Variables

Name Meaning I/O Description Valid range Unit Default

CU Up-counter
input

Input

Up counter input

Depends on data type.

FALSE

CD Down-
counter
input

Down counter input

Reset Reset
signal

TRUE: Reset CV to 0.

Load Load signal TRUE: CV set to PV.

PV Preset
value

The final counter value
when operating as an up
counter

The initial counter value
when operating as a down
counter

Depends on data type.* 0

QU Up-counter
output

Output

TRUE: up-counter output
ON

FALSE: up-counter output
OFF

Depends on data type.

--- ---
QD Down-

counter
output

TRUE: down-counter output
ON

FALSE: down-counter out-
put OFF

CV Counter
value

Counter present value Depends on data type.*

"**" must be DINT, LINT, UDINT,
or ULINT.

CTUD_**
 CU QU
 CD QD
 Reset CV
 Load
 PV

CTUD_**_instance

2-147

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

u
n

ter In
stru

ctio
n

s

2

C
T

U
D

_**

A CTUD_** instruction creates an up-down counter that operates according to an up-counter input sig-
nal and a down-counter input signal. The counter has the functions of both an up counter and a down
counter. The preset value and counter value must be one of the following data types: DINT, LINT,
UDINT, or ULINT. The name of the instruction is determined by the data type of PV and CV. For exam-
ple, if they are the LINT data type, the instruction is CTUD_LINT.

When reset signal Reset changes to TRUE, counter value CV changes to 0 and up-counter output QU
changes to FALSE. When up-counter input signal CU changes to TRUE, CV is incremented. When the
value of CV reaches the value of PV or higher, the value of QU changes to TRUE. After the value of CV
reaches the value of PV or higher, the value of CV does not change even if the value of CU changes to
TRUE.

When load signal Load changes to TRUE, counter value CV changes to the value of preset value
PV and down-counter output QD changes to FALSE. When down-counter input signal CD changes to
TRUE, CV is decremented. When the value of CV reaches 0 or less, the value of QD changes to TRUE.
After the value of CV reaches 0 or less, CV does not change even if CD changes to TRUE.

CU and CD are ignored while Load or Reset is TRUE. CV is not incremented or decremented. If both
CU and CD change to TRUE at the same time, CV will not change. If Reset and Load are both TRUE,
Reset has priority and the value of CV changes to 0. If Reset changes to TRUE, CV changes to 0, and
so QD changes to TRUE. If Load changes to TRUE, the value of CV changes to PV, and so QU
changes to TRUE.

B
o

o
lean

Bit string Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

CU OK

CD OK

Reset OK

Load OK

PV OK OK OK OK

QU OK

QD OK

CV Must be the same data type as PV

Function

Operation as an Up Counter

Operation as a Down Counter

Common Operation for Up and Down Counters

2 Instruction Descriptions

2-148 NJ-series Instructions Reference Manual (W502)

The following table shows the relationship between Reset, Load, CV, QU, and QD. This assumes that
the value of PV is larger than 0.

The following figure shows a CTUD_LINT programming example and timing chart for a PV of LINT#3.

Reset Load CV QU QD Operation

FALSE FALSE

0 or
lower

FALSE TRUE Only up counter operation is performed.

• CV is incremented when CU changes to TRUE. It is
not decremented when CD changes to TRUE.

Between
0 and PV

FALSE FALSE Both up and down counter operation is performed.

• CV is incremented when CU changes to TRUE and
decremented when CD changes to TRUE.

PV or
higher

TRUE FALSE Only down counter operation is performed.

• CV is decremented when CD changes to TRUE. It is
not incremented when CU changes to TRUE.

TRUE FALSE 0 FALSE TRUE The up counter is reset.

• The value of CV is set to 0.

FALSE TRUE PV TRUE FALSE The down counter is reset.

• The value of CV is set to PV.

TRUE TRUE 0 FALSE TRUE The up counter is reset. Reset take priority over Load.

• The value of CV is set to 0.

CTUD_LINT_instance(A, B, abc, def, LINT#3, ghi, jkl, mno);

LD ST

A

jkl
mno

ghi

LINT#3

abc
def

B

CTUD_LINT
 CU QU
 CD QD
 Reset CV
 Load
 PV

CTUD_LINT_instance

2-149

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

u
n

ter In
stru

ctio
n

s

2

C
T

U
D

_**

Use the CTD instruction (page 2-134) or CTU instruction (page 2-138) to create a counter that only
decrements or only increments.

• If you change Reset to TRUE to reset the up-counter operation, QU will change to FALSE and QD will
change to TRUE.

• If you change Load to TRUE to reset the down-counter operation, QD will change to FALSE and QU
will change to TRUE.

• Even when PV is set to a negative value, CV is set to the value of PV when the value of Load
changes to TRUE. The value of CV will be 0 or less, so the value of QD changes to TRUE immedi-
ately. After that, the value of CV is not decremented even if the value of CD changes. When the value
of Reset changes to TRUE, the value of CV changes to 0. The value of CV will be the value of PV or
higher, so the value of QU changes to TRUE immediately. After that, the value of CV is not incre-
mented even if the value of CU changes.

• You can change the value of PV during execution of the instruction. If the new value of PV is less than
the current value of CV, the value of QU changes to TRUE immediately.

• Use the same data type for PV and CV.

Additional Information

Precautions for Correct Use

When Load changes to TRUE, CV changes to PV.
This causes QU to change to TRUE and QD to change to FALSE.

When CV reaches 0, QD changes to TRUE.

When CD changes to TRUE, CV is decremented.

When Reset changes to FALSE, the counter inputs
are enabled. When CU changes to TRUE, CV is
incremented. This causes QD to change to FALSE.

When Reset changes to TRUE, CV changes to 0, QU
changes to FALSE, and QD changes to TRUE.

When CV reaches PV, QU
changes to TRUE.

CU=A

CD=B

CV=mno

QU=ghi

QD=jkl

Reset=abc

Load=def

PV=LINT#3

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

0

2 Instruction Descriptions

2-150 NJ-series Instructions Reference Manual (W502)

• If the value of CU or CD is FALSE and the power supply is interrupted or the operating mode is
changed to PROGRAM mode, the value of CV is incremented or decremented once if the value of
CU or CD is TRUE when instruction execution is restarted.

M
ath

 In
stru

ctio
n

s

2

2-151NJ-series Instructions Reference Manual (W502)

Math Instructions

Instruction Name Page Instruction Name Page
ADD (+) Addition 2-152 EXP Natural Exponential Opera-

tion
2-185

AddOU (+OU) Addition with Overflow/Under-
flow Check

2-154 EXPT (**) Exponentiation 2-187

SUB (-) Subtraction 2-156 Inc and Dec Increment/Decrement 2-189
SubOU (-OU) Subtraction with Over-

flow/Underflow Check
2-158 Rand Random Number 2-191

MUL (*) Multiplication 2-161 AryAdd Array Addition 2-193
MulOU (*OU) Multiplication with Over-

flow/Underflow Check
2-163 AryAddV Array Value Addition 2-195

DIV (/) Division 2-166 ArySub Array Subtraction 2-197
MOD Modulo-division 2-168 ArySubV Array Value Subtraction 2-199
ABS Absolute Value 2-170 AryMean Array Mean 2-201
RadToDeg and DegToRad Radians to Degrees/

Degrees to Radians
2-172 ArySD Array Element Standard Devi-

ation
2-203

SIN, COS, and TAN Sine in Radians/
Cosine in Radians/
Tangent in Radians

2-174 ModReal Real Number Modulo-division 2-205

ASIN, ACOS, and ATAN Principal Arc Sine/
Principal Arc Cosine/
Principal Arc Tangent

2-177 Fraction Real Number Fraction 2-207

SQRT Square Root 2-180 CheckReal Real Number Check 2-209
LN and LOG Natural Logarithm/

Logarithm Base 10
2-182

2 Instruction Descriptions

2-152 NJ-series Instructions Reference Manual (W502)

ADD (+)

The ADD (+) instruction adds integers or real numbers. It also joins text strings.

* If you omit the input parameter that connects to InN, the default value is not applied, and a building error will occur. For
example, if N is 3 and the input parameters that connect to In1 and In2 are omitted, the default values are applied, but if the
input parameter that connects to In3 is omitted, a building error will occur.

The ADD (+) instruction adds between two and five integers or real numbers. The data types of add val-
ues In1 to InN and addition result Out can have different data types.

The following example is for when In1 is INT#10, In2 is INT#20 and In3 is INT#30. The value of variable
abc will be INT#60.

Instruction Name FB/FUN Graphic expression ST expression

ADD (+) Addition FUN Out:=In1 + ··· + InN;

Variables

Name Meaning I/O Description Valid range Unit Default

In1 to InN Add values Input Numbers to add, N = 2 to 5 Depends on data type. --- 0*

Out Addition
result

Output Addition result Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In1 to InN OK OK OK OK OK OK OK OK OK OK OK

Out OK OK OK OK OK OK OK OK OK OK OK

Function

(@)ADD
EN ENO
In1 Out
 :
InN

:

(@)+
EN ENO
In1 Out
 :
InN

:

abc:=INT#10+INT#20+INT#30;

LD ST

abcINT#10
INT#20
INT#30

ADD
EN ENO
In1
In2
In3

2-153

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

M
ath

 In
stru

ctio
n

s

2

A
D

D
 (+

)

If In1 to InN are STRING data, the text strings are joined. However, if In1 to InN are STRING data, you
must use the instruction in a ladder diagram.
The following example is for when In1 is UV, In2 is WX and In3 is YZ. The value of variable abc will be
UVWXYZ.

The functions of the ADD instruction and the + instruction are exactly the same. Use the form that is
easier to use.

• When you calculate real numbers, use the CheckReal instruction (page 2-209) to see if Out is posi-
tive infinity, negative infinity, or nonnumeric data.

• Use the CONCAT instruction (page 2-520) to join text strings in structured text.

• When you add numbers, set the data type of Out to include the valid ranges of In1 to InN.

• If In1 to InN and Out are integers, make sure the addition result will fit in the valid range of Out. Oth-
erwise, the value of Out will be an illegal value. An error will not occur.

• If any of In1 to InN is a real number and the addition result will not fit in the valid range of Out, the
value of Out will be positive or negative infinity.

• When you join text strings, use STRING data for In1 to InN and Out.

• The results for overflows in addition are different for ladder diagrams and ST. In a ladder diagram, the
calculation is performed within the range of the data type of the input variables. In ST, the precision of
the numbers is increased to perform the calculation.

• Addition results of positive or negative infinity are handled as follows for real number values.

• If any of the values of In1 to InN is nonnumeric data, the value of Out is nonnumeric data.

• You can add real numbers and integers. If you do, Out is a real number.

• An error will occur in the following cases. ENO will be FALSE, and Out will not change.

• One of In1 to InN does not end in the NULL character when joining strings.

• The size of the joined text string exceeds the valid range of Out when joining strings.

Additional Information

Precautions for Correct Use

Addition Addition result

+∞ plus number +∞
−∞ plus number −∞
+∞ plus +∞ +∞
−∞ plus −∞ −∞
+∞ plus −∞ Nonnumeric

data

LD

abc‘UV’
‘WX’
‘YZ’

ADD
EN ENO
In1
In2
In3

In1

In2

In3

‘UV’

‘WX’

‘YZ’

‘UVWXYZ’Out=abc
Text strings joined.

2 Instruction Descriptions

2-154 NJ-series Instructions Reference Manual (W502)

AddOU (+OU)

The AddOU (+OU) instruction adds integers and real numbers. It also performs an overflow/underflow
check.

* If you omit the input parameter that connects to InN, the default value is not applied, and a building error will occur. For
example, if N is 3 and the input parameters that connect to In1 and In2 are omitted, the default values are applied, but if the
input parameter that connects to In3 is omitted, a building error will occur.

The AddOU (+OU) instruction adds between two and five integers or real numbers and outputs the
result. The data types of add values In1 to InN and addition result Out can have different data types. If
the addition result exceeds the valid range of the data type that includes all of the data types of In1 to
InN, the value of the P_CY system-defined variable (Carry Flag) changes to TRUE. This indicates that
an overflow or an underflow has occurred.

If Out is a real number and an overflow or underflow occurs, the value of Out is positive or negative
infinity. If Out is an integer, only the bits of the addition result that fit in the data type of Out are assigned
to Out.

The following example is for when In1 is INT#32767, In2 is INT#1 and variable abc has an INT data
type. The addition result (32768) exceeds the valid range of INT data, so the value of P_CY changes to
TRUE. The value of variable abc will be INT#−32768 (the lower 16 bits of 32768).

Instruction Name FB/FUN Graphic expression ST expression

AddOU (+OU) Addition with Over-
flow/Underflow
Check

FUN Out:=AddOU(In1, ···, InN);

Variables

Name Meaning I/O Description Valid range Unit Default

In1 to InN Add values Input Numbers to add, N = 2 to 5 Depends on data type. --- 0*

Out Addition
result

Output Addition result Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In1 to InN OK OK OK OK OK OK OK OK OK OK

Out OK OK OK OK OK OK OK OK OK OK

Function

(@)AddOU
EN ENO
In1 Out
 :
InN

:

(@)+OU
EN ENO
In1 Out
 :
InN

:

2-155

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

M
ath

 In
stru

ctio
n

s

2

A
ddO

U
 (+

O
U

)

The functions of the AddOU instruction and the +OU instruction are exactly the same. Use the form that
is easier to use.

• When you calculate real numbers, use the CheckReal instruction (page 2-209) to see if Out is posi-
tive infinity, negative infinity, or nonnumeric data.

• Use the ADD (+) instruction (page 2-152) if there is no need for an overflow/underflow check. It will
reduce processing time.

• Set the data type of Out to include the valid ranges of In1 to InN.

• If In1 to InN and Out are integers, make sure the addition result will fit in the valid range of Out. Oth-
erwise, the value of Out will be an illegal value. An error will not occur.

• If the data types of In1 to InN are different, calculations and processing of P_CY are performed with
the data type that includes all of the data types of In1 to InN. For example, if In1 is INT data and In2 is
DINT data, calculations and P_CY processing are performed with DINT data.

• If In1 to InN contains real data, the value of P_CY does not change.

• Addition results of positive or negative infinity are handled as follows for real number values.

• If any of the values of In1 to InN is nonnumeric data, the value of Out is nonnumeric data.

• If the value of Out is positive infinity, negative infinity, or nonnumeric data, the value of P_CY does not
change.

• You can add real numbers and integers. If you do, Out is a real number.

Related System-defined Variables

Name Meaning Data type Description

P_CY Carry (CY) Flag BOOL TRUE: There is an overflow or underflow.

FALSE: There is no overflow or underflow.

Additional Information

Precautions for Correct Use

Addition Addition result

+∞ plus number +∞
−∞ plus number −∞
+∞ plus +∞ +∞
−∞ plus −∞ −∞
+∞ plus −∞ Nonnumeric

data

abc:=AddOU(INT#32767, INT#1);

LD ST

abcINT#32767
INT#1

AddOU
EN ENO
In1
In2

2 Instruction Descriptions

2-156 NJ-series Instructions Reference Manual (W502)

SUB (-)

The SUB (-) instruction subtracts integers and real numbers.

* If you omit an input parameter, the default value is not applied. A building error will occur.

The SUB (-) instruction subtracts subtrahend In2 from minuend In1 and outputs the result. The data
types of In1, In2, and subtraction result Out can have different data types.

The following example is for when In1 is INT#50 and In2 is INT#10. The value of variable abc will be
INT#40.

The functions of the SUB instruction and the - instruction are exactly the same. Use the form that is
easier to use.

Instruction Name FB/FUN Graphic expression ST expression

SUB (-) Subtraction FUN Out:=In1 - In2;

Variables

Name Meaning I/O Description Valid range Unit Default

In1 Minuend
Input

Minuend
Depends on data type. --- 0*

In2 Subtrahend Subtrahend

Out Subtrac-
tion result

Output Subtraction result Depends on data type. --- ---

B
o

o
lean

Bit string Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In1 OK OK OK OK OK OK OK OK OK OK

In2 OK OK OK OK OK OK OK OK OK OK

Out OK OK OK OK OK OK OK OK OK OK

Function

(@)SUB
EN ENO
In1 Out
In2

(@)-
EN ENO
In1 Out
In2

abc:=INT#50-INT#10;

LD ST

abcINT#50
INT#10

SUB
EN ENO
In1
In2

2-157

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

M
ath

 In
stru

ctio
n

s

2

S
U

B
 (-)

When you calculate real numbers, use the CheckReal instruction (page 2-209) to see if Out is positive
infinity, negative infinity, or nonnumeric data.

• Set the data type of Out to include the valid ranges of In1 and In2.

• If In1, In2, and Out are integers, make sure the subtraction result will fit in the valid range of Out. Oth-
erwise, the value of Out will be an illegal value. An error will not occur.

• If either In1 or In2 is a real number and the addition result will not fit in the valid range of Out, the
value of Out will be positive or negative infinity.

• The results for underflows in subtraction are different for ladder diagrams and ST. In a ladder dia-
gram, the calculation is performed within the range of the data type of the input variables. In ST, the
precision of the numbers is increased to perform the calculation.

• Subtraction results of positive or negative infinity are handled as follows for real number values.

• If any of the values of In1 to InN is nonnumeric data, the value of Out is nonnumeric data.

• You can subtract a real number from an integer or an integer from a real number. If you do, Out is a
real number.

Additional Information

Precautions for Correct Use

Subtraction
Subtraction

result

+∞ minus number +∞
Number minus +∞ −∞
−∞ minus number −∞
Number minus −∞ +∞
+∞ minus +∞ Nonnumeric

data

+∞ minus −∞ +∞
−∞ minus +∞ −∞
−∞ minus −∞ Nonnumeric

data

2 Instruction Descriptions

2-158 NJ-series Instructions Reference Manual (W502)

SubOU (-OU)

The SubOU (-OU) instruction subtracts integers or real numbers. It also performs an overflow/underflow
check.

* If you omit an input parameter, the default value is not applied. A building error will occur.

The SubOU (-OU) instruction subtracts subtrahend In2 from minuend In1 and outputs the result. The
data types of In1, In2, and subtraction result Out can have different data types. If the subtraction result
exceeds the valid range of the data type that includes the data types of In1 and In2, the value of the
P_CY system-defined variable (Carry Flag) changes to TRUE. This indicates that an overflow or an
underflow has occurred.

If Out is a real number and an overflow or underflow occurs, the value of Out is positive or negative
infinity. If Out is an integer, only the bits of the subtraction result that fit in the data type of Out are
assigned to Out.

Instruction Name FB/FUN Graphic expression ST expression

SubOU (-OU) Subtraction with
Overflow/Under-
flow Check

FUN Out:=SubOU(In1, In2);

Variables

Name Meaning I/O Description Valid range Unit Default

In1 Minuend
Input

Minuend
Depends on data type. --- 0*

In2 Subtrahend Subtrahend

Out Subtrac-
tion result

Output Subtraction result Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In1 OK OK OK OK OK OK OK OK OK OK

In2 OK OK OK OK OK OK OK OK OK OK

Out OK OK OK OK OK OK OK OK OK OK

Function

(@)SubOU
EN ENO
In1 Out
In2

(@)-OU
EN ENO
In1 Out
In2

2-159

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

M
ath

 In
stru

ctio
n

s

2

S
ubO

U
 (-O

U
)

The following example is for when In1 is SINT#-128, In2 is SINT#1 and variable abc has an SINT data
type. The subtraction result (−129) exceeds the valid range of SINT data, so the value of P_CY changes
to TRUE. The value of variable abc will be SINT#127 (the lower 8 bits of −129).

The functions of the SubOU instruction and the -OU instruction are exactly the same. Use the form that
is easier to use.

• When you calculate real numbers, use the CheckReal instruction (page 2-209) to see if Out is posi-
tive infinity, negative infinity, or nonnumeric data.

• Use the SUB (−) instruction (page 2-156) if there is no need for an overflow/underflow check. It will
reduce processing time.

• Set the data type of Out to include the valid ranges of In1 and In2.

• If In1, In2, and Out are integers, make sure the subtraction result will fit in the valid range of Out. Oth-
erwise, the value of Out will be an illegal value. An error will not occur.

• If the data types of In1 and In2 are different, calculations and processing of P_CY are performed with
the data type that includes the data types of In1 and In2. For example, if In1 is INT data and In2 is
DINT data, calculations and P_CY processing are performed with DINT data.

• If In1 or In2 contains real data, the value of P_CY does not change.

• Subtraction results of positive or negative infinity are handled as follows for real number values.

• If the value of either In1 or In2 is nonnumeric data, the value of Out is nonnumeric data.

Related System-defined Variables

Name Meaning Data type Description

P_CY Carry (CY) Flag BOOL TRUE: There is an overflow or underflow.

FALSE: There is no overflow or underflow.

Additional Information

Precautions for Correct Use

Subtraction Subtraction result

+∞ minus number +∞
Number minus +∞ −∞
−∞ minus number −∞
Number minus −∞ +∞
+∞ minus +∞ Nonnumeric data

+∞ minus −∞ +∞
−∞ minus +∞ −∞
−∞ minus −∞ Nonnumeric data

SubOU
EN ENO
In1
In2

abc:=SubOU(SINT#-128, SINT#1);

LD ST

abcSINT#-128
SINT#1

2 Instruction Descriptions

2-160 NJ-series Instructions Reference Manual (W502)

• If the value of Out is positive infinity, negative infinity, or nonnumeric data, the value of P_CY does not
change.

• You can subtract a real number from an integer or an integer from a real number. If you do, Out is a
real number.

2-161

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

M
ath

 In
stru

ctio
n

s

2

M
U

L (*)

MUL (*)

The MUL (*) instruction multiplies integers and real numbers.

* If you omit the input parameter that connects to InN, the default value is not applied, and a building error will occur. For
example, if N is 3 and the input parameters that connect to In1 and In2 are omitted, the default values are applied, but if the
input parameter that connects to In3 is omitted, a building error will occur.

The MUL (*) instruction multiplies between two and five integers and real numbers and outputs the
result. The data types of values to multiply In1 to InN and multiplication result Out can have different
data types.

The following example is for when In1 is INT#10, In2 is INT#20 and In3 is INT#30. The value of variable
abc will be INT#6000.

Instruction Name FB/FUN Graphic expression ST expression

MUL (*) Multiplication FUN Out:=In1 * ··· * InN;

Variables

Name Meaning I/O Description Valid range Unit Default

In1 to InN Values to
multiply

Input Numbers to multiply, N = 2
to 5

Depends on data type. --- 1*

Out Multiplica-
tion result

Output Multiplication result Depends on data type. --- ---

B
o

o
lean

Bit string Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In1 to InN OK OK OK OK OK OK OK OK OK OK

Out OK OK OK OK OK OK OK OK OK OK

Function

(@)MUL
EN ENO
In1 Out
 :
InN

:

(@)*
EN ENO
In1 Out
 :
InN

:

2 Instruction Descriptions

2-162 NJ-series Instructions Reference Manual (W502)

The functions of the MUL instruction and the * instruction are exactly the same. Use the form that is
easier to use.

When you calculate real numbers, use the CheckReal instruction (page 2-209) to see if Out is positive
infinity, negative infinity, or nonnumeric data.

• Set the data type of Out to include the valid ranges of In1 to InN.

• If In1 to InN and Out are integers, make sure the multiplication result will fit in the valid range of Out.
Otherwise, the value of Out will be an illegal value. An error will not occur.

• If any of In1 to InN is a real number and the multiplication result will not fit in the valid range of Out,
the value of Out will be positive or negative infinity.

• The results for overflows in multiplication are different for ladder diagrams and ST. In a ladder dia-
gram, the calculation is performed within the range of the data type of the input variables. In ST, the
precision of the numbers is increased to perform the calculation.

• Multiplication results of positive or negative infinity are handled as follows for real number values.

• If any of the values of In1 to InN is nonnumeric data, the value of Out is nonnumeric data.

• You can multiply real numbers and integers. If you do, Out is a real number.

Additional Information

Precautions for Correct Use

Multiplication Multiplication result

+∞ times positive number +∞
+∞ times negative number −∞
−∞ times positive number −∞
−∞ times negative number +∞
+∞ times +∞ +∞
−∞ times −∞ +∞
+∞ times −∞ −∞
+∞ times 0 Nonnumeric data

−∞ times 0 Nonnumeric data

abc:=INT#10*INT#20*INT#30;

LD ST

abcINT#10
INT#20
INT#30

MUL
EN ENO
In1
In2
In3

2-163

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

M
ath

 In
stru

ctio
n

s

2

M
ulO

U
 (*O

U
)

MulOU (*OU)

The MulOU (*OU) instruction multiplies integers and real numbers and outputs the result. It also per-
forms an overflow/underflow check.

* If you omit the input parameter that connects to InN, the default value is not applied, and a building error will occur. For
example, if N is 3 and the input parameters that connect to In1 and In2 are omitted, the default values are applied, but if the
input parameter that connects to In3 is omitted, a building error will occur.

The MulOU (*OU) instruction multiplies between two and five integers and real numbers and outputs
the result. The data types of values to multiply In1 to InN and multiplication result Out can have different
data types. If the multiplication result exceeds the valid range of the data type that includes all of the
data types of In1 to InN, the value of the P_CY system-defined variable (Carry Flag) changes to TRUE.
This indicates that an overflow or an underflow has occurred.

If Out is a real number and an overflow or underflow occurs, the value of Out is positive or negative
infinity. If Out is an integer, only the bits of the multiplication result that fit in the data type of Out are
assigned to Out.

Instruction Name FB/FUN Graphic expression ST expression

MulOU (*OU) Multiplication with
Overflow/Under-
flow Check

FUN Out:=MulOU(In1, ···, InN);

Variables

Name Meaning I/O Description Valid range Unit Default

In1 to InN Values to
multiply

Input Numbers to multiply, N = 2
to 5

Depends on data type. --- 1*

Out Multiplica-
tion result

Output Multiplication result Depends on data type. --- ---

B
o

o
lean

Bit string Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In1 to InN OK OK OK OK OK OK OK OK OK OK

Out OK OK OK OK OK OK OK OK OK OK

Function

(@)MulOU
EN ENO
In1 Out
 :
InN

:

(@)*OU
EN ENO
In1 Out
 :
InN

:

2 Instruction Descriptions

2-164 NJ-series Instructions Reference Manual (W502)

The following example is for when In1 is INT#20000, In2 is INT#2 and variable abc has an INT data
type. The multiplication result (40000) exceeds the valid range of INT data, so the value of P_CY
changes to TRUE. The value of variable abc will be INT#−25536 (the lower 16 bits of 40000).

The functions of the MulOU instruction and the *OU instruction are exactly the same. Use the form that
is easier to use.

Use the MUL (*) instruction (page 2-161) if there is no need for an overflow/underflow check. It will
reduce processing time.

• Set the data type of Out to include the valid ranges of In1 to InN.

• If In1 to InN and Out are integers, make sure the multiplication result will fit in the valid range of Out.
Otherwise, the value of Out will be an illegal value. An error will not occur.

• If the data types of In1 to InN are different, calculations and processing of P_CY are performed with
the data type that includes all of the data types of In1 to InN. For example, if In1 is INT data and In2 is
DINT data, calculations and P_CY processing are performed with DINT data.

• If In1 to InN contains real data, the value of P_CY does not change.

• Multiplication results of positive or negative infinity are handled as follows for real number values.

Related System-defined Variables

Name Meaning Data type Description

P_CY Carry (CY) Flag BOOL TRUE: There is an overflow or underflow.

FALSE: There is no overflow or underflow.

Additional Information

Precautions for Correct Use

Multiplication
Multiplication

result

+∞ times positive number +∞
+∞ times negative number −∞
−∞ times positive number −∞
−∞ times negative number +∞
+∞ times +∞ +∞
−∞ times −∞ +∞
+∞ times −∞ −∞
+∞ times 0 Nonnumeric

data

−∞ times 0 Nonnumeric
data

abc:=MulOU(INT#20000, INT#2);

LD ST

abcINT#20000
INT#2

MulOU
EN ENO
In1
In2

2-165

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

M
ath

 In
stru

ctio
n

s

2

M
ulO

U
 (*O

U
)

• If the value of Out is positive infinity, negative infinity, or nonnumeric data, the value of P_CY does not
change.

• You can multiply real numbers and integers. If you do, Out is a real number.

2 Instruction Descriptions

2-166 NJ-series Instructions Reference Manual (W502)

DIV (/)

The DIV (/) instruction divides integers or real numbers.

* If you omit an input parameter, the default value is not applied. A building error will occur.

The DIV (/) instruction divides dividend In1 by divisor In2 and outputs the result. The data types of In1,
In2, and division result Out can have different data types. If In1, In2, and Out are integers and there is a
remainder, the remainder is truncated.

The following example is for when In1 is INT#100 and In2 is INT#5. The value of variable abc will be
INT#20.

Instruction Name FB/FUN Graphic expression ST expression

DIV (/) Division FUN Out:=In1/ In2;

Variables

Name Meaning I/O Description Valid range Unit Default

In1 Dividend
Input

Dividend
Depends on data type. --- *

In2 Divisor Divisor

Out Division
result

Output Division result Depends on data type. --- ---

B
o

o
lean

Bit string Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In1 OK OK OK OK OK OK OK OK OK OK

In2 OK OK OK OK OK OK OK OK OK OK

Out OK OK OK OK OK OK OK OK OK OK

Function

(@)DIV
EN ENO
In1 Out
In2

(@)/
EN ENO
In1 Out
In2

abc:=INT#100/INT#5;

LD ST

abcINT#100
INT#5

DIV
EN ENO
In1
In2

2-167

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

M
ath

 In
stru

ctio
n

s

2

D
IV

 (/)

The functions of the DIV instruction and the / instruction are exactly the same. Use the form that is eas-
ier to use.

When you calculate real numbers, use the CheckReal instruction (page 2-209) to see if Out is positive
infinity, negative infinity, or nonnumeric data.

• Set the data type of Out to include the valid ranges of In1 and In2.

• If In1, In2, and Out are integers, make sure the division result will fit in the valid range of Out. Other-
wise, the value of Out will be an illegal value. An error will not occur.

• The results for underflows in division are different for ladder diagrams and ST. In a ladder diagram,
the calculation is performed within the range of the data type of the input variables. In ST, the preci-
sion of the numbers is increased to perform the calculation.

• Division results of positive infinity, negative infinity, or 0 are handled as follows for real number values.

• If the value of either In1 or In2 is nonnumeric data, the value of Out is nonnumeric data.

• An error occurs in the following case. ENO will be FALSE, and Out will not change.

• In1, In2, and Out are integers and the value of In2 is 0.

Additional Information

Precautions for Correct Use

In1

+∞ Positive
number

0
Negative
number −∞

In2

+∞ Nonnu-
meric data

0 0 0 Nonnu-
meric data

Positive
number

+∞ Positive
number

0 Negative
number

−∞

0 +∞ +∞ Nonnu-
meric data

−∞ −∞

Negative
number

−∞ Negative
number

0 Positive
number

+∞

−∞ Nonnu-
meric data

0 0 0 Nonnu-
meric data

2 Instruction Descriptions

2-168 NJ-series Instructions Reference Manual (W502)

MOD

The MOD instruction finds the remainder for division of integers.

* If you omit an input parameter, the default value is not applied. A building error will occur.

The MOD instruction divides dividend In1 by divisor In2 to find the remainder. The data types of In1,
In2, and remainder Out can have different data types.

This instruction performs the calculation with the following formula.
Out = In1 − (In1/In2)* In2 (The decimal point is truncated in the division operation.)
Examples of the values of In1, In2, and Out are given in the following table.

Instruction Name FB/FUN Graphic expression ST expression

MOD Modulo-division FUN Out:=In1 MOD In2;

Variables

Name Meaning I/O Description Valid range Unit Default

In1 Dividend
Input

Dividend
Depends on data type. --- *

In2 Divisor Divisor

Out Remainder Output Remainder Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In1 OK OK OK OK OK OK OK OK

In2 OK OK OK OK OK OK OK OK

Out OK OK OK OK OK OK OK OK

Function

Value of In1 Value of In2 Value of Out

5 3 2

5 −3 2

−5 3 −2

−5 −3 −2

(@)MOD
EN ENO
In1 Out
In2

2-169

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

M
ath

 In
stru

ctio
n

s

2

M
O

D

The following example is for when In1 is INT#18 and In2 is INT#5. The value of variable abc will be
INT#3.

• Set the data type of Out to include the valid ranges of In1 and In2.

• An error occurs in the following case. ENO will be FALSE, and Out will not change.

• The value of In2 is 0.

Precautions for Correct Use

abc:=INT#18 MOD INT#5;

LD ST

abcINT#18
INT#5

MOD
EN ENO
In1
In2

2 Instruction Descriptions

2-170 NJ-series Instructions Reference Manual (W502)

ABS

The ABS instruction finds the absolute value of an integer or real number.

*1 If you omit an input parameter, the default value is not applied. A building error will occur.

*2 Negative numbers are excluded.

The ABS instruction outputs the absolute value of the number to process In. The data types of In and
absolute value Out can have different data types.

The following example is for when In is REAL#−10.3. The value of variable abc will be REAL#10.3.

Instruction Name FB/FUN Graphic expression ST expression

ABS Absolute Value FUN Out:=ABS(In);

Variables

Name Meaning I/O Description Valid range Unit Default

In Number to
process

Input Number to process Depends on data type. --- *1

Out Absolute
value

Output Absolute value Depends on data type.
*2

--- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK OK OK OK OK OK OK OK OK OK

Out OK OK OK OK OK OK OK OK OK OK

Function

(@)ABS
EN ENO
In Out

abc:=ABS(REAL#-10.3);

LD ST

abcREAL#-10.3

ABS
EN ENO
In

2-171

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

M
ath

 In
stru

ctio
n

s

2

A
B

S

When you calculate real numbers, use the CheckReal instruction (page 2-209) to see if Out is positive
infinity, negative infinity, or nonnumeric data.

• Set the data type of Out to include the absolute value of In.

• If the value of In is positive infinity, negative infinity, or nonnumeric data, the value of Out is as shown
below.

Additional Information

Precautions for Correct Use

Value of In Value of Out

+∞ +∞
−∞ +∞
Nonnumeric data Nonnumeric data

2 Instruction Descriptions

2-172 NJ-series Instructions Reference Manual (W502)

RadToDeg and DegToRad

* If you omit an input parameter, the default value is not applied. A building error will occur.

RadToDeg
The RadToDeg instruction converts the data to convert In from radians (rad) to degrees (°). The fol-
lowing conversion is used.

Out=In*180/π

DegToRad
The DegToRad instruction converts the data to convert In from degrees (°) to radians (rad). The fol-
lowing conversion is used.

Out=In*π/180

RadToDeg: Converts a real number from radians (rad) to degrees (°).
DegToRad: Converts a real number from degrees (°) to radians (rad).

Instruction Name FB/FUN Graphic expression ST expression

RadToDeg Radians to Degrees FUN Out:=RadToDeg(In);

DegToRad Degrees to Radians FUN Out:=DegToRad(In);

Variables

Name Meaning I/O Description Valid range Unit Default

In Data to
convert

Input Data to convert Depends on data type. • RadToDeg: Radians
• DegToRad: Degrees

*

Out Conver-
sion result

Output Conversion result Depends on data type. • RadToDeg: Degrees

• DegToRad: Radians

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK OK

Out OK OK

Function

(@)RadToDeg
EN ENO
In Out

(@)DegToRad
EN ENO
In Out

2-173

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

M
ath

 In
stru

ctio
n

s

2

R
adToD

eg and D
egToR

ad

The following example for the DegToRad instruction is for when In is REAL#45. The value of the
REAL variable abc will be REAL#0.785398.

Use the CheckReal instruction (page 2-209) to see if Out is positive infinity, negative infinity, or nonnu-
meric data.

• If the absolute value of the conversion result exceeds the maximum value of the data type of Out, the
value of Out will be positive or negative infinity.

• If the absolute value of the conversion result is lower than the minimum value of the data type of Out,
the value of Out will be 0.

• Make sure that the data type of Out is equal to or larger than the data type of In.

• If the value of In is positive infinity, negative infinity, or nonnumeric data, the value of Out is as shown
below.

• If you pass an integer parameter to In, the data type is converted as follows:

Additional Information

Precautions for Correct Use

Value of In Value of Out

+∞ +∞
−∞ −∞
Nonnumeric data Nonnumeric data

Data type of parameter that is
passed to In

Data type of In

USINT, UINT, SINT, or INT REAL

UDINT or DINT LREAL

ULINT or LINT A building error will occur.

abc:=DegToRad(REAL#45);

LD ST

abcREAL#45

DegToRad
EN ENO
In

2 Instruction Descriptions

2-174 NJ-series Instructions Reference Manual (W502)

SIN, COS, and TAN

These instructions perform trigonometric calculations on real numbers.

*1 If you omit an input parameter, the default value is not applied. A building error will occur.

*2 The valid range is −1.000000e+0 to 1.000000e+0 for REAL data. The valid range is
−1.00000000000000e+0 to 1.00000000000000e+0 for LREAL data.

SIN: Finds the sine of a number.

COS: Finds the cosine of a number.

TAN: Finds the tangent of a number.

Instruction Name FB/FUN Graphic expression ST expression

SIN Sine in Radians FUN Out:=SIN(In);

COS Cosine in Radians FUN Out:=COS(In);

TAN Tangent in Radians FUN Out:=TAN(In);

Variables

Name Meaning I/O Description Valid range Unit Default

In Number to
process

Input Number to process Depends on data type. Radians *1

Out Calculation
result

Output Calculation result • SIN*2

• COS*2

• TAN
Depends on data
type.

--- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK OK

Out OK OK

(@)SIN
EN ENO
In Out

(@)COS
EN ENO
In Out

(@)TAN
EN ENO
In Out

2-175

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

M
ath

 In
stru

ctio
n

s

2

S
IN

, C
O

S
, and TA

N

These instructions perform trigonometric calculations on real numbers. Number to process In is an
angle in radians (rad).

SIN
The SIN instruction finds the sine of In.

COS
The COS instruction finds the cosine of In.

TAN
The TAN instruction finds the tangent of In.

Function

−1

1

In

Out

−1

1

In

Out

0

−1

1

In

Out

2 Instruction Descriptions

2-176 NJ-series Instructions Reference Manual (W502)

The following example for the COS instruction is for when In is REAL#3.141592. The value of vari-
able abc will be REAL#−1.0.

• Use the RadToDeg and DegToRad instructions (page 2-172) to convert between degrees and radi-
ans.

• If In for the TAN instruction is nπ/2, when n is an integer, then the value of Out will be positive or neg-
ative infinity. Use the CheckReal instruction (page 2-209) to see if the value of Out is positive infinity
or negative infinity.

• If the value of In is positive infinity, negative infinity, or nonnumeric data, the value of Out is nonnu-
meric data.

• If you pass an integer parameter to In, the data type is converted as follows:

Additional Information

Precautions for Correct Use

Data type of parameter that is
passed to In

Data type of In

USINT, UINT, SINT, or INT REAL

UDINT or DINT LREAL

ULINT or LINT A building error will occur.

abc:=COS(REAL#3.141592);

LD ST

abcREAL#3.141592

COS
EN ENO
In

2-177

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

M
ath

 In
stru

ctio
n

s

2

A
S

IN
, A

C
O

S
, and ATA

N

ASIN, ACOS, and ATAN

These instructions perform inverse trigonometric calculations on real numbers.

* If you omit the input parameter, the default value is not applied. A building error will occur.

These instructions perform inverse trigonometric calculations on real numbers. The calculation result
Out is an angle in radians (rad).

ASIN
The ASIN instruction finds the arc sine of In. Out is between −π/2 and π/2.

ASIN: Finds the arc sine of a number.

ACOS: Finds the arc cosine of a number.

ATAN: Finds the arc tangent of a number.

Instruction Name FB/FUN Graphic expression ST expression

ASIN Principal Arc Sine FUN Out:=ASIN(In);

ACOS Principal Arc
Cosine

FUN Out:=ACOS(In);

ATAN Principal Arc
Tangent

FUN Out:=ATAN(In);

Variables

Name Meaning I/O Description Valid range Unit Default

In Number to
process

Input Number to process Depends on data type. --- *

Out Calculation
result

Output Calculation result • ASIN
−π/2 to π/2

• ACOS
0 to π

• ATAN
−π/2 to π/2

rad ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK OK

Out OK OK

Function

(@)ASIN
EN ENO
In Out

(@)ACOS
EN ENO
In Out

(@)ATAN
EN ENO
In Out

2 Instruction Descriptions

2-178 NJ-series Instructions Reference Manual (W502)

ACOS
The ACOS instruction finds the arc cosine of In. Out is between 0 and π.

ATAN
The ATAN instruction finds the arc tangent of In. Out is between −π/2 and π/2.

If the value of In is positive infinity, the value of Out is π/2. If the value of In is negative infinity, the
value of Out is −π/2.

In

Out

2

2−

0−1.0 1.0

In

Out

2

0−1.0 1.0

In

Out

2

2−

0

2-179

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

M
ath

 In
stru

ctio
n

s

2

A
S

IN
, A

C
O

S
, and ATA

N

The following example for the ACOS instruction is for when In is REAL#−1.0. The value of variable
abc will be REAL#3.141592.

Use the RadToDeg and DegToRad instructions (page 2-172) to convert between degrees and radians.

• If In is not between −1.0 and 1.0 for the ASIN or ACOS instruction, the value of Out is nonnumeric
data. That also applies when the value of In is negative infinity, positive infinity, or nonnumeric data.

• If the value of In is nonnumeric data for the ATAN instruction, the value of Out is nonnumeric data.

• If you pass an integer parameter to In, the data type is converted as follows:

Additional Information

Precautions for Correct Use

Data type of parameter that is
passed to In

Data type of In

USINT, UINT, SINT, or INT REAL

UDINT or DINT LREAL

ULINT or LINT A building error will occur.

abc:=ACOS(REAL#-1.0);

LD ST

abcREAL#-1.0

ACOS
EN ENO
In

2 Instruction Descriptions

2-180 NJ-series Instructions Reference Manual (W502)

SQRT

The SQRT instruction finds the square root of a number.

*1 Negative numbers are excluded.

*2 If you omit an input parameter, the default value is not applied. A building error will occur.

*3 The valid range is 0.000000e+00 to 1.844674e+19 or positive infinity for REAL data. The valid range is
0.00000000000000e+000 to 1.34078079299425e+154 or positive infinity for LREAL data.

The SQRT instruction finds the square root of number to process In. The data types of In and square
root Out can have different data types.

Instruction Name FB/FUN Graphic expression ST expression

SQRT Square Root FUN Out:=SQRT(In);

Variables

Name Meaning I/O Description Valid range Unit Default

In Number to
process

Input Number to process Depends on data type.
*1

--- *2

Out Square root Output Square root *3 --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK OK

Out OK OK

Function

(@)SQRT
EN ENO
In Out

0 1 4

1

2

In

Out

2-181

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

M
ath

 In
stru

ctio
n

s

2

S
Q

R
T

The following example is for when In is REAL#16.0. The value of variable abc will be REAL#4.0.

Use the CheckReal instruction (page 2-209) to see if the value of Out is positive infinity.

• If the value of In is not a positive number, the value of Out is as shown below.

• If you pass an integer parameter to In, the data type is converted as follows:

Additional Information

Precautions for Correct Use

Value of In Value of Out

Negative number Nonnumeric data

0 0

+∞ +∞
−∞ Nonnumeric data

Nonnumeric data Nonnumeric data

Data type of parameter that is
passed to In

Data type of In

USINT, UINT, SINT, or INT REAL

UDINT or DINT LREAL

ULINT or LINT A building error will occur.

abc:=SQRT(REAL#16.0);

LD ST

abcREAL#16.0

SQRT
EN ENO
In

2 Instruction Descriptions

2-182 NJ-series Instructions Reference Manual (W502)

LN and LOG

These instructions find the logarithm of a real number.

*1 Negative numbers are excluded.

*2 If you omit an input parameter, the default value is not applied. A building error will occur.

*3 LN:
If In and Out are REAL data: −8.73365448e+1 to 8.87228390e+1, or −∞/+∞
If In is REAL and Out is LREAL data: −8.7336544750000000e+1 to 8.8722839050000000e+1 or −∞/+∞
If In is LREAL and Out is REAL data: −7.08384950e+2 to 7.09782712e+2 or −∞/+∞
If In and Out are LREAL data: −7.0838495021978327e+1 to 7.0978271289338399e+2 or −∞/+∞

LOG:
If In and Out are REAL data: −3.79297795e+1 to 3.85318394e+1 or −∞/+∞
If In is REAL and Out is LREAL data: −3.7929779453965430e+1 to 3.8531839419564961e+1 or −∞/+∞
If In is LREAL and Out is REAL data: −3.07652656e+2 to 3.08254716e+2 or −∞/+∞
If In and Out are LREAL data: −3.0765265556858878e+2 to 3.0825471555991674e+2 or −∞/+∞

LN: Finds the natural logarithm of a number.

LOG: Finds the base-10 logarithm of a number.

Instruction Name FB/FUN Graphic expression ST expression

LN Natural Logarithm FUN Out:=LN(In);

LOG Logarithm Base 10 FUN Out:=LOG(In);

Variables

Name Meaning I/O Description Valid range Unit Default

In Number to
process

Input Number to process Depends on data type.
*1

--- *2

Out Logarithm Output Logarithm *3 --- ---

B
o

o
lean

Bit string Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK OK

Out OK OK

(@)LN
EN ENO
In Out

(@)LOG
EN ENO
In Out

2-183

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

M
ath

 In
stru

ctio
n

s

2

LN
 and LO

G

These instructions find the logarithm of a real number.

LN
The LN instruction finds the natural logarithm (logarithm to base e, where e = 2.718282).

LOG
The LOG instruction finds the base-10 logarithm.

The following example for the LOG instruction is for when In is REAL#1000.0. The value of variable
abc will be REAL#3.0.

Function

0 1

1

2.718282
In

Out

0 1

1

10
In

Out

abc:=LOG(REAL#1000.0);

LD ST

abcREAL#1000.0

LOG
EN ENO
In

2 Instruction Descriptions

2-184 NJ-series Instructions Reference Manual (W502)

Use the CheckReal instruction (page 2-209) to see if Out is positive infinity, negative infinity, or nonnu-
meric data.

• If the value of In is not a positive number, the value of Out is as shown below.

• If you pass an integer parameter to In, the data type is converted as follows:

Additional Information

Precautions for Correct Use

Value of In Value of Out

Negative number Nonnumeric data

0 −∞
+∞ +∞
−∞ Nonnumeric data

Nonnumeric data Nonnumeric data

Data type of parameter that is
passed to In

Data type of In

USINT, UINT, SINT, or INT REAL

UDINT or DINT LREAL

ULINT or LINT A building error will occur.

2-185

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

M
ath

 In
stru

ctio
n

s

2

E
X

P

EXP

The EXP instruction performs calculations for the natural exponential function.

*1 If you omit an input parameter, the default value is not applied. A building error will occur.

*2 Negative numbers are excluded.

The EXP instruction returns the value of eIn, where e is Euler's constant and In is an input variable.

The following example is for when In is REAL#1.0. The value of variable abc will be REAL#2.718282.

• Use the EXPT (**) instruction (page 2-187) to find the powers of numbers with bases other than e.

• Use the CheckReal instruction (page 2-209) to see if Out is positive infinity, negative infinity, or non-
numeric data.

Instruction Name FB/FUN Graphic expression ST expression

EXP Natural Exponen-
tial Operation

FUN Out:=EXP(In);

Variables

Name Meaning I/O Description Valid range Unit Default

In Exponent Input Exponent Depends on data type. --- *1

Out Calculation
result

Output Calculation result Depends on data type.
*2

--- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK OK

Out OK OK

Function

Additional Information

(@)EXP
EN ENO
In Out

abc:=EXP(REAL#1.0);

LD ST

abcREAL#1.0

EXP
EN ENO
In

2 Instruction Descriptions

2-186 NJ-series Instructions Reference Manual (W502)

• If the value of In is 0.0, positive infinity, negative infinity, or nonnumeric data, the value of Out is as
shown below.

• If you pass an integer parameter to In, the data type is converted as follows:

Precautions for Correct Use

Value of In Value of Out

0 1.0

+∞ +∞
−∞ 0.0

Nonnumeric data Nonnumeric data

Data type of parameter that is
passed to In

Data type of In

USINT, UINT, SINT, or INT REAL

UDINT or DINT LREAL

ULINT or LINT A building error will occur.

2-187

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

M
ath

 In
stru

ctio
n

s

2

E
X

P
T

 (**)

EXPT (**)

The EXPT (**) instruction raises one real number to the power of another real number.

* If you omit an input parameter, the default value is not applied. A building error will occur.

The EXPT (**) instruction raises base number In to exponent Pwr to find InPwr.

The following example is for when In is REAL#10.0 and Pwr is REAL#3.0. The value of variable abc will
be REAL#1000.0.

The functions of the EXPT instruction and the ** instruction are exactly the same. Use the form that is
easier to use.

Instruction Name FB/FUN Graphic expression ST expression

EXPT (**) Exponentiation FUN Out:=EXPT(In, Pwr);
Out:=In ** Pwr;

Variables

Name Meaning I/O Description Valid range Unit Default

In Base
number

Input

Base number
(e.g., 5 for 52)

Depends on data type. --- *
Pwr Exponent Exponent

(e.g., 2 for 52)

Out Calculation
result

Output Calculation result Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK OK

Pwr OK OK

Out OK OK

Function

(@)EXPT
EN ENO
In Out
Pwr

(@)**
EN ENO
In Out
Pwr

abc:=EXPT(REAL#10.0, REAL#3.0);

LD ST

abc
REAL#3.0

REAL#10.0

EXPT
EN ENO
In
Pwr

2 Instruction Descriptions

2-188 NJ-series Instructions Reference Manual (W502)

• Use the EXP instruction (page 2-185) to find powers of base e.

• Use the CheckReal instruction (page 2-209) to see if Out is positive infinity, negative infinity, or non-
numeric data.

• If the absolute value of the calculation result is lower than the minimum value for a real number, the
value of Out will be 0.

Example: (1.175494e−38)2 → 0

• The following table shows the values of Out for different combinations of In and Pwr values.

*1 If the calculation result exceeds the valid range of the data type of Out, the value of Out will be positive infinity.

*2 If the calculation result is too close to 0 to express with the data type of Out or if it is an unnormalized number,
the value of Out will be 0.

*3 If the calculation result exceeds the valid range of the data type of Out, the value of Out will be negative infinity.

• If you pass an integer parameter to In, the data type is converted as follows:

Additional Information

Precautions for Correct Use

In

+∞ 1 to
+∞ 1 0 to 1 0 −1 to 0 −1

−1 to
−∞ −∞

Nonnu-
meric
data

Pwr

+∞
+∞ +∞ 1 0 0 0 1 +∞ +∞ Nonnu-

meric
data

Positive even
number

+∞

Number *1, *2

0 Number *1, *2 +∞

Nonnu-
meric
data

Positive odd
number

Number *2, *3 −∞

Positive deci-
mal number

Nonnumeric data +∞

0 1 1 1 1 1 1

Negative even
number

0

Number *1, *2

+∞ Number *1, *2 0

Nonnu-
meric
data

Negative odd
number

Number *2, *3

Negative deci-
mal number

Nonnumeric data

−∞
0 0 1 +∞ +∞ +∞ 1 0 0 Nonnu-

meric
data

Nonnumeric
data

Nonnu-
meric
data

Nonnumeric data Nonnu-
meric
data

Nonnumeric data Nonnu-
meric
data

Nonnu-
meric
data

Data type of parameter that is
passed to In

Data type of In

USINT, UINT, SINT, or INT REAL

UDINT or DINT LREAL

ULINT or LINT A building error will occur.

2-189

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

M
ath

 In
stru

ctio
n

s

2

Inc and D
ec

Inc and Dec

Inc
The Inc instruction increments target data InOut. If the result exceeds the maximum value of InOut,
InOut returns to the minimum value.

Dec
The Dec instruction decrements target data InOut. If the result exceeds the minimum value of InOut,
InOut returns to the maximum value.

Inc: Increments an integer value.

Dec: Decrements an integer value.

Instruction Name FB/FUN Graphic expression ST expression

Inc Increment FUN Inc(InOut);

Dec Decrement FUN Dec(InOut);

Variables

Name Meaning I/O Description Valid range Unit Default

InOut Target data In-out Target data Depends on data type. --- ---

Out Return
value

Output Always TRUE TRUE only --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

InOut OK OK OK OK OK OK OK OK

Out OK

Function

(@)Inc
EN ENO
InOut

 Out

(@)Dec
EN ENO
InOut

 Out

2 Instruction Descriptions

2-190 NJ-series Instructions Reference Manual (W502)

The following example for the Inc instruction is for when variable abc is passed to InOut.

Return value Out is not used when the instruction is used in ST.

Precautions for Correct Use

Inc(abc);

LD ST

abcabc

Inc

EN ENO
InOut

2-191

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

M
ath

 In
stru

ctio
n

s

2

R
and

Rand

The Rand instruction generates pseudorandom numbers.

*1 If you omit the input parameter, the value will be 0. It will not be the value that is specified for the Initial Value attribute.

*2 0.00000000000000e+0 to 1.00000000000000e+0

The Rand instruction specifies random number Rnd. The value of Rnd is different each time the
instruction is executed: Random number pattern Seed specifies the random number system. If the
value of Seed is the same, the same random number series is generated each time the power sup-
ply is turned ON. This allows you to generate a repeatable series of random numbers.

If the value of Seed is 0, random numbers that cannot be repeated are generated. If you do not want
to generate the same series of random numbers each time the power supply is turned ON, set the
value of Seed to 0.

The following programming example is for when Seed is UINT#1.

Instruction Name FB/FUN Graphic expression ST expression

Rand Random Number FB Rand_instance(Execute,
Seed, Rnd);

Variables

Name Meaning I/O Description Valid range Unit Default

Seed Random num-
ber pattern

Input Random number pattern Depends on data type. --- *1

Rnd Random num-
ber

Output Random number *2 --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

Seed OK

Rnd OK

Function

Rand

Rand_instance

Execute ENO
Seed Rnd

Rand_instance(A, UINT#1, abc);

LD ST

abcUINT#1

A Rand

Rand_instance

Execute ENO
Seed Rnd

2 Instruction Descriptions

2-192 NJ-series Instructions Reference Manual (W502)

The value of Rnd is a real number between 0 and 1. Use the following processing to generate ran-
dom numbers within a specific range.

Example: The following formula generates random numbers between 100 and 200.
Rand_instance(A, UINT#1, abc);
Random number:=LREAL_TO_INT((200.0-100.0)*abc)+100;

Additional Information

2-193

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

M
ath

 In
stru

ctio
n

s

2

A
ryA

dd

AryAdd

The AryAdd instruction adds corresponding elements of two arrays.

* If you omit an input parameter, the default value is not applied. A building error will occur.

The AryAdd instruction adds Size elements of arrays to process In1[] and In2[] starting from In1[0]
and In2[0]. The results are assigned to corresponding elements of calculation results array AryOut[].

Instruction Name FB/FUN Graphic expression ST expression

AryAdd Array Addition FUN AryAdd(In1, In2, Size, Ary-
Out);

Variables

Name Meaning I/O Description Valid range Unit Default

In1[] (array)
and In2[]
(array)

Array to
process

Input

Array to process

Depends on data type. ---

*

Size Number of
elements to
process

Number of elements to pro-
cess

1

AryOut[]
(array)

Calculation
results
array

In-out Calculation results array Depends on data type. --- ---

Out Return
value

Output Always TRUE TRUE only --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In1[] (array) OK OK OK OK OK OK OK OK OK OK

In2[] (array) Must be an array with the same data type as In1[].

Size OK

AryOut[]
(array)

Must be an array with the same data type as In1[].

Out OK

Function

(@)AryAdd
EN ENO
In1 Out
In2
Size
AryOut

2 Instruction Descriptions

2-194 NJ-series Instructions Reference Manual (W502)

The following example is for when Size is UINT#3.

• Use the same data type for In1[], In2[], and AryOut[].

• If the calculation results exceed the valid range of AryOut[], the results will be illegal values. An error
will not occur. Corruption will not occur in the data in the memory area adjacent to those elements.

• The values in AryOut[] do not change if the value of Size is 0.

• Return value Out is not used when the instruction is used in ST.

• An error occurs in the following cases. ENO will be FALSE, and AryOut[] will not change.

• In1[], In2[], and AryOut[] have different data types.

• The value of Size exceeds the array range of In1[], In2p[], or AryOut[].

Precautions for Correct Use

AryAdd(abc[1], def[2], UINT#3, ghi[3]);

LD ST

UINT#3

abc[1]
def[2]

ghi[3] ghi[3]

AryAdd
EN ENO
In1
In2
Size
AryOut

1234
2345
3456

In1[0]=abc[1]
In1[1]=abc[2]
In1[2]=abc[3]

Size=UINT#3
2345
3456
4567

In2[0]=def[2]
In2[1]=def[3]
In2[2]=def[4]

+
+
+

 3579
 5801
 8023

AryOut[0]=ghi[3]
AryOut[1]=ghi[4]
AryOut[2]=ghi[5]

2-195

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

M
ath

 In
stru

ctio
n

s

2

A
ryA

ddV

AryAddV

The AryAddV instruction adds the same value to specified elements of an array.

* If you omit an input parameter, the default value is not applied. A building error will occur.

The AryAddV instruction adds value to add In2 to Size elements of addition array In1[] starting from
In1[0]. It outputs the results to addition results array AryOut[].

Instruction Name FB/FUN Graphic expression ST expression

AryAddV Array Value
Addition

FUN AryAddV(In1, In2, Size, Ary-
Out);

Variables

Name Meaning I/O Description Valid range Unit Default

In1[] (array) Addition
array

Input

Addition array

Depends on data type. ---

*
In2 Value to

add
Value to add

Size Number of
elements

Number of elements of In1[]
for addition

1

AryOut[]
(array)

Addition
results
array

In-out Addition results array Depends on data type. --- ---

Out Return
value

Output Always TRUE TRUE only --- ---

B
o

o
lean

Bit string Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In1[] (array) OK OK OK OK OK OK OK OK OK OK

In2 Must be same data type as In1[].

Size OK

AryOut[]
(array)

Must be same data type as In1[].

Out OK

Function

(@)AryAddV
EN ENO
In1 Out
In2
Size
AryOut

2 Instruction Descriptions

2-196 NJ-series Instructions Reference Manual (W502)

The following example is for when In2 is INT#11 and Size is UINT#3.

• Use the same data type for In1[], In2, and AryOut[].

• If the addition results exceed the valid range of AryOut[], the elements of AryOut[] will contain illegal
values. An error will not occur. Corruption will not occur in the data in the memory area adjacent to
those elements.

• The values in AryOut[] do not change if the value of Size is 0.

• Return value Out is not used when the instruction is used in ST.

• An error occurs in the following cases. ENO will be FALSE, and AryOut[] will not change.

• If In1[], In2, and AryOut[] have different data types.

• If the value of Size exceeds the array area of In1[] or AryOut[].

Precautions for Correct Use

AryAddV(abc[1], INT#11, UINT#3, def[2]);

LD ST

UINT#3

abc[1]
INT#11

def[2] def[2]

AryAddV
EN ENO
In1
In2
Size
AryOut

In1[0]=abc[1]
In1[1]=abc[2]
In1[2]=abc[3]

12
23
34

In2=INT#11
In2=INT#11
In2=INT#11

+
+
+

AryOut[0]=def[2]
AryOut[1]=def[3]
AryOut[2]=def[4]

23
34
45

Size=UINT#3

2-197

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

M
ath

 In
stru

ctio
n

s

2

A
ryS

ub

ArySub

The ArySub instruction subtracts corresponding elements of two arrays.

* If you omit an input parameter, the default value is not applied. A building error will occur.

The ArySub instruction subtracts Size elements of subtrahend array In2[] from corresponding ele-
ments of minuend array In1[] starting with In1[0] and In2[0]. It outputs the subtraction results to sub-
traction results array AryOut[].

Instruction Name FB/FUN Graphic expression ST expression

ArySub Array Subtraction FUN ArySub(In1, In2, Size, Ary-
Out);

Variables

Name Meaning I/O Description Valid range Unit Default

In1[] (array) Minuend
array

Input

Minuend array

Depends on data type. ---

*
In2[] (array) Subtra-

hend array
Subtrahend array

Size Number of
elements

Number of elements for sub-
traction

1

AryOut[]
(array)

Subtrac-
tion results
array

In-out Subtraction results array Depends on data type. --- ---

Out Return
value

Output Always TRUE TRUE only --- ---

B
o

o
lean

Bit string Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In1[] (array) OK OK OK OK OK OK OK OK OK OK

In2[] (array) Must be same data type as In1[].

Size OK

AryOut[]
(array)

Must be same data type as In1[].

Out OK

Function

(@)ArySub
EN ENO
In1 Out
In2
Size
AryOut

2 Instruction Descriptions

2-198 NJ-series Instructions Reference Manual (W502)

The following example is for when Size is UINT#3.

• Use the same data type for In1[], In2[], and AryOut[].

• If the subtraction results exceed the valid range of AryOut[], the elements of AryOut[] will contain ille-
gal values. An error will not occur. Corruption will not occur in the data in the memory area adjacent
to those elements.

• The values in AryOut[] do not change if the value of Size is 0.

• Return value Out is not used when the instruction is used in ST.

• An error occurs in the following cases. ENO will be FALSE, and AryOut[] will not change.

• In1[], In2[], and AryOut[] have different data types.

• The value of Size exceeds the array range of In1[], In2[], or AryOut[].

Precautions for Correct Use

ArySub(abc[1], def[2], UINT#3, ghi[3]);

LD ST

UINT#3

abc[1]
def[2]

ghi[3] ghi[3]

ArySub
EN ENO
In1
In2
Size
AryOut

In1[0]=abc[1]
In1[1]=abc[2]
In1[2]=abc[3]

12
23
34

In2[0]=def[2]
In2[1]=def[3]
In2[2]=def[4]

-
-
-

AryOut[0]=ghi[3]
AryOut[1]=ghi[4]
AryOut[2]=ghi[5]

1
2
3

11
21
31

Size=UINT#3

2-199

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

M
ath

 In
stru

ctio
n

s

2

A
ryS

ubV

ArySubV

The ArySubV instruction subtracts the same value from specified elements of an array.

* If you omit the input parameter, the default value is not applied. A building error will occur.

The ArySubV instruction subtracts subtrahend In2 from Size elements of minuend array In1[] start-
ing from In1[0]. It outputs the results to subtraction results array AryOut[].

Instruction Name FB/FUN Graphic expression ST expression

ArySubV Array Value
Subtraction

FUN ArySubV(In1, In2, Size, Ary-
Out);

Variables

Name Meaning I/O Description Valid range Unit Default

In1[] (array) Minuend
array

Input

Minuend array

Depends on data type. ---

*

In2 Subtrahend Subtrahend

Size Number of
elements

Number of elements of In1[]
for subtraction

1

AryOut[]
(array)

Subtrac-
tion results
array

In-out Subtraction results array Depends on data type. --- ---

Out Return
value

Output Always TRUE TRUE only --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In1[] (array) OK OK OK OK OK OK OK OK OK OK

In2 Must be same data type as the elements of In1[].

Size OK

AryOut[]
(array)

Must be same data type as In1[].

Out OK

Function

(@)ArySubV
EN ENO
In1 Out
In2
Size
AryOut

2 Instruction Descriptions

2-200 NJ-series Instructions Reference Manual (W502)

The following example is for when In2 is INT#11 and Size is UINT#3.

• Use the same data type for In1[], In2, and AryOut[].

• If the subtraction results exceed the valid range of AryOut[], the elements of AryOut[] will contain ille-
gal values. An error will not occur. Corruption will not occur in the data in the memory area adjacent
to those elements.

• The values in AryOut[] do not change if the value of Size is 0.

• Return value Out is not used when the instruction is used in ST.

• An error occurs in the following cases. ENO will be FALSE, and AryOut[] will not change.

• In1[], In2, and AryOut[] have different data types.

• The value of Size exceeds the array area of In1[] or AryOut[].

Precautions for Correct Use

ArySubV(abc[1], INT#11, UINT#3, def[2]);

LD ST

UINT#3

abc[1]
INT#11

def[2] def[2]

ArySubV
EN ENO
In1
In2
Size
AryOut

In1[0]=abc[1]
In1[1]=abc[2]
In1[2]=abc[3]

22
33
44

In2=INT#11
In2=INT#11
In2=INT#11

-
-
-

AryOut[0]=def[2]
AryOut[1]=def[3]
AryOut[2]=def[4]

11
22
33

Size=UINT#3

2-201

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

M
ath

 In
stru

ctio
n

s

2

A
ryM

ean

AryMean

The AryMean instruction calculates the average of the elements of an array.

* If you omit the input parameter, the default value is not applied. A building error will occur.

The AryMean instruction calculates the average of Size elements of array to process In[] starting
from In[0].

The following example is for when Size is UINT#5.

Instruction Name FB/FUN Graphic expression ST expression

AryMean Array Mean FUN Out := AryMean(In, Size);

Variables

Name Meaning I/O Description Valid range Unit Default

In[] (array) Array to
process

Input

Array to process

Depends on data type. ---

*

Size Number of
elements to
process

Number of In[] elements 1

Out Calculation
result

Output Calculation result Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In[] (array) OK OK OK OK OK OK OK OK OK OK OK

Size OK

Out OK OK OK OK OK OK OK OK OK OK OK

Function

(@)AryMean
EN ENO
In Out
Size

def:=AryMean(abc[1], UINT#5);

LD ST

UINT#5
abc[1] def

AryMean
EN ENO
In
Size

Average calculated.
3456Out=def

1234
2345
3456
4567
5678

In[0]=abc[1]
In[1]=abc[2]
In[2]=abc[3]
In[3]=abc[4]
In[4]=abc[5]

Size=UINT#5

2 Instruction Descriptions

2-202 NJ-series Instructions Reference Manual (W502)

• Refer to the descriptions of the functions of the ADD (+) instruction (page 2-152), SUB (−) instruction
(page 2-156), MUL (*) instruction (page 2-161), and DIV (/) instruction (page 2-166) for the calcula-
tion results when the value of In[] is positive infinity, negative infinity, or nonnumeric data.

• If In[] or Out is an integer, the decimal portion of the average is truncated.

• If you use a different data type for In[] and Out, make sure the valid range of Out includes the valid
range of In[].

• If the calculation result exceeds the valid range of Out, Out will contain an illegal value. An error will
not occur.

• If an intermediate value in the calculation process exceeds the valid range of IN[], Out will contain an
illegal value. An error will not occur.

• If the value of Size is 0, the value of Out is 0.

• An error occurs in the following case. ENO will be FALSE, and Out will not change.

• The value of Size exceeds the array area of In[].

Precautions for Correct Use

2-203

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

M
ath

 In
stru

ctio
n

s

2

A
ryS

D

ArySD

The ArySD instruction calculates standard deviation of the elements of an array.

* If you omit an input parameter, the default value is not applied. A building error will occur.

The ArySD instruction calculates the standard deviation of Size elements of array to process In[]
starting from In[0].

Instruction Name FB/FUN Graphic expression ST expression

ArySD Array Element
Standard Deviation

FUN Out:=ArySD(In, Size);

Variables

Name Meaning I/O Description Valid range Unit Default

In[] (array) Array to
process

Input

Array to process

Depends on data type. ---

*

Size Number of
elements

Number of elements of In[]
for conversion

2

Out Standard
deviation

Output Standard deviation Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In[] (array) OK OK

Size OK

Out OK OK

Function

(@)ArySD
EN ENO
In Out
Size

2

i
Σ(In[i]-InM)

Size−1

Standard deviation =

i: Subscript of In[], 0 to Size − 1
InM: Average value of In[0] to In[Size - 1]

2 Instruction Descriptions

2-204 NJ-series Instructions Reference Manual (W502)

The following example is for when Size is UINT#5.

• If the value of Size is 0 or 1, the value of Out is 0.

• If an intermediate value in the calculation process exceeds the valid range of IN[], Out will contain an
illegal value. An error will not occur.

• An error occurs in the following case. ENO will be FALSE, and Out will not change.

• The value of Size exceeds the array area of In[].

Precautions for Correct Use

def:=ArySD(abc[1], UINT#5);

LD ST

UINT#5
abc[1] def

ArySD
EN ENO
In
Size

Standard deviation calculated. 175.6645Out=def

123.4
234.5
345.6
456.7
567.8

In[0]=abc[1]
In[1]=abc[2]
In[2]=abc[3]
In[3]=abc[4]
In[4]=abc[5]

Size=UINT#5

2-205

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

M
ath

 In
stru

ctio
n

s

2

M
odR

eal

ModReal

The ModReal instruction calculates the remainder of real number division.

* If you omit an input parameter, the default value is not applied. A building error will occur.

The ModReal instruction divides dividend In1 by divisor In2 to find the remainder.

The following example is for when In1 is REAL#−9.9 and In2 is REAL#−3.14. The value of variable
abc will be REAL#−0.48.

Instruction Name FB/FUN Graphic expression ST expression

ModReal Real Number
Modulo-division

FUN Out:=ModReal(In1, In2);

Variables

Name Meaning I/O Description Valid range Unit Default

In1 Dividend
Input

Dividend
Depends on data type. --- *

In2 Divisor Divisor

Out Remainder Output Remainder Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In1 OK OK

In2 OK OK

Out OK OK

Function

(@)ModReal
EN ENO
In1 Out
In2

abc:=ModReal(REAL#-9.9, REAL#-3.14);

LD ST

REAL#-3.14
REAL#-9.9 abc

ModReal
EN ENO
In1
In2

2 Instruction Descriptions

2-206 NJ-series Instructions Reference Manual (W502)

Use the CheckReal instruction (page 2-209) to see if the value of Out is positive infinity, negative
infinity, or nonnumeric data.

• The following table shows the values of Out for different combinations of In1 and In2 values.

• If you pass an integer parameter to In1 or In2, the data type is converted as follows:

Additional Information

Precautions for Correct Use

In1

0 Number +∞ −∞ Nonnumeric
data

In2

0
Nonnumeric
data

Nonnumeric
data

Nonnumeric
data

Nonnumeric
data

Nonnumeric
data

Number
0 Remainder of

In1/In2
Nonnumeric
data

Nonnumeric
data

Nonnumeric
data

+∞ 0 Value of In1 Nonnumeric
data

Nonnumeric
data

Nonnumeric
data

−∞ 0 Value of In1 Nonnumeric
data

Nonnumeric
data

Nonnumeric
data

Nonnumeric
data

Nonnumeric
data

Nonnumeric
data

Nonnumeric
data

Nonnumeric
data

Nonnumeric
data

Data type of parameter that is
passed to In1 or In2

Data type of In1 or In2

USINT, UINT, SINT, or INT REAL

UDINT or DINT LREAL

ULINT or LINT A building error will occur.

2-207

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

M
ath

 In
stru

ctio
n

s

2

Fraction

Fraction

The Fraction instruction finds the fractional part of a real number.

* If you omit an input parameter, the default value is not applied. A building error will occur.

The Fraction instruction finds the fractional part of real number In.

The following example is for when In is REAL#−123.456. The value of variable abc will be
REAL#−0.456.

• Use the CheckReal instruction (page 2-209) to see if the value of Out is positive infinity, negative
infinity, or nonnumeric data.

Instruction Name FB/FUN Graphic expression ST expression

Fraction Real Number
Fraction

FUN Out:=Fraction(In);

Variables

Name Meaning I/O Description Valid range Unit Default

In Real num-
ber

Input Real number Depends on data type. --- *

Out Fractional
part

Output Fractional part Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK OK

Out OK OK

Function

Additional Information

(@)Fraction
EN ENO
In Out

abc:=Fraction(REAL#-123.456);

LD ST

REAL#-123.456 abc

Fraction
EN ENO
In

2 Instruction Descriptions

2-208 NJ-series Instructions Reference Manual (W502)

• If you pass an integer parameter to In, the data type is converted as follows:

Data type of parameter that is
passed to In

Data type of In

USINT, UINT, SINT, or INT REAL

UDINT or DINT LREAL

ULINT or LINT A building error will occur.

2-209

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

M
ath

 In
stru

ctio
n

s

2

C
heckR

eal

CheckReal

The CheckReal instruction checks a real number to see if it is infinity or nonnumeric data.

* If you omit an input parameter, the default value is not applied. A building error will occur.

Instruction Name FB/FUN Graphic expression ST expression

CheckReal Real Number
Check

FUN CheckReal(In, Nan, PosInfi-
nite, NegInfinite);

Variables

Name Meaning I/O Description Valid range Unit Default

In Real num-
ber

Input Real number Depends on data type. --- *

Out Return
value

Output

Always TRUE TRUE only

--- ---

Nan Nonnu-
meric data
check
result

TRUE: Nonnumeric data

FALSE: Not nonnumeric
data

Depends on data type.

PosInfinite Positive
infinity
check
result

TRUE: Positive infinity

FALSE: Not positive infinity

NegInfinite Negative
infinity
check
result

TRUE: Negative infinity

FALSE: Not negative infinity
B

o
o

lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK OK

Out OK

Nan OK

PosInfinite OK

NegInfinite OK

(@)CheckReal
EN ENO
In Out
 Nan
 PosInfinite
 NegInfinite

2 Instruction Descriptions

2-210 NJ-series Instructions Reference Manual (W502)

The CheckReal instruction checks a real number In to see if it is nonnumeric data, positive infinity, or
negative infinity. It outputs the results to Nan, PosInfinite, and NegInfinite.

The following figure shows a programming example. The values of REAL variables a and b are multi-
plied and the result is tested to see if it is a real number. If the multiplication result is a real number, it is
assigned to variable d.

Use this instruction on the result of a math instruction that handles real numbers to see if the result is
nonnumeric data, positive infinity, or negative infinity.

• Return value Out is not used when the instruction is used in ST.

• If you pass an integer parameter to In, the data type is converted as follows:

Function

Additional Information

Precautions for Correct Use

Data type of parameter that is
passed to In

Data type of In

USINT, UINT, SINT, or INT REAL

UDINT or DINT LREAL

ULINT or LINT A building error will occur.

c:=a*b;
CheckReal(c, abc, def, ghi);
IF ((abc=FALSE) AND (def=FALSE) AND (ghi=FALSE)) THEN
 d:=c;
END_IF;

LD ST

a
b

abc

abc

def
ghi

def ghi

CheckReal
EN ENO
In
 Nan
 PosInfinite
 NegInfinite

MUL

c

c

c d

EN ENO
In1
In2

MOVE
EN ENO
In Out

B
C

D
 C

o
nversio

n
 In

stru
ctio

n
s

2

2-211NJ-series Instructions Reference Manual (W502)

BCD Conversion Instructions

Instruction Name Page

_BCD_TO_* BCD-to-Unsigned Integer Conver-
sion Group

2-212

_TO_BCD_* Unsigned Integer-to-BCD Conver-
sion Group

2-215

BCD_TO_** BCD Data Type-to-Unsigned Inte-
ger Conversion Group

2-218

BCDsToBin Signed BCD-to-Signed Integer
Conversion

2-221

BinToBCDs_** Signed Integer-to-BCD Conver-
sion Group

2-224

AryToBCD Array BCD Conversion 2-227

AryToBin Array Unsigned Integer Conver-
sion

2-229

2 Instruction Descriptions

2-212 NJ-series Instructions Reference Manual (W502)

_BCD_TO_*

These instructions convert BCD bit strings into unsigned integers.

* The valid ranges depend on the data types of In and Out. Refer to Function, below, for details.

These instructions convert data to convert In (which must be a BCD bit string) into an unsigned integer.

The name of the instruction is determined by the data types of In and conversion result Out. For exam-
ple, if In is WORD data and Out is UINT data, the name of the instruction is WORD_BCD_TO_UINT.

The following example for the WORD_BCD_TO_UINT instruction is for when In is WORD16#3452.

Instruction Name FB/FUN Graphic expression ST expression

_BCD_TO_* BCD-to-Unsigned
Integer Conversion
Group

FUN Out:=**_BCD_TO_*** (In);

"**" must be a bit string data
type.
"***" must be an integer data
type.

Variables

Name Meaning I/O Description Valid range Unit Default

In Data to
convert

Input Data to convert * --- 0

Out Conver-
sion result

Output Conversion result * --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK OK OK OK

Out OK OK OK OK OK OK OK OK

Function

EN ENO
In

(@)**_BCD_TO_***

"**" must be a bit string data type.
"***" must be an integer data type.

Out

abc:=WORD_BCD_TO_UINT(WORD#16#3452);

LD ST

abcWORD#16#3452

WORD_BCD_TO_UINT

EN ENO
In

3452In Out=abc

UNIT data WORD BCD data

WORD#16#3452

2-213

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

B
C

D
 C

o
nversio

n
 In

stru
ctio

n
s

2

**_B
C

D
_TO

_***

The following table shows the valid ranges for In and Out according to their data types.

• To convert a BCD bit string to an integer, use a BCD_TO_** instruction (page 2-218).
• To convert an integer to a BCD bit string, use a **_TO_BCD_*** instruction (page 2-215).

• Always use the correct instruction name for the data types of In and Out.
• If the data size of Out is larger than the data size of In, the upper digits of Out will contain 0.
• An error occurs in the following cases. ENO will be FALSE, and Out will not change.

Data type
of In

Data type
of Out

Valid range for In Valid range for Out

BYTE

USINT

16#00 to 16#99 (BCD) 0 to 99

UINT

UDINT
ULINT

SINT

INT
DINT

LINT

WORD

USINT 16#0000 to 16#0255 (BCD) 0 to 255
UINT

16#0000 to 16#9999 (BCD) 0 to 9999UDINT

ULINT
SINT 16#0000 to 16#0127 (BCD) 0 to 127

INT

16#0000 to 16#9999 (BCD) 0 to 9999DINT
LINT

DWORD

USINT 16#0000_0000 to 16#0000_0255 (BCD) 0 to 255

UINT 16#0000_0000 to 16#0006_5535 (BCD) 0 to 65535
UDINT

16#0000_0000 to 16#9999_9999 (BCD) 0 to 99999999
ULINT

SINT 16#0000_0000 to 16#0000_0127 (BCD) 0 to 127
INT 16#0000_0000 to 16#0003_2767 (BCD) 0 to 32767

DINT
16#0000_0000 to 16#9999_9999 (BCD) 0 to 99999999

LINT

LWORD

USINT 16#0000_0000_0000_0000 to
16#0000_0000_0000_0255 (BCD)

0 to 255

UINT 16#0000_0000_0000_0000 to
16#0000_0000_0006_5535 (BCD)

0 to 65535

UDINT 16#0000_0000_0000_0000 to
16#0000_0042_9496_7295 (BCD)

0 to 4294967295

ULINT 16#0000_0000_0000_0000 to
16#9999_9999_9999_9999 (BCD)

0 to 9999999999999999

SINT 16#0000_0000_0000_0000 to
16#0000_0000_0000_0127 (BCD)

0 to 127

INT 16#0000_0000_0000_0000 to
16#0000_0000_0003_2767 (BCD)

0 to 32767

DINT 16#0000_0000_0000_0000 to
16#0000_0021_4748_3647 (BCD)

0 to 2147483647

LINT 16#0000_0000_0000_0000 to
16#9999_9999_9999_9999 (BCD)

0 to 9999999999999999

Additional Information

Precautions for Correct Use

2 Instruction Descriptions

2-214 NJ-series Instructions Reference Manual (W502)

• The value of In is outside of the valid range.
• The value in In is not BCD bit string data (i.e., contains A, B, C, D, E, or F hexadecimal).

2-215

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

B
C

D
 C

o
nversio

n
 In

stru
ctio

n
s

2

**_TO
_B

C
D

_***

_TO_BCD_*

These instructions convert unsigned integers to BCD bit strings.

* The valid ranges depend on the data types of In and Out. Refer to Function, below, for details.

These instructions convert data to convert In (which must be an unsigned integer) to a BCD bit string.

The name of the instruction is determined by the data types of In and conversion result Out. For exam-
ple, if In is UINT data and Out is WORD data, the name of the instruction is UINT_TO_BCD_WORD.

The following example for the UINT_TO_BCD_WORD instruction is for when In is UNIT#3452.

Instruction Name FB/FUN Graphic expression ST expression

_TO_BCD_* Unsigned Integer-
to-BCD Conversion
Group

FUN Out:=**_TO_BCD_*** (In);

"**" must be an integer data
type.
"***" must be a bit string
data type.

Variables

Name Meaning I/O Description Valid range Unit Default

In Data to
convert

Input Data to convert * --- 0

Out Conver-
sion result

Output Conversion result * --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK OK OK OK OK OK OK OK

Out OK OK OK OK

Function

(@)**_TO_BCD_***
EN ENO
In Out

"**" must be an integer data type.
"***" must be a bit string data type.

abc:=UINT_TO_BCD_WORD(UINT#3452);

LD ST

abcUINT#3452

UINT_TO_BCD_WORD

EN ENO
In

Out=abcIn 16#3452

WORD BCD data UNIT data

UINT#3452

2 Instruction Descriptions

2-216 NJ-series Instructions Reference Manual (W502)

The following table shows the valid ranges for In and Out according to their data types.

• To convert a specific BCD bit string to an integer, use a **_BCD_TO_*** instruction (page 2-212).

• To convert a BCD bit string to an integer, use a BCD_TO_** instruction (page 2-218).

• Always use the correct instruction name for the data types of In and Out.

• If the data size of Out is larger than the data size of In, the upper digits of Out will contain 0.

• An error occurs in the following case. ENO will be FALSE, and Out will not change.

Data type
of In

Data type
of Out

Valid range for In Valid range for Out

USINT

BYTE 0 to 99 16#00 to 16#99 (BCD)

WORD

0 to 255

16#0000 to 16#0255 (BCD)

DWORD 16#0000_0000 to 16#000_0255 (BCD)
LWORD 16#0000_0000_0000_0000 to

16#0000_0000_0000_0255 (BCD)

UINT

BYTE 0 to 99 16#00 to 16#99 (BCD)

WORD 0 to 9999 16#0000 to 16#9999 (BCD)

DWORD
0 to 65535

16#0000_0000 to 16#0006_5535 (BCD)
LWORD 16#0000_0000_0000_0000 to

16#0000_0000_0006_5535 (BCD)

UDINT

BYTE 0 to 99 16#00 to 16#99 (BCD)

WORD 0 to 9999 16#0000 to 16#9999 (BCD)

DWORD 0 to 99999999 16#0000_0000 to 16#9999_9999 (BCD)
LWORD

0 to 4294967295
16#0000_0000_0000_0000 to
16#0000_0042_9496_7295 (BCD)

ULINT

BYTE 0 to 99 16#00 to 16#99 (BCD)

WORD 0 to 9999 16#0000 to 16#9999 (BCD)

DWORD 0 to 99999999 16#0000_0000 to 16#9999_9999 (BCD)
LWORD

0 to 9999999999999999
16#0000_0000_0000_0000 to
16#9999_9999_9999_9999 (BCD)

SINT

BYTE 0 to 99 16#00 to 16#99 (BCD)

WORD

0 to 127

16#0000 to 16#0127 (BCD)

DWORD 16#0000_0000 to 16#0000_0127 (BCD)
LWORD 16#0000_0000_0000_0000 to

16#0000_0000_0000_0127 (BCD)

INT

BYTE 0 to 99 16#00 to 16#99 (BCD)

WORD 0 to 9999 16#0000 to 16#9999 (BCD)

DWORD
0 to 32767

16#0000_0000 to 16#0003_2767 (BCD)
LWORD 16#0000_0000_0000_0000 to

16#0000_0000_0003_2767 (BCD)

DINT

BYTE 0 to 99 16#00 to 16#99 (BCD)

WORD 0 to 9999 16#0000 to 16#9999 (BCD)

DWORD 0 to 99999999 16#0000_0000 to 16#9999_9999 (BCD)
LWORD

0 to 2147483647
16#0000_0000_0000_0000 to
16#0000_0021_4748_3647 (BCD)

LINT

BYTE 0 to 99 16#00 to 16#99 (BCD)

WORD 0 to 9999 16#0000 to 16#9999 (BCD)

DWORD 0 to 99999999 16#0000_0000 to 16#9999_9999 (BCD)

LWORD
0 to 9999999999999999

16#0000_0000_0000_0000 to
16#9999_9999_9999_9999 (BCD)

Additional Information

Precautions for Correct Use

2-217

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

B
C

D
 C

o
nversio

n
 In

stru
ctio

n
s

2

**_TO
_B

C
D

_***

• The value of In is outside of the valid range.

2 Instruction Descriptions

2-218 NJ-series Instructions Reference Manual (W502)

BCD_TO_**

The BCD_TO_** instruction converts BCD bit strings into unsigned integers.

*1 The valid ranges depend on the data types of In and Out. Refer to Function, below, for details.

*2 If you omit the input parameter, the default value is not applied. A building error will occur.

These instructions convert data to convert In (which must be a BCD bit string) into an unsigned integer.

The name of the instruction is determined by the data type of conversion result Out. For example, if Out
is the UINT data type, the instruction is BCD_TO_UINT.

The following example for the BCD_TO_UINT instruction is for when In is WORD#16#3452.

Instruction Name FB/FUN Graphic expression ST expression

BCD_TO_** BCD Data Type-to-
Unsigned Integer
Conversion Group

FUN Out:=BCD_TO_** (In);

"**" must be an integer
data type.

Variables

Name Meaning I/O Description Valid range Unit Default

In Data to
convert

Input Data to convert *1 --- *2

Out Conver-
sion result

Output Conversion result *1 --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK OK OK OK

Out OK OK OK OK OK OK OK OK

Function

(@)BCD_TO_**
EN ENO
In Out

"**" must be an integer data type.

abc:=BCD_TO_UINT(WORD#16#3452);

LD ST

abcWORD#16#3452

BCD_TO_UINT

EN ENO
In

In Out=abc 3452

UNIT data WORD BCD data

WORD#16#3452

2-219

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

B
C

D
 C

o
nversio

n
 In

stru
ctio

n
s

2

B
C

D
_TO

_**

The following table shows the valid ranges for In and Out according to their data types.

• To convert a specific BCD bit string to an integer, use a **_BCD_TO_*** instruction (page 2-212).
• To convert an integer to a BCD bit string, use a **_TO_BCD_*** instruction (page 2-215).

• Always use the correct instruction name for the data type of Out.
• If the data size of Out is larger than the data size of In, the upper digits of Out will contain 0.
• An error occurs in the following cases. ENO will be FALSE, and Out will not change.

Data type
of In

Data type
of Out

Valid range for In Valid range for Out

BYTE

USINT

16#00 to 16#99 (BCD) 0 to 99

UINT

UDINT
ULINT

SINT

INT
DINT

LINT

WORD

USINT 16#0000 to 16#0255 (BCD) 0 to 255
UINT

16#0000 to 16#9999 (BCD) 0 to 9999UDINT

ULINT
SINT 16#0000 to 16#0127 (BCD) 0 to 127

INT

16#0000 to 16#9999 (BCD) 0 to 9999DINT
LINT

DWORD

USINT 16#0000_0000 to 16#0000_0255 (BCD) 0 to 255

UINT 16#0000_0000 to 16#0006_5535 (BCD) 0 to 65535
UDINT

16#0000_0000 to 16#9999_9999 (BCD) 0 to 99999999
ULINT

SINT 16#0000_0000 to 16#0000_0127 (BCD) 0 to 127
INT 16#0000_0000 to 16#0003_2767 (BCD) 0 to 32767

DINT
16#0000_0000 to 16#9999_9999 (BCD) 0 to 99999999

LINT

LWORD

USINT 16#0000_0000_0000_0000 to
16#0000_0000_0000_0255 (BCD)

0 to 255

UINT 16#0000_0000_0000_0000 to
16#0000_0000_0006_5535 (BCD)

0 to 65535

UDINT 16#0000_0000_0000_0000 to
16#0000_0042_9496_7295 (BCD)

0 to 4294967295

ULINT 16#0000_0000_0000_0000 to
16#9999_9999_9999_9999 (BCD)

0 to 9999999999999999

SINT 16#0000_0000_0000_0000 to
16#0000_0000_0000_0127 (BCD)

0 to 127

INT 16#0000_0000_0000_0000 to
16#0000_0000_0003_2767 (BCD)

0 to 32767

DINT 16#0000_0000_0000_0000 to
16#0000_0021_4748_3647 (BCD)

0 to 2147483647

LINT 16#0000_0000_0000_0000 to
16#9999_9999_9999_9999 (BCD)

0 to 9999999999999999

Additional Information

Precautions for Correct Use

2 Instruction Descriptions

2-220 NJ-series Instructions Reference Manual (W502)

• The value of In is outside of the valid range.
• The value in In is not BCD bit string data (i.e., contains A, B, C, D, E, or F hexadecimal).

2-221

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

B
C

D
 C

o
nversio

n
 In

stru
ctio

n
s

2

B
C

D
sToB

in

BCDsToBin

The BCDsToBin instruction converts signed BCD bit strings to signed integers.

*1 The valid range depends on the value of Format. Refer to Function, below, for details.

*2 If you omit the input parameter, the default value is not applied. A building error will occur.

The BCDsToBin instruction converts signed BCD bit string In to a signed integer.

Instruction Name FB/FUN Graphic expression ST expression

BCDsToBin Signed BCD-to-
Signed Integer
Conversion

FUN Out:=BCDsToBin(In, Format);

Variables

Name Meaning I/O Description Valid range Unit Default

In Data to
convert

Input

Data to convert *1

*2

Format Data format
number

Format of BCD bit string _BCD0 to _BCD3 _BCD0

Out Conver-
sion result

Output Conversion result *1 --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK OK OK OK

Format Refer to Function for the enumerators of the enumerated type _eBCD_FORMAT.

Out Must be a signed integer data type that is the same size as In.

Function

(@)BCDsToBin

EN ENO
In Out
Format

2 Instruction Descriptions

2-222 NJ-series Instructions Reference Manual (W502)

The data type of data format number Format is enumerated type _eBCD_FORMAT. Select one of the
following: _BCD0, _BCD1, _BCD2, or _BCD3. The sign specification in the upper four bits of In
depends on the BCD format number. The data format examples shown below use WORD data for In.

The same sizes of data types are used for In and Out. The valid ranges depend on the value of Format,
as shown below.

The following example is for when In is WORD#2#1011_0100_0101_0010 and Format is _BCD1.

Value of Format
_BCD0 _BCD1 _BCD2 _BCD3

Data
type of

In
↓

Data
type of

Out

BYTE
↓

SINT

−9 to 9 −79 to 79 −9 to 99 −19 to 99

WORD
↓

INT

−999 to 999 −7999 to 7999 −999 to 9999 −1999 to 9999

DWORD
↓

DINT

−9999999 to 9999999 −79999999 to
79999999

−9999999 to 99999999 −19999999 to
99999999

LWORD
↓

LINT

−999999999999999 to
999999999999999

−7999999999999999 to
7999999999999999

−999999999999999 to
9999999999999999

−1999999999999999 to
9999999999999999

Format = _BCD0
Valid range of In: −999 to 999 (BCD)

Format = _BCD2
Valid range of In: −999 to 9999 (BCD)

Format = _BCD1
Valid range of In: −7999 to 7999 (BCD)

Format = _BCD3
Valid range of In: −1999 to 9999 (BCD)

3 BCD digits (12 bits)

3 BCD digits (12 bits)

3 BCD digits (12 bits)

3 BCD digits (12 bits)

#0 to #9: BCD digit 4 (positive)
#A: Negative, BCD digit 4 is 1
#F: Negative, BCD digit 4 is 0
(#B to #E: error)

Sign bit

#0 to #9: BCD digit 4 (positive)
#F: Negative
(#A to #E: error)

0: Positive Sign bit
0: Positive
1: Negative

1: Negative

BCD digit 4 (three bits: 12 to 14)

15 1211 8 7 4 3 0 15 1211 8 7 4 3 0

In In

In In

15 1211 8 7 4 3 0 15 1211 8 7 4 3 0

abc:=BCDsToBin(WORD#2#1011_0100_0101_0010,
 _BCD1);

LD ST

abc
_BCD1

WORD#2#1011_0100_0101_0010

BCDsToBin

EN ENO
In
Format

WORD#2#1011_0100_0101_0010 -3452In Out=abc

WORD BCD data INT data

2-223

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

B
C

D
 C

o
nversio

n
 In

stru
ctio

n
s

2

B
C

D
sToB

in

• Use the same sizes of data types for In and Out.

• An error occurs in the following cases. ENO will be FALSE, and Out will not change.

• The value of Format is _BCD0 and the upper digit of In is 2 to F.

• The value of Format is _BCD2 and the upper digit of In is A to E.

• The value of Format is _BCD3 and the upper digit of In is B to E.

• Except for the above conditions, any digit in In is A to F.

• The value of Format is outside of the valid range.

Precautions for Correct Use

2 Instruction Descriptions

2-224 NJ-series Instructions Reference Manual (W502)

BinToBCDs_**

These instructions convert signed integers to signed BCD bit strings.

* The valid range depends on the value of Format. Refer to Function, below, for details.

These instructions convert signed integer In to a signed BCD bit string.

The name of the instruction is determined by the data type of Out. For example, if Out is the WORD
data type, the instruction is BinToBCDs_WORD.

Instruction Name FB/FUN Graphic expression ST expression

BinToBCDs_** Signed Integer-to-
BCD Conversion
Group

FUN Out:=BinToBCDs(In, For-
mat);

"**" must be a bit string data
type.

Variables

Name Meaning I/O Description Valid range Unit Default

In Data to
convert

Input

Data to convert *

0

Format Data format
number

Format of BCD bit string _BCD0 to _BCD3 _BCD0

Out Conver-
sion result

Output Conversion result * --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK OK OK OK

Format Refer to Function for the enumerators of the enumerated type _eBCD_FORMAT.

Out Must be same size of data type as In

Function

(@)BinToBCDs_**

EN ENO
In Out
Format

"**" must be a bit string data type.

2-225

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

B
C

D
 C

o
nversio

n
 In

stru
ctio

n
s

2

B
inToB

C
D

s_**

The data type of data format number Format is enumerated type _eBCD_FORMAT. Select one of the
following: _BCD0, _BCD1, _BCD2, or _BCD3. The sign specification in the upper four bits of Out
depends on the BCD format number. The data format examples shown below use WORD data for Out.

The same sizes of data types are used for In and Out. The valid ranges depend on the value of Format,
as shown below.

The following example shows the BinToBCDs_WORD instruction when In is INT#−3452 and Format is
_BCD1.

Value of Format
_BCD0 _BCD1 _BCD2 _BCD3

Data
type of

In
↓

Data
type of

Out

SINT
↓

BYTE
−9 to 9 −79 to 79 −9 to 99 −19 to 99

INT
↓

WORD
−999 to 999 −7999 to 7999 −999 to 9999 −1999 to 9999

DINT
↓

DWORD
−9999999 to 9999999

−79999999 to
79999999

−9999999 to 99999999
−19999999 to
99999999

LINT
↓

LWORD

−999999999999999 to
999999999999999

−7999999999999999 to
7999999999999999

−999999999999999 to
9999999999999999

−1999999999999999 to
9999999999999999

Format = _BCD0
Valid range of Out: −999 to 999 (BCD)

3 BCD digits (12 bits)

3 BCD digits (12 bits) 3 BCD digits (12 bits)

#0 to #9: BCD digit 4 (positive)
#A: Negative, BCD digit 4 is 1
#F: Negative, BCD digit 4 is 0
(#B to #E: error)

#0 to #9: BCD digit 4 (positive)
#F: Negative
(#A to #E: error)

3 BCD digits (12 bits)

BCD digit 4 (three bits: 12 to 14) Sign bit

Sign bit
0: Positive
1: Negative

0: Positive
1: Negative

Format = _BCD2
Valid range of Out: −999 to 9999 (BCD)

Format = _BCD3
Valid range of Out: −1999 to 9999 (BCD)

Format = _BCD1
Valid range of Out: −7999 to 7999 (BCD)

Out

15 1211 8 7 4 3 0 15 1211 8 7 4 3 0

15 1211 8 7 4 3 0

Out

Out Out

15 1211 8 7 4 3 0

abc:=BinToBCDs_WORD(INT#-3452,_BCD1);

LD ST

abcINT#-3452
_BCD1

BinToBCDs_WORD

EN ENO
In
Format

WORD BCD data INT data

2#1011_0100_0101_0010INT#-3452In Out=abc

2 Instruction Descriptions

2-226 NJ-series Instructions Reference Manual (W502)

• Always use the correct instruction name for the data type of Out.

• An error occurs in the following cases. ENO will be FALSE, and Out will not change.

• The value of In is outside of the valid range.

• The value of Format is outside of the valid range.

Precautions for Correct Use

2-227

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

B
C

D
 C

o
nversio

n
 In

stru
ctio

n
s

2

A
ryToB

C
D

AryToBCD

The AryToBCD instruction converts the elements of an unsigned integer array to BCD bit strings.

*1 The valid ranges depend on the data types of the elements of In[] and AryOut[]. Refer to Function for details.

*2 If you omit an input parameter, the default value is not applied. A building error will occur.

Instruction Name FB/FUN Graphic expression ST expression

AryToBCD Array BCD
Conversion

FUN AryToBCD(In, Size, Ary-
Out);

Variables

Name Meaning I/O Description Valid range Unit Default

In[] (array) Unsigned
integer
array Input

Unsigned integer array *1

*2

Size Number of
elements

Number of elements of In[]
for conversion

Depends on data type. 1

AryOut[]
(array)

BCD array In-out BCD array *1 --- ---

Out Return
value

Output Always TRUE TRUE only --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In[] (array) OK OK OK OK

Size OK

AryOut[]
(array)

Must be a bit string array. The data type must be the same size as the elements of In[].

Out OK

(@)AryToBCD
EN ENO
In Out
Size
AryOut

2 Instruction Descriptions

2-228 NJ-series Instructions Reference Manual (W502)

The AryToBCD instruction converts Size elements of unsigned integer array In[] starting from In[0] to
a BCD bit string. It outputs the BCD bit string to BCD array AryOut[].

The following example is for when Size is UINT#3.

The following table shows the valid ranges for In[] and AryOut[] according to the data types of their
elements.

• Use the same data type and size for In[] and AryOut[]. For example, if the elements of In[] are UINT
data, use WORD as the data type of the elements of AryOut[].

• This instruction does not convert signed binary to signed BCD. Use an unsigned integer (USINT,
UINT, UDINT, or ULINT) as the data type of In[].

• The values in AryOut[] do not change if the value of Size is 0.

• Return value Out is not used when the instruction is used in ST.

• An error occurs in the following cases. ENO will be FALSE, and AryOut[] will not change.

• The value of In[] is outside of the valid range.

• The data type sizes of In[] and AryOut[] are different.

• The value of Size exceeds the array area of In[] or AryOut[].

Function

Data type of the ele-
ments of In[]

Data type of the ele-
ments of AryOut[]

Valid range of In[] Valid range of AryOut[]

USINT BYTE 0 to 99 16#00 to 16#99 (BCD)

UINT WORD 0 to 9999 16#0000 to 16#9999 (BCD)

UDINT DWORD 0 to 99999999 16#0000_0000 to
16#9999_9999 (BCD)

ULINT LWORD 0 to 9999999999999999 16#0000_0000_0000_0000 to
16#9999_9999_9999_9999 (BCD)

Precautions for Correct Use

AryToBCD(abc[1], UINT#3, def[2]);

LD ST

UINT#3
abc[1]

def[2] def[2]

AryToBCD
EN ENO
In
Size
AryOut

In[0]=abc[1]
In[1]=abc[2]
In[2]=abc[3]

16#10EC
16#0013
16#123B

AryOut[0]=def[2]
AryOut[1]=def[3]
AryOut[2]=def[4]

4332
0019
4667

Size=UINT#3

2-229

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

B
C

D
 C

o
nversio

n
 In

stru
ctio

n
s

2

A
ryToB

in

AryToBin

The AryToBin instruction converts the elements of an array of BCD bit strings into unsigned integers.

*1 The valid ranges depend on the data types of the elements of In[] and AryOut[]. Refer to Function for details.

*2 If you omit an input parameter, the default value is not applied. A building error will occur.

Instruction Name FB/FUN Graphic expression ST expression

AryToBin Array Unsigned
Integer Conversion

FUN AryToBin(In, Size, Ary-
Out);

Variables

Name Meaning I/O Description Valid range Unit Default

In[] (array) Array of
BCD bit
strings Input

Array of BCD bit strings *1

*2

Size Number of
elements

Number of elements of In[]
for conversion

Depends on data type. 1

AryOut[]
(array)

Unsigned
integer
array

In-out Unsigned integer array *1 --- ---

Out Return
value

Output Always TRUE TRUE only --- ---

B
o

o
lean

Bit string Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In[] (array) OK OK OK OK

Size OK

AryOut[]
(array)

Must be an unsigned integer array. The data type must be the same size as the elements of In[].

Out OK

(@)AryToBin
EN ENO
In Out
Size
AryOut

2 Instruction Descriptions

2-230 NJ-series Instructions Reference Manual (W502)

The AryToBin instruction converts Size elements of array of BCD bit strings In[] starting from In[0] to
unsigned integers. It outputs the unsigned integers to unsigned integer array AryOut[].

The following example is for when Size is UINT#3.

The following table shows the valid ranges for In[] and AryOut[] according to the data types of their
elements.

• Use the same data type and size for In[] and AryOut[]. For example, if the elements of In[] are WORD
data, use USINT as the data type of the elements of AryOut[].

• This instruction does not convert signed BCD to signed binary. Use an unsigned integer (USINT,
UINT, UDINT, or ULINT) as the data type of AryOut [].

• The values in AryOut[] do not change if the value of Size is 0.

• Return value Out is not used when the instruction is used in ST.

• An error occurs in the following cases. ENO will be FALSE, and AryOut[] will not change.

• The data type sizes of In[] and AryOut[] are different.

• The value of Size exceeds the array area of In[] or AryOut[].

• A value in In[] is not a BCD bit string (i.e., contains A, B, C, D, E, or F hexadecimal).

Function

Data type of the ele-
ments of In[]

Data type of the ele-
ments of AryOut[]

Valid range of In[] Valid range of AryOut[]

BYTE USINT 16#00 to 16#99 (BCD) 0 to 99

WORD UINT 16#0000 to 16#9999 (BCD) 0 to 9999

DWORD UDINT 16#0000_0000 to 16#9999_9999
(BCD)

0 to 99999999

LWORD ULINT 16#0000_0000_0000_0000 to
16#9999_9999_9999_9999 (BCD)

0 to 9999999999999999

Precautions for Correct Use

AryToBin(abc[1], UINT#3, def[2]);

LD ST

UINT#3
abc[1]

def[2] def[2]

AryToBin
EN ENO
In
Size
AryOut

In[0]=abc[1]
In[1]=abc[2]
In[2]=abc[3]

16#10EC
16#0013
16#123B

AryOut[0]=def[2]
AryOut[1]=def[3]
AryOut[2]=def[4]

4332
0019
4667

Size=UINT#3

D
ata Typ

e C
o

nversio
n

 In
stru

ctio
n

s

2

2-231NJ-series Instructions Reference Manual (W502)

Data Type Conversion Instructions

Instruction Name Page Instruction Name Page
TO* (Integer-to-Integer
Conversion Group)

Integer-to-Integer Conver-
sion Group

2-232 **_TO_STRING (Real Num-
ber-to-Text String Conver-
sion Group)

Real Number-to-Text String
Conversion Group

2-257

TO* (Integer-to-Bit
String Conversion Group)

Integer-to-Bit String Con-
version Group

2-235 RealToFormatString REAL-to-Formatted Text
String

2-259

TO* (Integer-to-Real
Number Conversion Group)

Integer-to-Real Number
Conversion Group

2-237 LrealToFormatString LREAL-to-Formatted Text
String

2-264

TO* (Bit String-to-Inte-
ger Conversion Group)

Bit String-to-Integer Con-
version Group

2-239 STRING_TO_** (Text
String-to-Integer Conversion
Group)

Text String-to-Integer Con-
version Group

2-270

TO* (Bit String-to-Bit
String Conversion Group)

Bit String-to-Bit String Con-
version Group

2-242 STRING_TO_** (Text
String-to-Bit String Conver-
sion Group)

Text String-to-Bit String
Conversion Group

2-272

TO* (Bit String-to-Real
Number Conversion Group)

Bit String-to-Real Number
Conversion Group

2-244 STRING_TO_** (Text
String-to-Real Number Con-
version Group)

Text String-to-Real Number
Conversion Group

2-274

TO* (Real Number-to-
Integer Conversion Group)

Real Number-to-Integer
Conversion Group

2-246 TO_** (Integer Conversion
Group)

Integer Conversion Group 2-277

TO* (Real Number-to-
Bit String Conversion Group)

Real Number-to-Bit String
Conversion Group

2-249 TO_** (Bit String Conver-
sion Group)

Bit String Conversion Group 2-279

TO* (Real Number-to-
Real Number Conversion
Group)

Real Number-to-Real Num-
ber Conversion Group

2-251 TO_** (Real Number Con-
version Group)

Real Number Conversion
Group

2-281

**_TO_STRING (Integer-to-
Text String Conversion
Group)

Integer-to-Text String Con-
version Group

2-253 TRUNC, Round, and
RoundUp

Truncate/Round Off Real
Number/Round Up Real
Number

2-283

**_TO_STRING (Bit String-
to-Text String Conversion
Group)

Bit String-to-Text String
Conversion Group

2-255

2 Instruction Descriptions

2-232 NJ-series Instructions Reference Manual (W502)

TO* (Integer-to-Integer
Conversion Group)

These instructions convert integers to integers with different data types.

* The valid ranges depend on the data types of In and Out. Refer to Function, below, for details.

These instructions convert an integer, In, to an integer with a different data type.

The name of the instruction is determined by the data types of In and conversion result Out. For exam-
ple, if In is INT data and Out is DINT data, the name of the instruction is INT_TO_DINT.

The following example for the INT_TO_DINT instruction is for when In is INT#1234.

Instruction Name FB/FUN Graphic expression ST expression

TO* Integer-to-Integer
Conversion Group

FUN Out:=**_TO_*** (In);

"**" and "***" must be
different integer data
types.

Variables

Name Meaning I/O Description Valid range Unit Default

In Data to
convert

Input Data to convert * --- 0

Out Conver-
sion result

Output Conversion result * --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK OK OK OK OK OK OK OK

Out OK OK OK OK OK OK OK OK

Function

"**" and "***" must be different integer
data types.

(@)**_TO_***
EN ENO
In Out

abc:=INT_TO_DINT(INT#1234);

LD ST

abcINT#1234

INT_TO_DINT

EN ENO
In

INT data DINT data

In Out=abcINT#1234 1234

2-233

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

D
ata Typ

e C
o

nversio
n

 In
stru

ctio
n

s

2

**_TO
_*** (Integer-to-Integer C

onversion G
roup)

The following table shows the valid ranges for In and Out according to their data types.

Data type
of In

Data type
of Out

Valid range for In and Out

USINT

UINT

0 to 255UDINT

ULINT
SINT 0 to 127

INT

0 to 255DINT
LINT

UINT

USINT 0 to 255

UDINT
0 to 65535

ULINT

SINT 0 to 127

INT 0 to 32767
DINT

0 to 65535
LINT

UDINT

USINT 0 to 255
UINT 0 to 65535

ULINT 0 to 4294967295

SINT 0 to 127
INT 0 to 32767

DINT 0 to 2147483647

LINT 0 to 4294967295

ULINT

USINT 0 to 255

UINT 0 to 65535

UDINT 0 to 4294967295
SINT 0 to 127

INT 0 to 32767

DINT 0 to 2147483647
LINT 0 to 9223372036854775807

SINT

USINT

0 to 127
UINT
UDINT

ULINT

INT
−128 to 127DINT

LINT

INT

USINT 0 to 255

UINT
0 to 32767UDINT

ULINT

SINT −128 to 127
DINT

−32768 to 32767
LINT

DINT

USINT 0 to 255
UINT 0 to 65535

UDINT
0 to 2147483647

ULINT
SINT −128 to 127

INT −32768 to 32767

LINT −2147483648 to 2147483647

2 Instruction Descriptions

2-234 NJ-series Instructions Reference Manual (W502)

To convert data with any data type to integer data, use a TO_** (Integer Conversion Group) instruction
(page 2-277).

• Always use the correct instruction name for the data types of In and Out.

• If In is a signed integer and the data size of Out is larger than the data size of In, sign extension is
performed.

• If In is an unsigned integer and the data size of Out is larger than the data size of In, the upper digits
of Out will contain 0.

• If the data size of Out is smaller than the data size of In, the upper digits are truncated in Out.

LINT

USINT 0 to 255

UINT 0 to 65535

UDINT 0 to 4294967295
ULINT 0 to 9223372036854775807

SINT −128 to 127

INT −32768 to 32767
DINT −2147483648 to 2147483647

Additional Information

Precautions for Correct Use

Data type
of In

Data type
of Out

Valid range for In and Out

2-235

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

D
ata Typ

e C
o

nversio
n

 In
stru

ctio
n

s

2

**_TO
_*** (Integer-to-B

it S
tring C

onversion G
roup)

TO* (Integer-to-Bit String
Conversion Group)

These instructions convert integers to bit strings.

* The valid ranges depend on the data types of In and Out. Refer to Function, below, for details.

These instructions convert an integer, In, to a bit string.

The name of the instruction is determined by the data types of In and conversion result Out. For exam-
ple, if In is INT data and Out is WORD data, the name of the instruction is INT_TO_WORD.

The following example for the INT_TO_WORD instruction is for when In is INT#−1234.

Instruction Name FB/FUN Graphic expression ST expression

TO* Integer-to-Bit String
Conversion Group

FUN Out:=**_TO_*** (In);

"**" must be an integer data
type.
"***" must be a bit string
data type.

Variables

Name Meaning I/O Description Valid range Unit Default

In Data to
convert

Input Data to convert * --- 0

Out Conver-
sion result

Output Conversion result * --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK OK OK OK OK OK OK OK

Out OK OK OK OK

Function

"**" must be an integer data type.
"***" must be a bit string data type.

(@)**_TO_***
EN ENO
In Out

abc:=INT_TO_WORD(INT#-1234);

LD ST

abcINT#-1234

INT_TO_WORD

EN ENO
In

INT data WORD data

In Out=abcINT#-1234 16#FB2E

2 Instruction Descriptions

2-236 NJ-series Instructions Reference Manual (W502)

The following table shows the valid ranges for In and Out according to their data types.

• To convert a bit string to an integer, use a **_TO_*** (Bit String-to-Integer Conversion Group) instruc-
tion (page 2-239).

• To convert data with any data type to a bit string, use a TO_** (Bit String Conversion Group) instruc-
tion (page 2-279).

• Always use the correct instruction name for the data types of In and Out.

• If In is a signed integer and the data size of Out is larger than the data size of In, sign extension is
performed.

• If In is an unsigned integer and the data size of Out is larger than the data size of In, the upper digits
of Out will contain 0.

• If the data size of Out is smaller than the data size of In, the upper digits are truncated in Out.

Data type
of In

Data type
of Out

Valid range for In Valid range for Out

USINT

BYTE

0 to 255 16#00 to 16#FF
WORD

DWORD
LWORD

UINT

BYTE 0 to 255 16#00 to 16#FF

WORD
0 to 65535 16#0000 to 16#FFFFDWORD

LWORD

UDINT

BYTE 0 to 255 16#00 to 16#FF
WORD 0 to 65535 16#0000 to 16#FFFF

DWORD
0 to 4294967295 16#0000_0000 to 16#FFFF_FFFF

LWORD

ULINT

BYTE 0 to 255 16#00 to 16#FF

WORD 0 to 65535 16#0000 to 16#FFFF

DWORD 0 to 4294967295 16#0000_0000 to 16#FFFF_FFFF

LWORD 0 to 18446744073709551645
16#0000_0000_0000_0000 to
16#FFFF_FFFF_FFFF_FFFF

SINT

BYTE

−128 to 127 16#00 to 16#FF
WORD

DWORD
LWORD

INT

BYTE −128 to 127 16#00 to 16#FF

WORD
−32768 to 32767 16#0000 to 16#FFFFDWORD

LWORD

DINT

BYTE −128 to 127 16#00 to 16#FF
WORD −32768 to 32767 16#0000 to 16#FFFF

DWORD
−2147483648 to 2147483647 16#0000_0000 to 16#FFFF_FFFF

LWORD

LINT

BYTE −128 to 127 16#00 to 16#FF

WORD −32768 to 32767 16#0000 to 16#FFFF

DWORD −2147483648 to 2147483647 16#0000_0000 to 16#FFFF_FFFF

LWORD
−9223372036854775808 to
9223372036854775807

16#0000_0000_0000_0000 to
16#FFFF_FFFF_FFFF_FFFF

Additional Information

Precautions for Correct Use

2-237

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

D
ata Typ

e C
o

nversio
n

 In
stru

ctio
n

s

2

**_TO
_*** (Integer-to-R

eal N
um

ber C
onversion G

roup)

TO* (Integer-to-Real Number
Conversion Group)

These instructions convert integers to real numbers.

* The valid ranges depend on the data types of In and Out. Refer to Function, below, for details.

These instructions convert an integer, In, to a real number.

The name of the instruction is determined by the data types of In and conversion result Out. For exam-
ple, if In is INT data and Out is REAL data, the name of the instruction is INT_TO_REAL.

The following example for the INT_TO_REAL instruction is for when In is INT#1234.

Instruction Name FB/FUN Graphic expression ST expression

TO* Integer-to-Real
Number Conversion
Group

FUN Out:=**_TO_*** (In);

"**" must be an integer data
type.
"***" must be a real number
data type.

Variables

Name Meaning I/O Description Valid range Unit Default

In Data to
convert

Input Data to convert * --- 0

Out Conver-
sion result

Output Conversion result * --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK OK OK OK OK OK OK OK

Out OK OK

Function

"**" must be an integer data type.
"***" must be a real number data type.

(@)**_TO_***
EN ENO
In Out

abc:=INT_TO_REAL(INT#1234);

LD ST

abcINT#1234

INT_TO_REAL

EN ENO
In

2 Instruction Descriptions

2-238 NJ-series Instructions Reference Manual (W502)

The following table shows the valid ranges for In and Out according to their data types.

• To convert a real number to an integer, use a **_TO_*** (Real Number-to-Integer Conversion Group)
instruction (page 2-246).

• To convert data with any data type to a real number, use a TO_** (Real Number Conversion Group)
instruction (page 2-281).

• Always use the correct instruction name for the data types of In and Out.

• Depending on the data types of In and Out, rounding will be performed for the effective digits of the
real number. This will cause error between the values before and after conversion. The following table

lists the data types that result in error.

Data type
of In

Data type
of Out

Valid range for In Valid range for Out

USINT
REAL

0 to 255 0 to 2.55e+2
LREAL

UINT
REAL

0 to 65535 0 to 6.5535e+4
LREAL

UDINT
REAL

0 to 4294967295
0 to 4.294967e+9

LREAL 0 to 4.294967295e+9

ULINT
REAL

0 to 18446744073709551615
0 to 1.844674e+19

LREAL 0 to 1.84467440737095e+19

SINT
REAL

−128 to 127 −1.28e+2 to 1.27e+2
LREAL

INT
REAL

−32768 to 32767 −3.2768e+4 to 3.2767e+4
LREAL

DINT
REAL

−2147483648 to 2147483647
−2.147483e+9 to 2.147483e+9

LREAL −2.147483648e+9 to 2.147483647e+9

LINT
REAL

−9223372036854775808 to
9223372036854775807

−9.223372e+18 to 9.223372e+18

LREAL
−9.22337203685477e+18 to
9.22337203685477e+18

Additional Information

Precautions for Correct Use

Data type
of In

Data type
of Out

Values for which error occurs

DINT
REAL −16777216 or lower, or 16777216 or higher

LINT

UDINT
REAL 16777216 or higher

ULINT

LINT LREAL
−9007199254740992 or lower, or 9007199254740992 or
higher

ULINT LREAL 9007199254740992 or higher

INT data REAL data

In Out=abcINT#1234 1.234e+3

2-239

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

D
ata Typ

e C
o

nversio
n

 In
stru

ctio
n

s

2

**_TO
_*** (B

it S
tring-to-Integer C

onversion G
roup)

TO* (Bit String-to-Integer
Conversion Group)

These instructions convert bit strings to integers.

* The valid ranges depend on the data types of In and Out. Refer to Function, below, for details.

These instructions convert a bit string, In, to an integer.

The name of the instruction is determined by the data types of In and conversion result Out. For exam-
ple, if In is WORD data and Out is INT data, the name of the instruction is WORD_TO_INT.

The following example for the WORD_TO_INT instruction is for when In is WORD #16#1234.

Instruction Name FB/FUN Graphic expression ST expression

TO* Bit String-to-Inte-
ger Conversion
Group

FUN Out:=**_TO_*** (In);

"**" must be a bit string data
type.
"***" must be an integer data
type.

Variables

Name Meaning I/O Description Valid range Unit Default

In Data to
convert

Input Data to convert * --- 0

Out Conver-
sion result

Output Conversion result * --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK OK OK OK

Out OK OK OK OK OK OK OK OK

Function

"**" must be a bit string data type.
"***" must be an integer data type.

(@)**_TO_***
EN ENO
In Out

abc:=WORD_TO_INT(WORD#16#1234);

LD ST

abcWORD#16#1234

WORD_TO_INT

EN ENO
In

2 Instruction Descriptions

2-240 NJ-series Instructions Reference Manual (W502)

The following table shows the valid ranges for In and Out according to their data types.

• To convert an integer to a bit string, use a **_TO_*** (Integer-to-Bit String Conversion Group) instruc-
tion (page 2-235).

• To convert data with any data type to a bit string, use a TO_** (Bit String Conversion Group) instruc-
tion (page 2-279).

• Always use the correct instruction name for the data types of In and Out.

• If the data size of Out is larger than the data size of In, the upper digits of Out will contain 0.

Data type
of In

Data type
of Out

Valid range for In Valid range for Out

BYTE

USINT

16#00 to 16#FF

0 to 255
UINT

UDINT

ULINT
SINT

−128 to 127
INT

DINT
LINT

WORD

USINT 16#00 to 16#FF 0 to 255

UINT
16#0000 to 16#FFFF 0 to 65535UDINT

ULINT

SINT 16#00 to 16#FF −128 to 127
INT

16#0000 to 16#FFFF −32768 to 32767DINT

LINT

DWORD

USINT 16#00 to 16#FF 0 to 255

UINT 16#0000 to 16#FFFF 0 to 65535

UDINT
16#0000_0000 to 16#FFFF_FFFF 0 to 4294967295

ULINT

SINT 16#00 to 16#FF −128 to 127

INT 16#0000 to 16#FFFF −32768 to 32767

DINT
16#0000_0000 to 16#FFFF_FFFF −2147483648 to 2147483647

LINT

LWORD

USINT 16#00 to 16#FF 0 to 255

UINT 16#0000 to 16#FFFF 0 to 65535
UDINT 16#0000_0000 to 16#FFFF_FFFF 0 to 4294967295

ULINT
16#0000_0000_0000_0000 to
16#FFFF_FFFF_FFFF_FFFF

0 to 18446744073709551645

SINT 16#00 to 16#FF −128 to 127

INT 16#0000 to 16#FFFF −32768 to 32767
DINT 16#0000_0000 to 16#FFFF_FFFF −2147483648 to 2147483647

LINT
16#0000_0000_0000_0000 to
16#FFFF_FFFF_FFFF_FFFF

-9223372036854775808 to
9223372036854775807

Additional Information

Precautions for Correct Use

WORD data INT data

WORD#16#1234 4660In Out=abc

2-241

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

D
ata Typ

e C
o

nversio
n

 In
stru

ctio
n

s

2

**_TO
_*** (B

it S
tring-to-Integer C

onversion G
roup)

• If the data size of Out is smaller than the data size of In, the upper digits are truncated in Out.

2 Instruction Descriptions

2-242 NJ-series Instructions Reference Manual (W502)

TO* (Bit String-to-Bit String
Conversion Group)

These instructions convert bit strings to bit strings with different data types.

* The valid ranges depend on the data types of In and Out. Refer to Function, below, for details.

These instructions convert a bit string, In, to a bit string with a different data type.

The name of the instruction is determined by the data types of In and conversion result Out. For exam-
ple, if In is WORD data and Out is DWORD data, the name of the instruction is WORD_TO_DWORD.

The following example for the WORD_TO_DWORD instruction is for when In is WORD#16#F123.

Instruction Name FB/FUN Graphic expression ST expression

TO* Bit String-to-Bit
String Conversion
Group

FUN Out:=**_TO_*** (In);

"**" and "***" must be differ-
ent bit string data types.

Variables

Name Meaning I/O Description Valid range Unit Default

In Data to
convert

Input Data to convert * --- 0

Out Conver-
sion result

Output Conversion result * --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK OK OK OK

Out OK OK OK OK

Function

"**" and "***" must be different
bit string data types.

(@)**_TO_***
EN ENO
In Out

abc:=WORD_TO_DWORD(WORD#16#F123);

LD ST

abcWORD#16#F123

WORD_TO_DWORD

EN ENO
In

2-243

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

D
ata Typ

e C
o

nversio
n

 In
stru

ctio
n

s

2

**_TO
_*** (B

it S
tring-to-B

it S
tring C

onversion G
roup)

The following table shows the valid ranges for In and Out according to their data types.

To convert data with any data type to a bit string, use a TO_** (Bit String Conversion Group) instruction
(page 2-279).

• Always use the correct instruction name for the data types of In and Out.

• If the data size of Out is larger than the data size of In, the upper digits of Out will contain 0.

• If the data size of Out is smaller than the data size of In, the upper digits are truncated when the data
is output to Out.

Data type
of In

Data type
of Out

Valid range for In and Out

BYTE

WORD

16#00 to 16#FFDWORD

LWORD

WORD

BYTE 16#00 to 16#FF

DWORD
16#0000 to 16#FFFF

LWORD

DWORD

BYTE 16#00 to 16#FF

WORD 16#0000 to 16#FFFF

LWORD 16#0000_0000 to 16#FFFF_FFFF

LWORD

BYTE 16#00 to 16#FF

WORD 16#0000 to 16#FFFF

DWORD 16#0000_0000 to 16#FFFF_FFFF

Additional Information

Precautions for Correct Use

WORD data DWORD data

In Out=abcWORD#16#F123 16#0000F123

2 Instruction Descriptions

2-244 NJ-series Instructions Reference Manual (W502)

TO* (Bit String-to-Real
Number Conversion Group)

These instructions convert bit strings to real numbers.

* The valid ranges depend on the data types of In and Out. Refer to Function, below, for details.

These instructions take a bit string, In, as an unsigned integer of the same size and convert it to a real
number.

The name of the instruction is determined by the data types of In and conversion result Out. For exam-
ple, if In is WORD data and Out is REAL data, the name of the instruction is WORD_TO_REAL.

The following example for the WORD_TO_REAL instruction is for when In is WORD#16#8000.

Instruction Name FB/FUN Graphic expression ST expression

TO* Bit String-to-Real
Number Conversion
Group

FUN Out:=**_TO_*** (In);

"**" must be a bit string data
type.
"***" must be a real number
data type.

Variables

Name Meaning I/O Description Valid range Unit Default

In Data to
convert

Input Data to convert * --- 0

Out Conver-
sion result

Output Conversion result * --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK OK OK OK

Out OK OK

Function

"**" must be a bit string data type.
"***" must be a real number data type.

(@)**_TO_***
EN ENO
In Out

abc:=WORD_TO_REAL(WORD#16#8000);

LD ST

abcWORD#16#8000

WORD_TO_REAL

EN ENO
In

2-245

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

D
ata Typ

e C
o

nversio
n

 In
stru

ctio
n

s

2

**_TO
_*** (B

it S
tring-to-R

eal N
um

ber C
onversion G

roup)

The following table shows the valid ranges for In and Out according to their data types.

• To convert a real number to a bit string, use a **_TO_*** (Real Number-to-Bit String Conversion
Group) instruction (page 2-249).

• To convert data with any data type to a real number, use a TO_** (Real Number Conversion Group)
instruction (page 2-281).

• Always use the correct instruction name for the data types of In and Out.

• Depending on the data types of In and Out, rounding will be performed for the effective digits of the
real number. This will cause error between the values before and after conversion. The following table
lists the data types that result in error.

Data
type of

In

Data type
of Out

Valid range for In Valid range for Out

BYTE
REAL

16#00 to 16#FF 0 to 2.55e+2
LREAL

WORD
REAL

16#0000 to 16#FFFF 0 to 6.5535e+4
LREAL

DWORD
REAL

16#0000_0000 to 16#FFFF_FFFF
0 to 4.294967e+9

LREAL 0 to 4.294967295e+9

LWORD
REAL 16#0000_0000_0000_0000 to

16#FFFF_FFFF_FFFF_FFFF
0 to 1.844674e+19

LREAL 0 to 1.84467440737095e+19

Additional Information

Precautions for Correct Use

Data type
of In

Data type
of Out

Values for which error occurs

DWORD REAL 16#0100_0000 or higher

LWORD LREAL 16#0002_0000_0000_0000 or higher

WORD data REAL data

In Out=abcWORD#16#8000 3.2768e+4

2 Instruction Descriptions

2-246 NJ-series Instructions Reference Manual (W502)

TO* (Real Number-to-Integer
Conversion Group)

These instructions convert real numbers to integers.

* The valid ranges depend on the data types of In and Out. Refer to Function, below, for details.

These instructions convert a real number, In, to an integer.

The name of the instruction is determined by the data types of In and conversion result Out. For exam-
ple, if In is LREAL data and Out is LINT data, the name of the instruction is LREAL_TO_LINT.

The following example for the LREAL_TO_LINT instruction is for when In is LREAL#1.0e+10.

Instruction Name FB/FUN Graphic expression ST expression

TO* Real Number-to-
Integer Conversion
Group

FUN Out:=**_TO_*** (In);

"**" must be a real number
data type.
"***" must be an integer data
type.

Variables

Name Meaning I/O Description Valid range Unit Default

In Data to
convert

Input Data to convert * --- 0

Out Conver-
sion result

Output Conversion result * --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK OK

Out OK OK OK OK OK OK OK OK

Function

"**" must be a real number data type.
"***" must be an integer data type.

(@)**_TO_***
EN ENO
In Out

abc:=LREAL_TO_LINT(LREAL#1.0e+10);

LD ST

abcLREAL#1.0e+10

LREAL_TO_LINT

EN ENO
In

2-247

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

D
ata Typ

e C
o

nversio
n

 In
stru

ctio
n

s

2

**_TO
_*** (R

eal N
um

ber-to-Integer C
onversion G

roup)

The fractional part of the value of In is rounded off to the closest integer. The following table shows how
values are rounded.

The following table shows the valid ranges for In and Out according to their data types.

Value of
fractional

part
Treatment Examples

Less than
0.5

The fractional part is truncated. 1.49 → 1

−1.49 → −1
0.5 If the ones digit is an even number, the fractional part

is truncated. If it is an odd number, the value is
rounded up.

1.50 → 2

2.50 → 2

−1.50 → −2

−2.50 → −2

Greater
than 0.5

The fractional part is rounded up. 1.51 → 2

−1.51 → −2

Data type
of In

Data type
of Out

Valid range for In Valid range for Out

REAL

USINT 0 to 2.55e+2 0 to 255

UINT 0 to 6.5535e+4 0 to 65535
UDINT 0 to 4.294967e+9 0 to 4294967295

ULINT 0 to 1.844674e+19 0 to 18446744073709551615

SINT −1.28e+2 to 1.27e+2 −128 to 127
INT −3.2768e+4 to 3.2767e+4 −32768 to 32767

DINT −2.147483e+9 to 2.147483e+9 −2147483648 to 2147483647

LINT −9.223372e+18 to 9.223372e+18 −9223372036854775808 to
9223372036854775807

LREAL

USINT 0 to 0.255e+3 0 to 255
UINT 0 to 6.5535e+4 0 to 65535

UDINT 0 to 4.294967295e+9 0 to 4294967295

ULINT 0 to 1.84467440737095e+19 0 to 18446744073709551615
SINT −1.28e+2 to 1.27e+2 −128 to 127

INT −3.2768e+4 to 3.2767e+4 −32768 to 32767

DINT −2.147483648e+9 to 2.147483647e+9 −2147483648 to 2147483647
LINT −9.22337203685477e+18 to

9.22337203685477e+18
−9223372036854775808 to
9223372036854775807

LREAL data LINT data

In Out=abcLREAL#1.0e+10 10000000000

2 Instruction Descriptions

2-248 NJ-series Instructions Reference Manual (W502)

• To convert an integer to a real number, use an Integer-to-Real Number Conversion Group Instruction.

• To convert data with any data type to an integer, use an Integer Conversion Group Instruction.

• You can use the following instructions to convert a real number to an integer: TRUNC (Truncate),
Round (Round Off Real Number), and RoundUp (Round Up Real Number). All of these instructions
have a REAL input and DINT output, or a LREAL input and LINT output. The differences between
these instructions are shown in the following table.

• Always use the correct instruction name for the data types of In and Out.

• If the conversion result exceeds the valid range of Out, Out will contain an illegal value.

Additional Information

Input value
Output value

REAL_TO_INT TRUNC Round RoundUp

REAL#1.6 INT#2 DINT#1 DINT#2 DINT#2

REAL#1.5 INT#2 DINT#1 DINT#2 DINT#2

REAL#1.5 INT#1 DINT#1 DINT#1 DINT#2

REAL#2.5 INT#2 DINT#2 DINT#2 DINT#3

REAL#-1.6 INT#-2 DINT#-1 DINT#-2 DINT#-2

REAL#-1.5 INT#-2 DINT#-1 DINT#-2 DINT#-2

REAL#-1.4 INT#-1 DINT#-1 DINT#-1 DINT#-2

REAL#-2.5 INT#-2 DINT#-2 DINT#-2 DINT#-3

Precautions for Correct Use

2-249

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

D
ata Typ

e C
o

nversio
n

 In
stru

ctio
n

s

2

**_TO
_*** (R

eal N
um

ber-to-B
it S

tring C
onversion G

roup)

TO* (Real Number-to-Bit
String Conversion Group)

These instructions convert real numbers to bit strings.

* The valid ranges depend on the data types of In and Out. Refer to Function, below, for details.

These instructions convert a real number, In, to a bit string.

The name of the instruction is determined by the data types of In and conversion output Out. For exam-
ple, if In is LREAL data and Out is DWORD data, the name of the instruction is LREAL_TO_DWORD.

The following example for the LREAL_TO_DWORD instruction is for when In is LREAL#6.5536e+4.

Instruction Name FB/FUN Graphic expression ST expression

TO* Real Number-to-
Bit String Conver-
sion Group

FUN Out:=**_TO_*** (In);

"**" must be a real number
data type.
"***" must be a bit string
data type.

Variables

Name Meaning I/O Description Valid range Unit Default

In Data to
convert

Input Data to convert * --- 0

Out Conver-
sion result

Output Conversion result * --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK OK

Out OK OK OK OK

Function

"**" must be a real number data type.
"***" must be a bit string data type.

(@)**_TO_***
EN ENO
In Out

abc:=LREAL_TO_DWORD(LREAL#6.5536e+4);

LD ST

abcLREAL#6.5536e+4

LREAL_TO_DWORD

EN ENO
In

2 Instruction Descriptions

2-250 NJ-series Instructions Reference Manual (W502)

Conversion is performed using the following procedure.

1 The fractional part of the value of In is rounded off to the closest integer as described below.

2 The resulting integer is taken as an unsigned integer and output as a bit string.

The following table shows how values are rounded.

The following table gives some conversion examples.

The following table shows the valid ranges for In and Out according to their data types.

To convert a bit string to a real number, use a **_TO_*** (Bit String-to-Real Number Conversion Group)
instruction (page 2-244).

• Always use the correct instruction name for the data types of In and Out.

• If the conversion result exceeds the valid range of Out, Out will contain an illegal value.

Value of
fractional

part
Treatment Examples

Less than
0.5

The fractional part is truncated. 1.49 → 1

−1.49 → −1
0.5 If the ones digit is an even number, the fractional part

is truncated. If it is an odd number, the value is
rounded up.

1.50 → 2

2.50 → 2

−1.50 → −2

−2.50 → −2

Greater
than 0.5

The fractional part is rounded up. 1.51 → 2

−1.51 → −2

Value of
In

Integer
Value of

Out
1.6 2 16#0002
3.5 4 16#0004

−1.6 −2 16#FFFE

Data
type of In

Data type
of Out

Valid range for In Valid range for Out

REAL

BYTE −1.285999e+2 to 1.274999e+2 16#00 to 16#FF

WORD −3.276859e+4 to 3.276749e+4 16#0000 to 16#FFFF
DWORD −2.147483e+9 to 2.147483e+9 16#0000_0000 to 16#FFFF_FFFF

LWORD −9.223372e+18 to 9.223372e+18 16#0000_0000_0000_0000 to
16#FFFF_FFEE_FFFF_FFFF

LREAL

BYTE −1.28599999999999e+2 to
1.27499999999999e+2

16#00 to 16#FF

WORD −3.27685999999999e+4 to
3.27674999999999e+4

16#0000 to 16#FFFF

DWORD −2.14748364859999e+9 to
2.14748364749999e+9

16#0000_0000 to 16#FFFF_FFFF

LWORD −9.22337203685477e+18 to
9.22337203685477e+18

16#0000_0000_0000_0000 to
16#FFFF_FFFF_FFFF_FFFF

Additional Information

Precautions for Correct Use

LREAL data DWORD data

In Out=abcLREAL#6.5536e+4 16#0001_0000

2-251

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

D
ata Typ

e C
o

nversio
n

 In
stru

ctio
n

s

2

**_TO
_*** (R

eal N
um

ber-to-R
eal N

um
ber C

onversion G
roup)

TO* (Real Number-to-Real
Number Conversion Group)

These instructions convert real numbers to real numbers with different data types.

* The valid ranges depend on the data types of In and Out. Refer to Function, below, for details.

These instructions convert a real number, In, to a real number with a different data type.

The name of the instruction is determined by the data types of In and conversion result Out. For exam-
ple, if In is REAL data and Out is LREAL data, the name of the instruction is REAL_TO_LREAL.

The following example for the REAL_TO_LREAL instruction is for when In is REAL#3.141592e+0.

Instruction Name FB/FUN Graphic expression ST expression

TO* Real Number-to-
Real Number Con-
version Group

FUN Out:=**_TO_*** (In);

"**" and "***" must be dif-
ferent real number data
types.

Variables

Name Meaning I/O Description Valid range Unit Default

In Data to
convert

Input Data to convert * --- 0

Out Conver-
sion result

Output Conversion result * --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK OK

Out OK OK

Function

"**" and "***" must be different real
number data types.

(@)**_TO_***
EN ENO
In Out

abc:=REAL_TO_LREAL(REAL#3.141592e+0);

LD ST

abcREAL#3.141592e+0

REAL_TO_LREAL

EN ENO
In

2 Instruction Descriptions

2-252 NJ-series Instructions Reference Manual (W502)

The following table shows the valid ranges for In and Out according to their data types.

To convert data with any data type to a real number, use a TO_** (Real Number Conversion Group)
instruction (page 2-281).

• Always use the correct instruction name for the data types of In and Out.

• If the value of In is positive or negative infinity, the value of Out is positive or negative infinity.

• If the value of In is nonnumeric data, the value of Out is nonnumeric data.

• If the conversion result exceeds the valid range of Out, the value of Out will be infinity with the same
sign as the value of In.

• For the LREAL_TO_REAL instruction, if the value of In is closer to 0 than ±1.175494e−38, the value
of Out will be 0.

Data type of In Data type of Out Valid range for In and Out
REAL LREAL −3.402823e+38 to 3.402823e+38

or +∞/−∞ LREAL REAL

Additional Information

Precautions for Correct Use

In Out=abc

REAL data LREAL data

REAL#3.141592e+0 3.141592e+0

2-253

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

D
ata Typ

e C
o

nversio
n

 In
stru

ctio
n

s

2

**_TO
_S

T
R

IN
G

 (Integer-to-Text S
tring C

onversion G
roup)

**_TO_STRING (Integer-to-Text
String Conversion Group)

These instructions convert integers to text strings.

* The valid range depends on the data type of In. Refer to Function for details.

These instructions convert an integer, In, to a text string. The number given in In is output to conversion
result Out as a text string. A NULL character (16#00) is placed at the end of Out.

The text in Out is left-aligned. If the value in In requires fewer digits than provided by the data type of In,
zeros will not be output to the upper digits of Out. In other words, leading zeros are suppressed. If In
contains a negative value, a minus sign (−) is added to the front of the text string.

The name of the instruction is determined by the data type of In. For example, if In is the INT data type,
the instruction is INT_TO_STRING.

Instruction Name FB/FUN Graphic expression ST expression

**_TO_STRING Integer-to-Text
String Conversion
Group

FUN Out:=**_TO_STRING(In);

"**" must be an integer data
type.

Variables

Name Meaning I/O Description Valid range Unit Default

In Data to
convert

Input Data to convert Depends on data type. --- 0

Out Conver-
sion result

Output Conversion result * --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK OK OK OK OK OK OK OK

Out OK

Function

"**" must be an integer data type.

(@)**_TO_STRING
EN ENO
In Out

2 Instruction Descriptions

2-254 NJ-series Instructions Reference Manual (W502)

The following example for the INT_TO_STRING instruction is for when In is INT#1234.

The valid range of Out depends on the data type of In as shown below:

To convert a text string number to an integer, use a STRING_TO_** (Text String-to-Integer Conversion
Group) instruction (page 2-270).

• Always use the correct instruction name for the data type of In.

• An error occurs in the following case. ENO will be FALSE, and Out will not change.

• The number of bytes in the conversion result exceeds the size of the output parameter that is con-
nected to Out.

Data type of In Valid range of Out (maximum number of bytes)

USINT 4 bytes (three single-byte alphanumeric characters plus the
final NULL character)

UINT 6 bytes (five single-byte alphanumeric characters plus the final
NULL character)

UDINT 11 bytes (10 single-byte alphanumeric characters plus the final
NULL character)

ULINT 21 bytes (20 single-byte alphanumeric characters plus the final
NULL character)

SINT 5 bytes (four single-byte alphanumeric characters plus the final
NULL character)

INT 7 bytes (six single-byte alphanumeric characters plus the final
NULL character)

DINT 12 bytes (11 single-byte alphanumeric characters plus the final
NULL character)

LINT 21 bytes (20 single-byte alphanumeric characters plus the final
NULL character)

Additional Information

Precautions for Correct Use

abc:=INT_TO_STRING(INT#1234);

LD ST

abcINT#1234

INT_TO_STRING

EN ENO
In

INT data STRING data

In Out=abcINT#1234 ‘1234’

2-255

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

D
ata Typ

e C
o

nversio
n

 In
stru

ctio
n

s

2

**_TO
_S

T
R

IN
G

 (B
it S

tring-to-Text S
tring C

onversion G
roup)

**_TO_STRING (Bit String-to-Text
String Conversion Group)

These instructions convert bit strings to text strings.

* The valid range depends on the data type of In. Refer to Function for details.

These instructions convert a bit string, In, to a text string. The hexadecimal number given in In is output
to conversion result Out as a text string. The #16 prefix of the hexadecimal number is not output to Out.
A NULL character (16#00) is placed at the end of Out.

The text in Out is left-aligned. If the value in In requires fewer digits than provided by the data type of In,
the upper digits of Out will contain 0. In other words, the unused digits are padded with zeros. The num-
ber of bytes in Out (including the NULL character) will always be one greater than twice the number of
bytes in In.

The name of the instruction is determined by the data type of In. For example, if In is the WORD data
type, the instruction is WORD_TO_STRING.

Instruction Name FB/FUN Graphic expression ST expression

**_TO_STRING Bit String-to-Text
String Conversion
Group

FUN Out:=**_TO_STRING(In);

"**" must be a bit string data
type.

Variables

Name Meaning I/O Description Valid range Unit Default

In Data to
convert

Input Data to convert Depends on data type. --- 0

Out Conver-
sion result

Output Conversion result * --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK OK OK OK

Out OK

Function

"**" must be a bit string data type.

(@)**_TO_STRING
EN ENO
In Out

2 Instruction Descriptions

2-256 NJ-series Instructions Reference Manual (W502)

The following example for the WORD_TO_STRING instruction is for when In is WORD#16#1F.

The valid range of Out depends on the data type of In as shown below:

To convert In to a signed text string, first convert it to a signed integer using a **_TO_*** (Bit String-to-
Integer Conversion Group) instruction (page 2-239) and then use a **_TO_STRING (Integer-to-Text
String Conversion Group) instruction (page 2-253).

• Always use the correct instruction name for the data type of In.

• An error occurs in the following case. ENO will be FALSE, and Out will not change.

• The number of bytes in the conversion result exceeds the size of the output parameter that is con-
nected to Out.

Data type of In Valid range of Out (maximum number of bytes)

BYTE 3 bytes (two single-byte alphanumeric characters plus the
final NULL character)

WORD 5 bytes (four single-byte alphanumeric characters plus
the final NULL character)

DWORD 9 bytes (eight single-byte alphanumeric characters plus
the final NULL character)

LWORD 17 bytes (16 single-byte alphanumeric characters plus
the final NULL character)

Additional Information

Precautions for Correct Use

abc:=WORD_TO_STRING(WORD#16#1F);

LD ST

abcWORD#16#1F

WORD_TO_STRING

EN ENO
In

WORD data STRING data

In Out=abcWORD#16#1F ‘001F’

2-257

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

D
ata Typ

e C
o

nversio
n

 In
stru

ctio
n

s

2

**_TO
_S

T
R

IN
G

 (R
eal N

um
ber-to-Text S

tring C
onversion G

roup)

**_TO_STRING (Real Number-to-
Text String Conversion
Group)

These instructions convert real numbers to text strings.

* The valid range depends on the data type of In. Refer to Function for details.

These instructions convert a real number, In, to a text string. In is expressed as an alphanumeric text
string and output to conversion result Out.

The format of Out is as follows:

Instruction Name FB/FUN Graphic expression ST expression

**_TO_STRING Real Number-to-
Text String Conver-
sion Group

FUN Out:=**_TO_STRING(In);

"**" must be a real number
data type.

Variables

Name Meaning I/O Description Valid range Unit Default
In Data to con-

vert
Input Data to convert Depends on

data type.
--- 0.0

Out Conversion
result

Output Conversion result * --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK OK

Out OK

Function

"**" must be a real number data type.

(@)**_TO_STRING

EN ENO
In Out

Sign column
Integer part

Decimal point

Fractional part Exponent

- i . f f f f f f e + n n

2 Instruction Descriptions

2-258 NJ-series Instructions Reference Manual (W502)

A NULL character (16#00) is placed at the end of Out.

The name of the instruction is determined by the data type of In. For example, if In is the REAL data
type, the instruction is REAL_TO_STRING.

The following example shows the REAL_TO_STRING instruction when In is REAL#−1234.567.

If the value of In is 0, infinity, or nonnumeric data, the value of Out is as shown below.

• To convert a text string to a real number, use a STRING_TO_** (Text String-to-Real Number Conver-
sion Group) instruction (page 2-274).

• To specify the format when you convert a real number to a text string, use the RealToFormatString
instruction (page 2-259) or the LrealToFormatString instruction (page 2-264).

• Always use the correct instruction name for the data type of In.

• An error occurs in the following case. ENO will be FALSE, and Out will not change.

• The number of bytes in the conversion result exceeds the size of the output parameter that is con-
nected to Out.

Item Description

Sign column If In contains a negative value, a minus sign (−) is added.

If In contains a positive value, a plus sign (+) is not added.

Integer part The integer part is always only one digit.

Decimal point The decimal point is always given even if In is not a decimal number.

Fractional part If In is REAL data, 6 digits are given. If In is LREAL data, 14 digits are given.

Exponent The exponent is always given. “nn” is 2 or 3 digits.
The sign of “nn” is positive (+) if the absolute value of In is 1.0 or higher and
negative (−) if it is less than 1.0.

Value of In Value of Out

0 0

+∞ inf

−∞ −inf

Nonnumeric data ‘nan’ or ‘−nan’

Additional Information

Precautions for Correct Use

abc:=REAL_TO_STRING(REAL#−1234.567);

LD ST

abcREAL#−1234.567

REAL_TO_STRING

EN ENO
In

REAL#−1234.567

REAL Data

‘−1.234567e+03’

STRING Data

In Out=abc

2-259

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

D
ata Typ

e C
o

nversio
n

 In
stru

ctio
n

s

2

R
ealToF

orm
atS

tring

RealToFormatString

The RealToFormatString instruction converts a REAL variable to a text string with the specified format.

The RealToFormatString instruction converts REAL variable In to a text string. In is expressed as an
alphanumeric text string and output to conversion result Out. A NULL character (16#00) is placed at the
end of Out.

Instruction Name FB/FUN Graphic expression ST expression

RealToFormat-
String

REAL-to-Format-
ted Text String

FUN Out:=RealToFormat-
String(In, Exponent, Sign,
MinLen, DecPlace);

Variables

Name Meaning I/O Description Valid range Unit Default
In Data to

convert

Input

Data to convert

Depends on
data type. ---

0.0

Exponent Exponent TRUE: Exponent

FALSE: No exponent
FALSE

Sign Sign column TRUE: Sign column

FALSE: No sign column

MinLen Minimum
number of
digits

Minimum number of digits in Out

6

DecPlace Precision Number of decimal digits in Out 0 to 15

Out Conversion
result

Output Conversion result 327 bytes max.
(326 single-byte
alphanumeric
characters plus
the final NULL
character)

--- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK

Exponent OK

Sign OK

MinLen OK

DecPlace OK

Out OK

Function

(@)RealToFormatString

EN ENO
In Out
Exponent
Sign
MinLen
DecPlace

2 Instruction Descriptions

2-260 NJ-series Instructions Reference Manual (W502)

If In contains a negative value, a minus sign (−) is added to the front of the text string. If In contains a
positive value, a plus sign (+) is not added to the front of the text string.

The format of Out is determined by exponent Exponent, sign column Sign, minimum number of digits
MinLen, and precision DecPlace.

The following examples show the relationships between the values of the input variables and the value
of Out when In is REAL#−1234.567.

Example 1: Exponent: FALSE
Sign: FALSE
MinLen: USINT#16
DecPlace: USINT#10

Input variable Description
Exponent Exp specifies whether an exponent is given.

TRUE: Exponent

FALSE: No exponent
Sign Sign specifies whether there is a sign column.

TRUE: Sign column

FALSE: No sign column

The sign column is used only for a minus sign (−). If the number is positive when the sign
column is specified, the sign column will contain a blank character. If the number is nega-
tive when no sign column is specified, a minus sign (−) will be added to the front of the inte-
ger part.

However, if the number of digits in the conversion result exceeds the value of MinLen and
the conversion result is positive, the highest digit is placed in the sign column.

MinLen MinLen is the minimum number of total digits for the sign column, integer part, decimal
point, fractional part, and exponent.

If the conversion result has fewer digits than the value of MinLen, the text string will be
right-aligned (except for the sign column) and remaining digits will contain blank charac-
ters. If the number of digits in the conversion result exceeds the value of MinLen, the text
string is left-aligned and the text string for the digits that exceed the value of MinLen is
assigned to Out.

DecPlace DecPlace is the number of digits in the fractional part.

If the number of digits exceeds the value of DecPlace, the extra digits in the fractional por-
tion are rounded off as described below. If the value of DecPlace is 0, the fractional part
and decimal point are not given.

- i i i i . f f f f f f f f e + n n

Minimum number of digits

Sign column

Integer part

Decimal point

Fractional part Exponent

2-261

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

D
ata Typ

e C
o

nversio
n

 In
stru

ctio
n

s

2

R
ealToF

orm
atS

tring

Here, no sign column is specified for a negative number, so a minus sign (−) is added to the front of the
integer part.

Example 2: Exponent: TRUE
Sign: FALSE
MinLen: USINT#21
DecPlace: USINT#10

Here, the value of MinLen exceeds the number of digits in the text string, so the text string is right-
aligned and blank characters are added before it.

Example 3: Exponent: TRUE
Sign: TRUE
MinLen: USINT#22
DecPlace: USINT#10

The sign column is always on the left. Blank characters are added to the front of the integer part.

Example 4: Exponent: TRUE
Sign: TRUE
MinLen: USINT#12
DecPlace: USINT#3

The fourth decimal place is rounded off because DecPlace is USINT#3.

abc:=RealToFormatString(REAL#-1234.567, FALSE,
 FALSE, USINT#16,
 USINT#10);

LD ST

abcREAL#-1234.567
FALSE
FALSE

USINT#16
USINT#10

RealToFormatString

EN ENO
In
Exponent
Sign
MinLen
DecPlace

- 1 2 3 4 . 5 6 7 0 0 0 0 0 0 0

16

10

 - 1 . 2 3 4 5 6 7 0 0 0 0 e + 0 3

21

10

 - 1 . 2 3 4 5 6 7 0 0 0 0 e + 0 3

22

10

 - 1 . 2 3 5 e + 0 3

12

3

2 Instruction Descriptions

2-262 NJ-series Instructions Reference Manual (W502)

Example 5: Exponent: TRUE
Sign: TRUE
MinLen: USINT#12
DecPlace: USINT#0

The first decimal place is rounded off because DecPlace is USINT#0. The decimal point is also not
given.

Example 6: Exponent: FALSE
Sign: TRUE
MinLen: USINT#8
DecPlace: USINT#0

Here, no exponent is given and the integer part is only four digits. The first decimal place is rounded off.

Example 7: Exponent: FALSE
Sign: TRUE
MinLen: USINT#2
DecPlace: USINT#0

Here, the number of digits in the integer part of In (four digits) is larger than the value of MinLen
(USINT#2). The four digits of the integer part are given.

The following examples show the relationships between the values of the input variables and the value
of Out when In is REAL#123456.7.

Example 8: Exponent: FALSE
Sign: TRUE
MinLen: USINT#4
DecPlace: USINT#0

Here, the number of digits in the integer part of In (six digits) is larger than the value of MinLen
(USINT#4). The six digits of the integer part are given. The value of In is positive, so the highest digit is
placed in the sign column.

If the value of In is positive infinity, the value of Out is 'Inf'. If the value of In is negative infinity, the value
of Out is ‘−Inf’. If the value of In is nonnumeric data, the value of Out is “−nan”.

If the value of In is infinity, or nonnumeric data, the value of Out is as shown below.

Value of In Value of Out

+∞ ‘inf’

−∞ ‘−inf’

Nonnumeric data ‘nan’ or ‘−nan’

 - 1 e + 0 3

12

 - 1 2 3 5

8

 - 1 2 3 5

5

 1 2 3 4 5 7

6

2-263

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

D
ata Typ

e C
o

nversio
n

 In
stru

ctio
n

s

2

R
ealToF

orm
atS

tring

The following table shows how values are rounded.

• Exponent, Sign, MinLen, and DecPlace can be omitted. The defaults are applied for any omitted input
variables.

• To convert a LREAL variable to a text string, use the LrealToFormatString instruction (page 2-264).

• To convert a text string to a real number, use a STRING_TO_** (Text String-to-Real Number Conver-
sion Group) instruction (page 2-274).

An error occurs in the following cases. ENO will be FALSE, and Out will not change.

• The value of DecPlace is outside of the valid range.

• The value of DecPlace is greater than the value of MinLen.

• The number of bytes in the conversion result exceeds the size of the output parameter that is con-
nected to Out.

Value of
fractional

part
Treatment Examples

Less than
0.5

The fractional part is truncated. 1.49 → 1

0.5 If the ones digit is an even number, the fractional part
is truncated. If it is an odd number, the value is
rounded up.

1.50 → 2

2.50 → 2

Greater
than 0.5

The fractional part is rounded up. 1.51 → 2

Additional Information

Precautions for Correct Use

2 Instruction Descriptions

2-264 NJ-series Instructions Reference Manual (W502)

LrealToFormatString

The LrealToFormatString instruction converts a LREAL variable to a text string with the specified for-
mat.

Instruction Name FB/FUN Graphic expression ST expression

LrealToFormat-
String

LREAL-to-Format-
ted Text String

FUN Out:=LrealToFormat-
String(In, Exponent, Sign,
MinLen, DecPlace);

Variables

Name Meaning I/O Description Valid range Unit Default
In Data to

convert

Input

Data to convert

Depends on
data type. ---

0.0

Exponent Exponent TRUE: Exponent

FALSE: No exponent
FALSE

Sign Sign column TRUE: Sign column

FALSE: No sign column

MinLen Minimum
number of
digits

Minimum number of digits in Out

6

DecPlace Precision Number of decimal digits in Out 0 to 15

Out Conversion
result

Output Conversion result 327 bytes max.
(326 single-byte
alphanumeric
characters plus
the final NULL
character)

--- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK

Exponent OK

Sign OK

MinLen OK

DecPlace OK

Out OK

(@)LrealToFormatString

EN ENO
In Out
Exponent
Sign
MinLen
DecPlace

2-265

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

D
ata Typ

e C
o

nversio
n

 In
stru

ctio
n

s

2

LrealToF
orm

atS
tring

The LrealToFormatString instruction converts LREAL variable In to a text string. In is expressed as an
alphanumeric text string and output to conversion result Out. A NULL character (16#00) is placed at the
end of Out.

If In contains a negative value, a minus sign (−) is added to the front of the text string. If In contains a
positive value, a plus sign (+) is not added to the front of the text string.

The format of Out is determined by exponent Exponent, sign column Sign, minimum number of digits
MinLen, and precision DecPlace.

The following examples show the relationships between the values of the input variables and the value
of Out when In is LREAL#−1234.56789.

Example 1: Exponent: FALSE
Sign: FALSE
MinLen: USINT#16
DecPlace: USINT#10

Function

Input variable Description
Exponent Exp specifies whether an exponent is given.

TRUE: Exponent

FALSE: No exponent

Sign Sign specifies whether there is a sign column.

TRUE: Sign column

FALSE: No sign column

The sign column is used only for a minus sign (−). If the number is positive when the sign
column is specified, the sign column will contain a blank character. If the number is nega-
tive when no sign column is specified, a minus sign (−) will be added to the front of the inte-
ger part.

However, if the number of digits in the conversion result exceeds the value of MinLen and
the conversion result is positive, the highest digit is placed in the sign column.

MinLen MinLen is the minimum number of total digits for the sign column, integer part, decimal
point, fractional part, and exponent.

If the conversion result has fewer digits than the value of MinLen, the text string will be
right-aligned (except for the sign column) and remaining digits will contain blank charac-
ters. If the number of digits in the conversion result exceeds the value of MinLen, the text
string is left-aligned and the text string for the digits that exceed the value of MinLen is
assigned to Out.

DecPlace DecPlace is the number of digits in the fractional part.

If the number of digits exceeds the value of DecPlace, the extra digits in the fractional por-
tion are rounded off as described below. If the value of DecPlace is 0, the fractional part
and decimal point are not given.

- i i i i . f f f f f f f f e + n n

Minimum number of digits

Sign column

Integer part

Decimal point

Fractional part Exponent

2 Instruction Descriptions

2-266 NJ-series Instructions Reference Manual (W502)

Here, no sign column is specified for a negative number, so a minus sign (−) is added to the front of the
integer part.

Example 2: Exponent: TRUE
Sign: FALSE
MinLen: USINT#21
DecPlace: USINT#10

Here, the value of MinLen exceeds the number of digits in the text string, so the text string is right-
aligned and blank characters are added before it.

Example 3: Exponent: TRUE
Sign: TRUE
MinLen: USINT#22
DecPlace: USINT#10

The sign column is always on the left. Blank characters are added to the front of the integer part.

Example 4: Exponent: TRUE
Sign: TRUE
MinLen: USINT#12
DecPlace: USINT#3

The fourth decimal place is rounded off because DecPlace is USINT#3.

abc:=LrealToFormatString(LREAL#-1234.56789, FALSE,
 FALSE, USINT#16,
 USINT#10);

LD ST

abcLREAL#-1234.56789
FALSE
FALSE

USINT#16
USINT#10

LrealToFormatString

EN ENO
In
Exponent
Sign
MinLen
DecPlace

- 1 2 3 4 . 5 6 7 8 9 0 0 0 0 0

16

10

 - 1 . 2 3 4 5 6 7 8 9 0 0 e + 0 3

21

10

 - 1 . 2 3 4 5 6 7 8 9 0 0 e + 0 3

22

10

 - 1 . 2 3 5 e + 0 3

12

3

2-267

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

D
ata Typ

e C
o

nversio
n

 In
stru

ctio
n

s

2

LrealToF
orm

atS
tring

Example 5: Exponent: TRUE
Sign: TRUE
MinLen: USINT#12
DecPlace: USINT#0

The first decimal place is rounded off because DecPlace is USINT#0. The decimal point is also not
given.

Example 6: Exponent: FALSE
Sign: TRUE
MinLen: USINT#8
DecPlace: USINT#0

Here, no exponent is given and the integer part is only four digits. The first decimal place is rounded off.

Example 7: Exponent: FALSE
Sign: TRUE
MinLen: USINT#2
DecPlace: USINT#0

Here, the number of digits in the integer part of In (four digits) is larger than the value of MinLen
(USINT#2). The four digits of the integer part are given.

The following examples show the relationships between the values of the input variables and the value
of Out when In is LREAL#123456.789.

Example 8: Exponent: FALSE
Sign: TRUE
MinLen: USINT#4
DecPlace: USINT#0

Here, the number of digits in the integer part of In (six digits) is larger than the value of MinLen
(USINT#4). The six digits of the integer part are given. The value of In is positive, so the highest digit is
placed in the sign column.

If the value of In is positive infinity, the value of Out is 'Inf'. If the value of In is negative infinity, the value
of Out is ‘−Inf’. If the value of In is nonnumeric data, the value of Out is “−nan”.

If the value of In is infinity, or nonnumeric data, the value of Out is as shown below.

Value of In Value of Out

+∞ ‘inf’

−∞ ‘−inf’

Nonnumeric data ‘nan’ or ‘−nan’

 - 1 e + 0 3

12

 - 1 2 3 5

8

 - 1 2 3 5

5

 1 2 3 4 5 7

6

2 Instruction Descriptions

2-268 NJ-series Instructions Reference Manual (W502)

2-269

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

D
ata Typ

e C
o

nversio
n

 In
stru

ctio
n

s

2

LrealToF
orm

atS
tring

The following table shows how values are rounded.

• Exponent, Sign, MinLen, and DecPlace can be omitted. The defaults are applied for any omitted input
variables.

• To convert a REAL variable to a text string, use the RealToFormatString instruction (page 2-259).

• To convert a text string to a real number, use a STRING_TO_** (Text String-to-Real Number Conver-
sion Group) instruction (page 2-274).

An error occurs in the following cases. ENO will be FALSE, and Out will not change.

• The value of DecPlace is outside of the valid range.

• The value of DecPlace is greater than the value of MinLen.

• The number of bytes in the conversion result exceeds the size of the output parameter that is con-
nected to Out.

Value of
fractional

part
Treatment Examples

Less than
0.5

The fractional part is truncated. 1.49 → 1

0.5 If the ones digit is an even number, the fractional part
is truncated. If it is an odd number, the value is
rounded up.

1.50 → 2

2.50 → 2

Greater
than 0.5

The fractional part is rounded up. 1.51 → 2

Additional Information

Precautions for Correct Use

2 Instruction Descriptions

2-270 NJ-series Instructions Reference Manual (W502)

STRING_TO_** (Text String-to-
Integer Conversion Group)

These instructions convert text strings to integers.

* The valid range depends on the data type of Out. Refer to Function for details.

These instructions convert a text string, In, to an integer.

Basically, the text string in In must consist only of numbers 0 to 9. The following exceptions are possi-
ble.

• If the first character in In is a single minus sign (−) or a single plus sign (+), it is processed as the sign.

• Any blank characters at the beginning of In are ignored.

• Any blank characters between an initial minus sign (−) or plus sign (+) and a number are ignored.

• Any single underbars (‘_’) at any location are ignored.

• An error occurs if there are two or more consecutive underbars (‘_’) at any location.

• An error occurs if there are any underbars (‘_’) at the beginning or end.

• An error occurs if there are any underbars (‘_’) between the minus signs (‘−’) or plus sign (‘+’) and the
number at the beginning.

The name of the instruction is determined by the data type of conversion result Out. For example, if Out
is the DINT data type, the instruction is STRING_TO_DINT.

Instruction Name FB/FUN Graphic expression ST expression

STRING_TO_** Text String-to-Inte-
ger Conversion
Group

FUN Out:=STRING_TO_** (In);

"**" must be an integer data
type.

Variables

Name Meaning I/O Description Valid range Unit Default

In Data to
convert

Input Data to convert * --- ''

Out Conver-
sion result

Output Conversion result Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK

Out OK OK OK OK OK OK OK OK

Function

"**" must be an integer data type.

(@)STRING_TO_**
EN ENO
In Out

2-271

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

D
ata Typ

e C
o

nversio
n

 In
stru

ctio
n

s

2

S
T

R
IN

G
_TO

_** (Text S
tring-to-Integer C

onversion G
roup)

The following example for the STRING_TO_DINT instruction is for when In is ‘123456789’.

The valid range of In depends on the data type of Out as shown below:

* Any blank characters (‘ ’) at the beginning of the text string, any zeros at the beginning of the text string, and any
underbars (‘_’) in the text string are not included in the number of bytes.

• To convert a text string to a hexadecimal number, use a STRING_TO_** (Text String-to-Bit String
Conversion Group) instruction (page 2-272).

• To convert an integer to a text string, use a **_TO_STRING (Integer-to-Text String Conversion Group)
instruction (page 2-253).

• Always use the correct instruction name for the data type of Out.

• If the value of In is ‘−0’, the value of Out is 0.

• An error occurs in the following cases. ENO will be FALSE, and Out will not change.

• The text string in In does not express a number.

• The conversion result exceeds the valid range of the data type of Out.

• The text string in In does not end in a NULL character.

Data type of Out Valid range of In (maximum number of bytes)*

USINT 4 bytes (three single-byte alphanumeric characters plus the
final NULL character)

UINT 6 bytes (five single-byte alphanumeric characters plus the final
NULL character)

UDINT 11 bytes (10 single-byte alphanumeric characters plus the final
NULL character)

ULINT 21 bytes (20 single-byte alphanumeric characters plus the final
NULL character)

SINT 5 bytes (four single-byte alphanumeric characters plus the final
NULL character)

INT 7 bytes (six single-byte alphanumeric characters plus the final
NULL character)

DINT 12 bytes (11 single-byte alphanumeric characters plus the final
NULL character)

LINT 21 bytes (20 single-byte alphanumeric characters plus the final
NULL character)

Additional Information

Precautions for Correct Use

abc:=STRING_TO_DINT(‘123456789’);

LD ST

abc‘123456789’

STRING_TO_DINT

EN ENO
In

‘123456789’

STRING data

123456789

DINT data

In Out=abc

2 Instruction Descriptions

2-272 NJ-series Instructions Reference Manual (W502)

STRING_TO_** (Text String-to-Bit
String Conversion Group)

These instructions convert text strings to bit strings.

* The valid range depends on the data type of Out. Refer to Function for details.

These instructions interpret the content of a text string, In, as a hexadecimal number and convert it to a
bit string.

Basically, the text string in In must consist only of ‘0’ to ‘9’, ‘a’ to ‘f’, and ‘A’ to ‘F’. The following exception
is possible.

• Any continuous blank characters or zeros at the beginning of In are ignored.

• Any single underbars (‘_’) at any location are ignored.

• An error occurs if there are two or more consecutive underbars (‘_’) at any location.

• An error occurs if there are any underbars (‘_’) at the beginning or end.

• An error occurs if there are any underbars (‘_’) between the minus signs (‘−’) or plus sign (‘+’) and the
number at the beginning.

The name of the instruction is determined by the data type of conversion result Out. For example, if Out
is the BYTE data type, the instruction is STRING_TO_BYTE.

Instruction Name FB/FUN Graphic expression ST expression

STRING_TO_** Text String-to-Bit
String Conversion
Group

FUN Out:=STRING_TO_** (In);

"**" must be a bit string data
type.

Variables

Name Meaning I/O Description Valid range Unit Default

In Data to
convert

Input Data to convert * --- ''

Out Conver-
sion result

Output Conversion result Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK

Out OK OK OK OK

Function

"**" must be a bit string data type.

(@)STRING_TO_**
EN
In

ENO
Out

2-273

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

D
ata Typ

e C
o

nversio
n

 In
stru

ctio
n

s

2

S
T

R
IN

G
_TO

_** (Text S
tring-to-B

it S
tring C

onversion G
roup)

The following example for the STRING_TO_BYTE instruction is for when In is ‘ AB’. Any blank charac-
ters at the beginning are ignored.

The valid range of In depends on the data type of Out as shown below:

* Any blank characters (‘ ’) at the beginning of the text string, any zeros at the beginning of the text string, and any
underbars (‘_’) in the text string are not included in the number of bytes.

• To treat a signed number as a text string, use a STRING_TO_** (Text String-to-Integer Conversion
Group) instruction (page 2-270).

• To convert a bit string to a text string, use a **_TO_STRING (Bit String-to-Text String Conversion
Group) instruction (page 2-255).

• Always use the correct instruction name for the data type of Out.

• An error occurs in the following cases. ENO will be FALSE, and Out will not change.

• The text string in In does not express a number.

• The conversion result exceeds the valid range of the data type of Out.

• The text string in In does not end in a NULL character.

Data type of Out Valid range of In (maximum number of bytes)*

BYTE 3 bytes (two single-byte alphanumeric characters plus the
final NULL character)

WORD 5 bytes (four single-byte alphanumeric characters plus the
final NULL character)

DWORD 9 bytes (eight single-byte alphanumeric characters plus
the final NULL character)

LWORD 17 bytes (16 single-byte alphanumeric characters plus the
final NULL character)

Additional Information

Precautions for Correct Use

abc:=STRING_TO_BYTE(’ AB’);

LD ST

abc‘ AB’

STRING_TO_BYTE

EN ENO
In

STRING data BTYE data

‘ AB’ 16#ABIn Out=abc

2 Instruction Descriptions

2-274 NJ-series Instructions Reference Manual (W502)

STRING_TO_** (Text String-to-
Real Number Conversion
Group)

These instructions convert text strings to real numbers.

These instructions convert a text string, In, to a real number.

The name of the instruction is determined by the data type of conversion result Out. For example, if Out
is the LREAL data type, the instruction is STRING_TO_LREAL.

The format of the text sting in In is given below.

Instruction Name FB/FUN Graphic expression ST expression

STRING_TO_** Text String-to-Real
Number Conversion
Group

FUN Out:=STRING_TO_** (In);

"**" must be a real number
data type.

Variables

Name Meaning I/O Description Valid range Unit Default

In Data to
convert

Input Data to convert 311 bytes max. (310
single-byte alphanu-
meric characters plus
the final NULL charac-
ter)

--- ''

Out Conver-
sion result

Output Conversion result Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK

Out OK OK

Function

"**" must be a real number data type.

(@)STRING_TO_**
EN
In

ENO
Out

(blank)

Integer
part

Decimal point

Fractional part Exponent Sign

(blank)

 - i i i i . f f f f f f f f e + n n
 ‘ ’

2-275

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

D
ata Typ

e C
o

nversio
n

 In
stru

ctio
n

s

2

S
T

R
IN

G
_TO

_** (Text S
tring-to-R

eal N
um

ber C
onversion G

roup)

Example 1: The following example uses the sign, decimal point, and fractional part, but does not
use an exponent.

Example 2: The following example uses the sign, decimal point, fractional part, and exponent.

Name Format
Sign • Any consecutive blank characters at the beginning of the text string are ignored. Any follow-

ing single plus or minus sign is treated as the sign.

• The plus sign can be omitted.

• Any consecutive blank characters after the sign are ignored.
Integer part • The characters after the sign and up to the decimal point are taken as the integer part. Any

consecutive blank characters after the sign are not included in the integer part. The sign may
sometimes be omitted.

• If the decimal point and fractional part are omitted, the characters up to the exponent are
taken as the integer part.

• If the decimal point, fractional part, and exponent are omitted, the characters up to the end
of the text string are taken as the integer part.

• The integer part consists of ‘0’ to ‘9’.
• The integer part cannot be omitted.

• The maximum number of digits in the integer part is the maximum text string length of 1985
minus the total number of bytes in the following: the sign, decimal point, fractional part, expo-
nent, and blank characters before and after the sign.

Decimal
point

• A single period (‘.’) following the integer part is taken as the decimal point.
• Omit the decimal point if there is no fractional part.

Fractional
part

• The characters after the decimal point and up to the exponent are taken as the fractional
part.

• If the exponent is omitted, the characters up to the end of the text string are taken as the
fractional part.

• The fractional part consists of ‘0’ to ‘9’.

• The fractional part can be omitted.
• The fractional part can consist of a maximum of 15 digits.

• If there is no decimal point, then there is no fractional part.

Exponent • The exponent consists of a single ‘e’ or ‘E’ after the fractional part, a following single plus or
minus sign, and the remaining characters to the end of the text string.

• If there is no fractional part, then the above text string after the decimal point is taken as the
exponent.

• If there is no decimal point or fractional part, then the above text string after the integer part
is taken as the exponent.

• The numeric part of the exponent consists of ‘0’ to ‘9’.
• The exponent can be omitted.

• The numeric part of the exponent can consist of a maximum of three digits.

abc:=STRING_TO_LREAL(‘-123.4567’);

LD ST

abc‘-123.4567’

STRING_TO_LREAL

EN ENO
In

STRING data LREAL data

-1.234567e+2In Out=abc - 1 2 3 . 4 5 6 7

 ‘ ’

STRING data LREAL data

1.234567e+4In Out=abc + 1 2 3 . 4 5 6 7 e + 0 2

 ‘ ’

2 Instruction Descriptions

2-276 NJ-series Instructions Reference Manual (W502)

Example 3: The following example does not use the sign, but uses the decimal point, fractional
part, and exponent.

Example 4: The following example does not use the sign, fractional part, decimal point, and expo-
nent.

If the value of In is ‘+Inf’, the value of Out is positive infinity. If the value of In is ‘−Inf’, the value of Out is
negative infinity. In either case, characters are not case sensitive.

To convert a real number to a text string, use a **_TO_STRING (Real Number-to-Text String Conver-
sion Group) instruction (page 2-257).

• Always use the correct instruction name for the data type of Out.
• Any single underbars (‘_’) at any location in In are ignored.
• An error occurs if there are any underbars (‘_’) at the beginning or end of In.
• An error occurs if there are two or more consecutive underbars (‘_’) at any location in In.
• An error occurs if there are any underbars (‘_’) between the minus signs (‘−’) or plus sign (‘+’) and the

number at the beginning of In.
• If the content of In exceeds the precision of the data type of Out, the value is rounded.
• If the content of In is closer to 0 than the minimum value of the data type of Out, the value of Out will

be 0.
• If the content of In exceeds the valid range of Out, Out will be positive infinity for a positive number or

negative infinity for a negative number.
• An error occurs in the following cases. ENO will be FALSE, and Out will not change.

• The text string in In does not express a number.
• The text string in In does not end in a NULL character.
• The text string in In has a decimal point but not a fractional part.

Additional Information

Precautions for Correct Use

STRING data LREAL data

1.234567Out=abc 1 2 3 . 4 5 6 7 e - 0 2

 ‘ ’
In

STRING data LREAL data

1.0In Out=abc 1
 ‘ ’

2-277

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

D
ata Typ

e C
o

nversio
n

 In
stru

ctio
n

s

2

TO
_** (Integer C

onversion G
roup)

TO_** (Integer Conversion Group)

These instructions convert integers, bit strings, real numbers, and text strings to integers.

*1 The valid ranges depend on the data types of In and Out.

*2 If you omit the input parameter, the default value is not applied. A building error will occur.

These instructions convert the integer, bit string, real number, or text string in In to an integer.

The name of the instruction is determined by the data type of conversion result Out. For example, if Out
is the LINT data type, the instruction is TO_LINT.

The following example for the TO_LINT instruction is for when In is LREAL#1.0e+10.

Instruction Name FB/FUN Graphic expression ST expression

TO_** Integer Conversion
Group

FUN Out:=TO_** (In);

"**" must be an integer data
type.

Variables

Name Meaning I/O Description Valid range Unit Default

In Data to
convert

Input Data to convert *1 --- *2

Out Conver-
sion result

Output Conversion result *1 --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

Out OK OK OK OK OK OK OK OK

Function

"**" must be an integer data type.

(@)TO_**
EN ENO
In Out

abc:=TO_LINT(LREAL#1.0e+10);

LD ST

abcLREAL#1.0e+10

TO_LINT

EN ENO
In

LREAL data LINT data

In Out=abcLREAL#1.0e+10 10000000000

2 Instruction Descriptions

2-278 NJ-series Instructions Reference Manual (W502)

• Conversion is performed to within the effective digits of the data type of In. If In is a real number, the
fractional part is rounded off to the closest integer. The following table shows how values are
rounded.

The valid ranges for In and Out depend on their data types. Refer to the descriptions of the functions of
the following instructions for the valid ranges: **_TO_*** (Integer-to-Integer Conversion Group) (page 2-
232), **_TO_*** (Bit String-to-Integer Conversion Group) (page 2-239), and **_TO_*** (Real Number-
to-Integer Conversion Group) (page 2-246).

For detailed specifications when In is STRING data, refer to Function for the STRING_TO_** (Text
String-to-Integer Conversion Group) instructions (page 2-270).

• Always use the correct instruction name for the data type of Out.

• If the data type of In is for a bit string and the sizes of the data types of In and Out are different, the
following processing is performed.

• If the data size of Out is larger than the data size of In, the upper digits of Out will contain 0.

• If the data size of Out is smaller than the data size of In, the upper digits are truncated in Out.

• Observe the following precautions if In is STRING data.

• If the first character in In is a minus sign (−) or a plus sign (+), it is processed as the sign.

• Except for a minus sign (−) or a plus sign (+) at the beginning, In must consist of consecutive ‘0’ to
‘9’ characters. Underbars (‘_’) and blank characters before or after the ‘−’ or ‘+’ are allowed in the
text string.

• If the conversion result exceeds the valid range of Out, Out will contain an illegal value.

• An error occurs in the following cases. ENO will be FALSE, and Out will not change.

• In is STRING data, but the text sting in In does not express a number.

• In is STRING data, but it does not end in a NULL character.

Value of
fractional

part
Treatment Examples

Less than
0.5

The fractional part is truncated. 1.49 → 1

0.5 If the ones digit is an even number, the fractional part
is truncated. If it is an odd number, the value is
rounded up.

1.50 → 2

2.50 → 2

Greater
than 0.5

The fractional part is rounded up. 1.51 → 2

Precautions for Correct Use

2-279

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

D
ata Typ

e C
o

nversio
n

 In
stru

ctio
n

s

2

TO
_** (B

it S
tring C

onversion G
roup)

TO_** (Bit String Conversion
Group)

These instructions convert integers, bit strings, real numbers, and text strings to bit strings.

*1 The valid ranges depend on the data types of In and Out.

*2 If you omit the input parameter, the default value is not applied. A building error will occur.

These instructions convert the integer, bit string, real number, or text string in In to a bit string.

The name of the instruction is determined by the data type of conversion result Out. For example, if Out
is the WORD data type, the instruction is TO_WORD.

The following example for the TO_WORD instruction is for when In is INT#−1234.

Instruction Name FB/FUN Graphic expression ST expression

TO_** Bit String Conver-
sion Group

FUN Out:=TO_**(In);

"**" must be a bit string data
type.

Variables

Name Meaning I/O Description Valid range Unit Default

In Data to
convert

Input Data to convert *1 --- *2

Out Conver-
sion result

Output Conversion result *1 --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

Out OK OK OK OK

Function

"**" must be a bit string data type.

(@)TO_**
EN ENO
In Out

abc:=TO_WORD(INT#-1234);

LD ST

abcINT#-1234

TO_WORD

EN ENO
In

INT data WORD data

In Out=abcINT#-1234 16#FB2E

2 Instruction Descriptions

2-280 NJ-series Instructions Reference Manual (W502)

The valid ranges for In and Out depend on their data types. Refer to the descriptions of the functions of
the following instructions for the valid ranges: **_TO_*** (Integer-to-Bit String Conversion Group) (page
2-235), **_TO_*** (Bit String-to-Bit String Conversion Group) (page 2-242), and **_TO_*** (Real Num-
ber-to-Bit String Conversion Group) (page 2-249).

For detailed specifications when In is STRING data, refer to Function for the STRING_TO_** (Text
String-to-Bit String Conversion Group) instructions (page 2-272).

• Always use the correct instruction name for the data type of Out.

• If the conversion result exceeds the valid range of Out, Out will contain an illegal value.

• An error occurs in the following cases. ENO will be FALSE, and Out will not change.

• In is STRING data, but the text sting in In does not express a number.

• In is STRING data, but it does not end in a NULL character.

Precautions for Correct Use

2-281

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

D
ata Typ

e C
o

nversio
n

 In
stru

ctio
n

s

2

TO
_** (R

eal N
um

ber C
onversion G

roup)

TO_** (Real Number Conversion
Group)

These instructions convert integers, bit strings, real numbers, and text strings to real numbers.

*1 The valid ranges depend on the data types of In and Out.

*2 For STRING data, the valid range is 311 bytes max. (310 single-byte alphanumeric characters plus the final NULL charac-
ter).

*3 If you omit the input parameter, the default value is not applied. A building error will occur.

These instructions convert the integer, bit string, real number, or text string in In to a real number.

The name of the instruction is determined by the data type of conversion result Out. For example, if Out
is the REAL data type, the instruction is TO_REAL. If the value of In is positive or negative infinity, the
value of Out is positive or negative infinity.

The following example for the TO_REAL instruction is for when In is INT#1234.

Instruction Name FB/FUN Graphic expression ST expression

TO_** Real Number Con-
version Group

FUN Out:=TO_**(In);

"**" must be a real number
data type.

Variables

Name Meaning I/O Description Valid range Unit Default

In Data to
convert

Input Data to convert *1, *2 --- *3

Out Conver-
sion result

Output Conversion result *1 --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

Out OK OK

Function

"**" must be a real number data type.

(@)TO_**
EN ENO
In Out

abc:=TO_REAL(INT#1234);

LD ST

abcINT#1234

TO_REAL

EN ENO
In

2 Instruction Descriptions

2-282 NJ-series Instructions Reference Manual (W502)

The valid ranges for In and Out depend on their data types. Refer to the descriptions of the functions of
the following instructions for the valid ranges: **_TO_*** (Integer-to-Real Number Conversion Group)
(page 2-237), **_TO_*** (Bit String-to-Real Number Conversion Group) (page 2-244), and **_TO_***
(Real Number-to-Real Number Conversion Group) (page 2-251).

For detailed specifications when In is STRING data, refer to Function for the STRING_TO_** (Text
String-to-Real Number Conversion Group) instructions (page 2-274).

• Always use the correct instruction name for the data type of Out.

• An error occurs in the following cases. ENO will be FALSE, and Out will not change.

• In is STRING data, but the text sting in In does not express a number.

• In is STRING data, but it does not end in a NULL character.

Precautions for Correct Use

INT data REAL data

In Out=abcINT#1234 1.234e+3

2-283

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

D
ata Typ

e C
o

nversio
n

 In
stru

ctio
n

s

2

T
R

U
N

C
, R

ound, and R
oundU

p

TRUNC, Round, and RoundUp

These instructions change real numbers to integers.

* If you omit the input parameter, the default value is not applied. A building error will occur.

These instructions change the real number in In to an integer by eliminating the fractional part.

TRUNC
The TRUNC instruction truncates the number at the first decimal digit.

TRUNC: Truncates the number at the first decimal digit.

Round: Rounds the number at the first decimal digit.

RoundUp: Rounds up the number at the first decimal digit.

Instruction Name FB/FUN Graphic expression ST expression

TRUNC Truncate FUN Out:=TRUNC(In);

Round Round Off Real
Number

FUN Out:=Round(In);

RoundUp Round Up Real
Number

FUN Out:=RoundUp(In);

Variables

Name Meaning I/O Description Valid range Unit Default

In Data to
convert

Input Data to convert Depends on data type. --- *

Out Conver-
sion result

Output Conversion result Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK OK

Out OK OK

Function

(@)TRUNC
EN ENO
In Out

(@)Round
EN ENO
In Out

(@)RoundUp
EN ENO
In Out

2 Instruction Descriptions

2-284 NJ-series Instructions Reference Manual (W502)

Round
The Round instruction rounds the number at the first decimal digit. The following table shows how
values are rounded.

RoundUp
The RoundUp instruction rounds up the number at the first decimal digit.

The differences in these three instructions are shown by the following examples.

The following example for the TRUNC instruction is for when In is REAL#−3.55. The value of vari-
able abc will be DINT#−3.

If the data type of In is REAL, the data type of Out is DINT. If the data type of In is LREAL, the data type
of Out is LINT.

If the conversion result exceeds the valid range of Out, Out will contain an illegal value.

Value of
fractional part

Treatment Examples

Less than 0.5 The fractional part is truncated. 1.49 → 1

−1.49 → −1

0.5 If the ones digit is an even number, the fractional part
is truncated. If it is an odd number, the value is
rounded up.

1.50 → 2

2.50 → 2

−1.50 → −2

−2.50 → −2

Greater than 0.5 The fractional part is rounded up. 1.51 → 2

−1.51 → −2

Input value
Output value

TRUNC Round RoundUp

REAL#1.6 DINT#1 DINT#2 DINT#2

REAL#1.5 DINT#1 DINT#2 DINT#2

REAL#1.5 DINT#1 DINT#1 DINT#2

REAL#2.5 DINT#2 DINT#2 DINT#3

REAL#-1.6 DINT#-1 DINT#-2 DINT#-2

REAL#-1.5 DINT#-1 DINT#-2 DINT#-2

REAL#-1.4 DINT#-1 DINT#-1 DINT#-2

REAL#-2.5 DINT#-2 DINT#-2 DINT#-3

Additional Information

Precautions for Correct Use

abc:=TRUNC(REAL#-3.55);

LD ST

abcREAL#-3.55

TRUNC

EN ENO
In

B
it S

trin
g

 P
ro

cessin
g

 In
stru

ctio
n

s

2

2-285NJ-series Instructions Reference Manual (W502)

Bit String Processing Instructions

Instruction Name Page

AND (&), OR, and XOR Logical AND/Logical OR/
Logical Exclusive OR

2-286

XORN Logical Exclusive NOR 2-289

NOT Bit Reversal 2-291

AryAnd, AryOr, AryXor, and
AryXorN

Array Logical AND/
Array Logical OR/
Array Logical Exclusive OR/
Array Logical Exclusive NOR

2-293

2 Instruction Descriptions

2-286 NJ-series Instructions Reference Manual (W502)

AND (&), OR, and XOR
These instructions perform processing on Boolean variables or individual bits in bit stings.

* If you omit the input parameter that connects to InN, the default value is not applied, and a building error will occur. For
example, if N is 3 and the input parameters that connect to In1 and In2 are omitted, the default values are applied, but if the
input parameter that connects to In3 is omitted, a building error will occur.

AND (&): Logical AND

OR: Logical OR

XOR: Logical Exclusive OR

Instruction Name FB/FUN Graphic expression ST expression

AND (&) Logical AND FUN Out:=In1 AND ··AND InN;
Out:=In1 & ··& InN;

OR Logical OR FUN Out:=In1 OR ··OR InN;

XOR Logical Exclusive
OR

FUN Out:=In1 XOR ··XOR InN;

Variables

Name Meaning I/O Description Valid range Unit Default

In1 to InN Data to
process

Input Data to process, where N is
2 to 5

Depends on data type. --- 0*

Out Processing
result

Output Processing result Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In1 to InN OK OK OK OK OK

Out Must be same data type as In1 to InN

(@)AND
EN ENO
In1 Out
 :
InN

:

(@)&
EN ENO
In1 Out
 :
InN

:

(@)OR
EN ENO
In1 Out
 :
InN

:

(@)XOR
EN ENO
In1 Out
 :
InN

:

2-287

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

B
it S

trin
g

 P
ro

cessin
g

 In
stru

ctio
n

s

2

A
N

D
 (&

), O
R

, and X
O

R

These instructions perform processing on Boolean variables or corresponding bits in bit strings. The
data to process is in In1 to InN. In1 to InN and Out must be the same data types.

If there are more than two data to process, processing is performed with the following procedure.

1 Processing is performed for In1 and In2.

2 Processing is performed for the results of step 1 and In3.

3 Processing is performed for the results of step 2 and In4.

The relationships between input and output variables are given in the following tables.

AND (&)
If both bits are TRUE, then the processing result is TRUE. Otherwise, the processing result is FALSE.

OR
If both bits are FALSE, then the processing result is FALSE. Otherwise, the processing result is TRUE.

XOR
If both bits are the same, then the processing result is FALSE. If one bit is TRUE and the other is
FALSE, then the processing result is TRUE.

Function

In1 bit In2 bit Out bit

FALSE FALSE FALSE

FALSE TRUE FALSE

TRUE FALSE FALSE

TRUE TRUE TRUE

In1 bit In2 bit Out bit

FALSE FALSE FALSE

FALSE TRUE TRUE

TRUE FALSE TRUE

TRUE TRUE TRUE

In1 bit In2 bit Out bit

FALSE FALSE FALSE

FALSE TRUE TRUE

TRUE FALSE TRUE

TRUE TRUE FALSE

··· ···

2 Instruction Descriptions

2-288 NJ-series Instructions Reference Manual (W502)

The following example shows the AND instruction when In1 is BYTE#16#3A, In2 is BYTE#16#28 and
In3 is BYTE#16#73.

The functions of the AND instruction and the & instruction are exactly the same. Use the form that is
easier to use.

In ST, there is no limit to the number of input variables if you use the following notation.

Out:=In1 AND In2 AND In3 AND In4 AND In5 AND In6 ···

Out:=In1 & In2 & In3 & In4 & In5 & In6 ···

Out:=In1 OR In2 OR In3 OR In4 OR In5 OR In6 ···

Out:=In1 XOR In2 XOR In3 XOR In4 XOR In5 XOR In6 ···

The data types of In1 to InN and Out must all be the same. Otherwise, a building error will occur.

Additional Information

Precautions for Correct Use

abc:=BYTE#16#3A AND BYTE#16#28 AND BYTE#16#73;

LD ST

abcBYTE#16#3A
BYTE#16#28

AND
EN ENO
In1
In2
In3BYTE#16#73

0 0 1 0 0 0 0 0

0 1 1 1 0 0 1 1

0 0 1 0 1 0 0 0

0 0 1 1 1 0 1 0

Out=abc

In3=BYTE#16#73

In2=BYTE#16#28

In1=BYTE#16#3A

Logical ANDs between bits

2-289

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

B
it S

trin
g

 P
ro

cessin
g

 In
stru

ctio
n

s

2

X
O

R
N

XORN

The XORN instruction performs a logical exclusive NOR operation on Boolean variables or individual
bits in bit stings.

* If you omit the input parameter that connects to InN, the default value is not applied, and a building error will occur. For
example, if N is 3 and the input parameters that connect to In1 and In2 are omitted, the default values are applied, but if the
input parameter that connects to In3 is omitted, a building error will occur.

The XORN instruction performs processing on Boolean variables or corresponding bits in bit strings.
The data to process is in In1 to InN. In1 to InN and Out must be the same data types.

If there are more than two data to process, processing is performed with the following procedure.

1 Processing is performed for In1 and In2.

2 Processing is performed for the results of step 1 and In3.

3 Processing is performed for the results of step 2 and In4.

Instruction Name FB/FUN Graphic expression ST expression

XORN Logical Exclusive
NOR

FUN Out:=In1 XOR NOT ·· XOR
NOT InN;

Variables

Name Meaning I/O Description Valid range Unit Default

In1 to InN Data to
process

Input Data to process, where N is
2 to 5

Depends on data type. --- 0*

Out Processing
result

Output Processing result Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In1 to InN OK OK OK OK OK

Out Must be same data type as In1 to InN

Function

(@)XORN
EN ENO
In1 Out
 :
InN

:

··· ···

2 Instruction Descriptions

2-290 NJ-series Instructions Reference Manual (W502)

The relationships between input and output variables are given in the following table. If both values are
the same, then the processing result is TRUE. Otherwise, the processing result is FALSE.

The following example is for when In1 is BYTE#16#3A, In2 is BYTE#16#28, and In3 is BYTE#16#73.

The data types of In1 to InN and Out must all be the same. Otherwise, a building error will occur.

In1 bit In2 bit Out bit

FALSE FALSE TRUE

FALSE TRUE FALSE

TRUE FALSE FALSE

TRUE TRUE TRUE

Precautions for Correct Use

abc:=BYTE#16#3A XOR NOT BYTE#16#28
 XOR NOT BYTE#16#73;

LD ST

abcBYTE#16#3A
BYTE#16#28
BYTE#16#73

XORN
EN ENO
In1
In2
InN

0 1 1 0 0 0 0 1

0 1 1 1 0 0 1 1

0 0 1 0 1 0 0 0

0 0 1 1 1 0 1 0

Out=abc

In3=BYTE#16#73

In2=BYTE#16#28

In1=BYTE#16#3A

Logical exclusive NORs between bits

2-291

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

B
it S

trin
g

 P
ro

cessin
g

 In
stru

ctio
n

s

2

N
O

T

NOT

The NOT instruction reverses the value of a Boolean variable or the individual bits in a bit string.

* If you omit the input parameter, the default value is not applied. A building error will occur.

The NOT instruction reverses the value of a Boolean variable or the values of individual bits in a bit
string. The data to process is in In. In and processing result Out must have the same number of bits,
i.e., they must be the same data type.

The following example is for when In is BYTE#16#73.

Instruction Name FB/FUN Graphic expression ST expression

NOT Bit Reversal FUN Out:=NOT(In);

Variables

Name Meaning I/O Description Valid range Unit Default

In Data to
process

Input Data to process Depends on data type. --- *

Out Processing
result

Output Processing result Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK OK OK OK OK

Out Must be same data type as In

Function

(@)NOT
EN ENO
In Out

abc:=NOT(BYTE#16#73);

LD ST

abcBYTE#16#73

NOT
EN ENO
In

1 0 0 0 1 1 0 0

0 1 1 1 0 0 1 1

Out=abc

In=BYTE#16#73

Individual bits reversed.

2 Instruction Descriptions

2-292 NJ-series Instructions Reference Manual (W502)

The data types of In and Out must be the same. Otherwise, a building error will occur.

Precautions for Correct Use

2-293

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

B
it S

trin
g

 P
ro

cessin
g

 In
stru

ctio
n

s

2

A
ryA

nd, A
ryO

r, A
ryX

or, and A
ryX

orN

AryAnd, AryOr, AryXor, and
AryXorN

These instructions process Boolean variables or individual bits in bit stings between arrays.

* If you omit an input parameter, the default value is not applied. A building error will occur.

AryAnd: Logical AND

AryOr: Logical OR

AryXor: Logical Exclusive OR

AryXorN: Logical Exclusive NOR

Instruction Name FB/FUN Graphic expression ST expression

AryAnd Array Logical AND FUN AryAnd(In1, In2, Size, Ary-
Out);

AryOr Array Logical OR FUN AryOr(In1, In2, Size, Ary-
Out);

AryXor Array Logical
Exclusive OR

FUN AryXor(In1, In2, Size, Ary-
Out);

AryXorN Array Logical
Exclusive NOR

FUN AryXorN(In1, In2, Size, Ary-
Out);

Variables

Name Meaning I/O Description Valid range Unit Default

In1[] and
In2[]
(arrays)

Array to pro-
cess

Input

Array to process

Depends on data type. ---

*

Size Number of ele-
ments

Number of elements to pro-
cess

1

AryOut[]
(array)

Processing
results array

In-out Processing results array Depends on data type. --- ---

Out Return value Output Always TRUE TRUE only --- ---

(@)AryAnd
EN ENO
In1 Out
In2
Size
AryOut

(@)AryOr
EN ENO
In1 Out
In2
Size
AryOut

(@)AryXor
EN ENO
In1 Out
In2
Size
AryOut

(@)AryXorN
EN ENO
In1 Out
In2
Size
AryOut

2 Instruction Descriptions

2-294 NJ-series Instructions Reference Manual (W502)

These instructions process Size elements from the beginning of arrays to process In1[] and In2[]. Pro-
cessing is performed for corresponding bits of corresponding elements. The processing results are
stored in corresponding elements of AryOut[]. In1[] to In2[] and AryOut[] must be the same data types.

The relationships between input and output variables are given in the following tables.

AryAnd
If both bits are TRUE, then the processing result is TRUE. Otherwise, the processing result is FALSE.

AryOr
If both bits are FALSE, then the processing result is FALSE. Otherwise, the processing result is TRUE.

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In1[] (array) OK OK OK OK OK

In2[] (array) Must be same data type as In1[]

Size OK

AryOut[]
(array)

Must be same data type as In1[]

Out OK

Function

Bit of ele-
ment in In1[]

Bit of ele-
ment in In2[]

Bit of Ary-
Out[]

FALSE FALSE FALSE

FALSE TRUE FALSE

TRUE FALSE FALSE

TRUE TRUE TRUE

Bit of ele-
ment in In1[]

Bit of ele-
ment in In2[]

Bit of Ary-
Out[]

FALSE FALSE FALSE

FALSE TRUE TRUE

TRUE FALSE TRUE

TRUE TRUE TRUE

2-295

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

B
it S

trin
g

 P
ro

cessin
g

 In
stru

ctio
n

s

2

A
ryA

nd, A
ryO

r, A
ryX

or, and A
ryX

orN

AryXor
If both bits are the same, then the processing result is FALSE. If one bit is TRUE and the other is
FALSE, then the processing result is TRUE.

AryXorN
If both bits are the same, then the processing result is TRUE. If one bit is TRUE and the other is FALSE,
then the processing result is FALSE.

The following example shows the AryAnd instruction when Size is UINT#3.

• The data types of In1[], In2[], and AryOut[] must be the same.

• Use an AryOut[] array that has at least as many elements as the value of Size.

• The values in AryOut[] do not change if the value of Size is 0.

• Return value Out is not used when the instruction is used in ST.

• An error occurs in the following cases. ENO will be FALSE, and AryOut[] will not change.

• In1[], In2[], and AryOut[] have different data types.

• The value of Size exceeds the number of elements in In1[], In2[], or AryOut[].

Bit of ele-
ment in In1[]

Bit of ele-
ment in In2[]

Bit of Ary-
Out[]

FALSE FALSE FALSE

FALSE TRUE TRUE

TRUE FALSE TRUE

TRUE TRUE FALSE

Bit of ele-
ment in In1[]

Bit of ele-
ment in In2[]

Bit of Ary-
Out[]

FALSE FALSE TRUE

FALSE TRUE FALSE

TRUE FALSE FALSE

TRUE TRUE TRUE

Precautions for Correct Use

AryAnd(abc[1], def[2], UINT#3, ghi[3]);

LD ST

UINT#3

abc[1]
def[2]

ghi[3] ghi[3]

AryAnd
EN ENO
In1
In2
Size
AryOut

In1[0]=abc[1]
In1[1]=abc[2]
In1[2]=abc[3]

Size=UINT#3
TRUE
FALSE
FALSE

In2[0]=def[2]
In2[1]=def[3]
In2[2]=def[4]

AND
AND
AND

AryOut[0]=ghi[3]
AryOut[1]=ghi[4]
AryOut[2]=ghi[5]

TRUE
TRUE
FALSE

TRUE
FALSE
FALSE

2 Instruction Descriptions

2-296 NJ-series Instructions Reference Manual (W502)

S
electio

n
 In

stru
ctio

n
s

2

2-297NJ-series Instructions Reference Manual (W502)

Selection Instructions

Instruction Name Page

SEL Binary Selection 2-298

MUX Multiplexer 2-300

LIMIT Limiter 2-302

Band Deadband Control 2-304

Zone Dead Zone Control 2-307

MAX and MIN Maximum/Minimum 2-310

AryMax and AryMin Array Maximum/Array Minimum 2-312

ArySearch Array Search 2-314

2 Instruction Descriptions

2-298 NJ-series Instructions Reference Manual (W502)

SEL

The SEL instruction selects one of two selections.

* If you omit the input parameter, the default value is not applied. A building error will occur.

Instruction Name FB/FUN Graphic expression ST expression

SEL Binary Selection FUN Out:=SEL(G, In0, In1);

Variables

Name Meaning I/O Description Valid range Unit Default

G Gate

Input

FALSE: Selects In0.

TRUE: Selects In1. Depends on data type. ---

FALSE

In0 and In1 Selections Selections *

Out Selection
result

Output Selection result Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

G OK

In0 and In1 OK

Out OK

(@)SEL
EN ENO
G Out
In0
In1

2-299

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
electio

n
 In

stru
ctio

n
s

2

S
E

L

The SEL instruction selects one of two selections, In0 and In1. Gate G specifies which of In0 and In1 to
select. If G is FALSE, In0 is assigned to Out. If G is TRUE, In1 is assigned to Out.

The following example is for when In0 is INT#10, In1 is INT#20, and G is TRUE. The value of variable
abc will be INT#20.

Use the MUX instruction (page 2-300) to select one of two or more selections.

• In0, In1, and Out may be different data types, but observe the following precautions.

• Set the valid range of Out to include the valid ranges of In0 and In1.

• In0, In1, and Out cannot be different varieties of data types (such as a bit string and an integer, or
an integer and a text string).

• An error occurs in the following cases. ENO will be FALSE, and Out will not change.

• In0 or In1 is STRING data and the number of bytes in the selection result exceeds the size of the
output parameter that is connected to Out.

• In0 or In1 is STRING data and it does not end in a NULL character.

Function

Additional Information

Precautions for Correct Use

FALSE

TRUE

G

Out: = In1 Out: = In0

abc:=SEL(TRUE, INT#10, INT#20);

LD ST

INT#20

TRUE
INT#10

abc

SEL
EN ENO
G
In0
In1

2 Instruction Descriptions

2-300 NJ-series Instructions Reference Manual (W502)

MUX

The MUX instruction selects one of three to five selections.

*1 If you omit an input parameter, the default value is not applied. A building error will occur.

*2 If you omit the input parameter that connects to InN, the default value is not applied, and a building error will occur. For
example, if N is 2 and the input parameters that connect to In0 and In1 are omitted, the default values are applied, but if
the input parameter that connects to In2 is omitted, a building error will occur.

The MUX instruction selects one of three to five selections, In0 to InN.

Selector K specifies which of In0 to InN to select.

Instruction Name FB/FUN Graphic expression ST expression

MUX Multiplexer FUN Out:=MUX(K, In0, In1, ···,
InN);

Variables

Name Meaning I/O Description Valid range Unit Default

K Selector

Input

0: Selects In0.

1: Selects In1.

2: Selects In2.

3: Selects In3.

4: Selects In4.

0 to N

*1

In0 to InN Selections Selections
N is 2 to 4.

Depends on data type. 0*2

Out Selection
result

Output Selection result Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

K OK

In0 to InN OK

Out OK

Function

(@)MUX
EN ENO
K Out
In0
In1

InN

⋅⋅⋅ ⋅⋅⋅

2-301

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
electio

n
 In

stru
ctio

n
s

2

M
U

X

The value of one of the input variables is assigned to Out according to the value of K. In0 is assigned if
K is 0, In1 is assigned if K is 1, etc.

The following example is for when In0 is INT#10, In1 is INT#20, In2 is INT#30, and K is USINT#2. The
value of variable abc will be INT#30.

Use the SEL instruction (page 2-298) to select one of two selections.

• In0 to InN and Out may be different data types, but observe the following precautions.

• Set the valid range of Out to include the valid ranges of In0 to InN.

• In0 to InN and Out cannot be different varieties of data types (such as a bit string and an integer,
or an integer and a text string).

• An error occurs in the following cases. ENO will be FALSE, and Out will not change.

• The value of K is outside the valid range (i.e., less than 0 or greater than N).

• A variable between In0 and InN is STRING data and the number of bytes in the selection result
exceeds the size of the output parameter that is connected to Out.

• One of the variables between In0 and InN is STRING data and it does not end in a NULL charac-
ter.

Additional Information

Precautions for Correct Use

Out: = In0

FALSE

TRUE

TRUE

K = 1

K = N

Out: = In1Out: = InN

K = 0

FALSE

TRUE

abc:=MUX(USINT#2, INT#10, INT#20, INT#30);

LD ST

INT#30
INT#20

USINT#2
INT#10

abc

MUX
EN ENO
K
In0
In1
In2

2 Instruction Descriptions

2-302 NJ-series Instructions Reference Manual (W502)

LIMIT

The LIMIT instruction limits the value of the input variable to the specified minimum and maximum val-
ues.

* If you omit an input parameter, the default value is not applied. A building error will occur.

Instruction Name FB/FUN Graphic expression ST expression

LIMIT Limiter FUN Out:=LIMIT(MN, In, MX);

Variables

Name Meaning I/O Description Valid range Unit Default

MN Minimum
value

Input

Minimum value of limiter

Depends on data type. --- *
In Data to

limit
Data to limit

MX Maximum
value

Maximum value of limiter

Out Processing
result

Output Processing result Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

MN OK OK OK OK OK OK OK OK OK OK

In OK OK OK OK OK OK OK OK OK OK

MX OK OK OK OK OK OK OK OK OK OK

Out OK OK OK OK OK OK OK OK OK OK

(@)LIMIT
EN ENO
MN Out
In
MX

2-303

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
electio

n
 In

stru
ctio

n
s

2

LIM
IT

The LIMIT instruction limits the value of data to limit In according to the maximum value, MX, and the
minimum value, MN. The value of processing result Out is as shown below.

The following example is for when MN is INT#−10 and MX is INT#20.

• In, MN, MX, and Out may be different data types, but observe the following precautions.

• Set the valid range of Out to include the valid ranges of In, MN, and MX.

• Do not combine signed integers (SINT, INT, DINT, and LINT) together with unsigned integers
(USINT, UINT, UDINT, and ULINT) for In, MN, and MX.

• An error occurs in the following case. ENO will be FALSE, and Out will not change.

• The value of MX is smaller than the value of MN.

Function

Value of In Value of Out

In < MN MN

MN ≤ In ≤ MX In

MX < In MX

Precautions for Correct Use

def:=LIMIT(INT#−10, abc, INT#20);

LD ST

INT#20

INT#−10
abc

def

LIMIT
EN ENO
MN
In
MX

Out=def

In=abc

MX=INT#20

MN=INT#−10

2 Instruction Descriptions

2-304 NJ-series Instructions Reference Manual (W502)

Band

The Band instruction performs deadband control.

* If you omit an input parameter, the default value is not applied. A building error will occur.

Instruction Name FB/FUN Graphic expression ST expression

Band Deadband Control FUN Out:=Band(MN, In, MX);

Variables

Name Meaning I/O Description Valid range Unit Default

MN Minimum
value

Input

Minimum value of deadband

Depends on data type. --- *
In Data to

control
Data to control

MX Maximum
value

Maximum value of
deadband

Out Processing
result

Output Processing result Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

MN OK OK OK OK OK OK

In OK OK OK OK OK OK

MX OK OK OK OK OK OK

Out OK OK OK OK OK OK

(@)Band
EN ENO
MN Out
In
MX

2-305

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
electio

n
 In

stru
ctio

n
s

2

B
and

The Band instruction controls the value of data to control In according to the maximum value, MX, and
the minimum value, MN. The value of processing result Out is as shown below.

The following example is for when MN is INT#−10 and MX is INT#20.

• In, MN, MX, and Out may be different data types, but observe the following precaution.

• Set the valid range of Out to include the valid ranges of In, MN, and MX.

• If the value of In is nonnumeric data, the value of Out is nonnumeric data.

• If the value of In, MN, or MX is positive infinity or negative infinity, the value of Out is as shown below.

Function

Value of In Value of Out

In < MN In − MN

MN ≤ In ≤ MX 0

MX < In In − MX

Precautions for Correct Use

Value of In Value of MN Value of MX Value of Out

+∞

+∞
+∞ 0

−∞ Error

−∞
+∞ 0

−∞ +∞

def:=Band(INT#−10, abc, INT#20);

LD ST

INT#20

INT#−10
abc

def

Band
EN ENO
MN
In
MX

Out=def

In=abc

MX=INT#20

MN=INT#−10

2 Instruction Descriptions

2-306 NJ-series Instructions Reference Manual (W502)

• An error occurs in the following cases. ENO will be FALSE, and Out will not change.

• The value of MX is smaller than the value of MN.

• Either MX or MN contains nonnumeric data.

• The processing result exceeds the valid range of Out.

−∞
+∞

+∞ −∞
−∞ Error

−∞
+∞ 0

−∞ 0

Value of In Value of MN Value of MX Value of Out

2-307

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
electio

n
 In

stru
ctio

n
s

2

Z
one

Zone

The Zone instruction adds a bias value to the input value.

* If you omit an input parameter, the default value is not applied. A building error will occur.

Instruction Name FB/FUN Graphic expression ST expression

Zone Dead Zone Control FUN Out:=Zone(BiasN, In,
BiasP);

Variables

Name Meaning I/O Description Valid range Unit Default

BiasN Negative
bias

Input

Negative bias

Depends on data type. --- *
In Data to

control
Data to control

BiasP Positive
bias

Positive bias

Out Processing
result

Output Processing result Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

BiasN OK OK OK OK OK OK

In OK OK OK OK OK OK

BiasP OK OK OK OK OK OK

Out OK OK OK OK OK OK

(@)Zone
EN ENO
BiasN Out
In
BiasP

2 Instruction Descriptions

2-308 NJ-series Instructions Reference Manual (W502)

The Zone instruction controls the value of data to control In according to the positive bias, BiasP, and
the negative bias, BiasN. The value of processing result Out is as shown below.

The following example is for when BiasP is INT#20 and BiasN is INT#−20.

• In, BiasP, BiasN, and Out may be different data types, but observe the following precaution.

• Set the valid range of Out to include the valid ranges of In, BiasP, and BiasN.

• If the value of In is nonnumeric data, the value of Out is nonnumeric data.

• If the value of In, BiasP, or BiasN is positive infinity or negative infinity, the value of Out is as shown
below.

Function

Value of In
Value of

Out

In < 0 In + BiasN

In = 0 0

0 < In In + BiasP

Precautions for Correct Use

Value of In Value of BiasP Value of BiasN Value of Out

+∞

+∞
+∞ +∞
−∞ +∞

−∞
+∞ Error

−∞ 0

def:=Zone(INT#−20, abc, INT#20);

LD ST

INT#20

INT#−20
abc

def

Zone
EN ENO
BiasN
In
BiasP

Out=def

In=abc

BiasP=INT#20

BiasN=INT#−20

2-309

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
electio

n
 In

stru
ctio

n
s

2

Z
one

• An error occurs in the following cases. ENO will be FALSE, and Out will not change.

• BiasP is less than BiasN.

• Either BiasP or BiasN contains nonnumeric data.

• The processing result exceeds the valid range of Out.

−∞
+∞

+∞ 0

−∞ −∞

−∞
+∞ Error

−∞ −∞

Value of In Value of BiasP Value of BiasN Value of Out

2 Instruction Descriptions

2-310 NJ-series Instructions Reference Manual (W502)

MAX and MIN

* If you omit the input parameter that connects to InN, the default value is not applied, and a building error will occur. For
example, if N is 3 and the input parameters that connect to In1 and In2 are omitted, the default values are applied, but if the
input parameter that connects to In3 is omitted, a building error will occur.

MAX: Finds the largest of two to five values.

MIN: Finds the smallest of two to five values.

Instruction Name FB/FUN Graphic expression ST expression

MAX Maximum FUN Out:=MAX(In1, In2, ···, InN);

MIN Minimum FUN Out:=MIN(In1, In2, ···, InN);

Variables

Name Meaning I/O Description Valid range Unit Default

In1 to InN Data to
process

Input Data to process, where N is
2 to 5

Depends on data type. --- 0*

Out Search
result

Output Search result Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In1 to InN OK OK OK OK OK OK OK OK OK OK

Out OK OK OK OK OK OK OK OK OK OK

(@)MAX
EN ENO
In1 Out

InN

⋅⋅⋅ ⋅⋅⋅

(@)MIN
EN ENO
In1 Out

InN
⋅⋅⋅ ⋅⋅⋅

2-311

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
electio

n
 In

stru
ctio

n
s

2

M
A

X
 and M

IN

MAX
The MAX instruction finds the largest value of two to five data to process, In1 to InN.

MIN
The MIN instruction finds the smallest value of two to five data to process, In1 to InN.

The following example is for the MAX instruction when In1 is INT#10, In2 is INT#5, In3 is INT#23, In4 is
INT#14, and In5 is INT#−5.

To find the largest or smallest of six or more values, use the AryMax or AryMin instruction (page 2-312).

• In1 to InN and Out may be different data types, but observe the following precaution.

• Set the valid range of Out to include the valid ranges of In1 to InN.

• Do not combine signed integers (SINT, INT, DINT, and LINT) together with unsigned integers
(USINT, UINT, UDINT, and ULINT) for In1 to InN.

• If In1 to InN are real numbers, the desired results may not be achieved due to error.

Function

Additional Information

Precautions for Correct Use

abc:=MAX(INT#10, INT#5, INT#23, INT#14, INT#−5);

LD ST

abcINT#10
INT#5
INT#23
INT#14
INT# −5

MAX
EN ENO
In1
In2
In3
In4
In5

INT#10In1

INT#5In2

INT#23 INT#23In3

INT#14In4

INT#−5In5

Out=abc

2 Instruction Descriptions

2-312 NJ-series Instructions Reference Manual (W502)

AryMax and AryMin

* If you omit the input parameter, the default value is not applied. A building error will occur.

AryMax: Finds the elements with the largest value in a one-dimensional array.

AryMin: Finds the elements with the smallest value in a one-dimensional array.

Instruction Name FB/FUN Graphic expression ST expression

AryMax Array Maximum FUN Out:=AryMax(In, Size,
InOutPos, Num);

AryMin Array Minimum FUN Out:=AryMin(In, Size, InOut-
Pos, Num);

Variables

Name Meaning I/O Description Valid range Unit Default

In[] (array) Array to
search

Input

Array to search

Depends on data type. ---

*

Size Number of
elements to
search

Number of elements in In[]
to search

1

InOutPos Found
element
number

In-out Array element number
where value was found

Depends on data type. --- ---

Out Search
result

Output

Search result

Depends on data type. --- ---
Num Number

found
Number found

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In[] (array) OK OK OK OK OK OK OK OK OK OK

Size OK

InOutPos OK

Out OK OK OK OK OK OK OK OK OK OK

Num OK

(@)AryMax
EN ENO
In Out
Size Num
InOutPos

(@)AryMin
EN ENO
In Out
Size Num
InOutPos

2-313

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
electio

n
 In

stru
ctio

n
s

2

A
ryM

ax and A
ryM

in

These instructions search Size elements in array to search In[] starting from In[0]. The value that is
found is assigned to Out, the element number where it was found is assigned to InOutPos, and the
number of times the value was found is assigned to Num. If Num is greater than 1, the value in InOut-
Pos is the number of the lowest element that contains the value that was found.

AryMax
The AryMax instruction finds the largest value.

AryMin
The AryMin instruction finds the smallest value.

The following example shows the AryMax instruction when Size is UINT#6.

The input parameter that is passed to In[] is abc[2], so the search starts from abc[2].

• If you use a different data type for In[] and Out, make sure the valid range of Out includes the valid
range of In[].

• If In[] contains real numbers, the desired results may not be achieved due to error.

• Always used a one-dimensional array for In[].

• If the value of Size is 0, the values of Out and Num are 0. The value of InOutPos does not change.

• An error occurs in the following cases. ENO will be FALSE, and Out will not change.

• The value of Size is outside of the valid range.

• Size exceeds the array area of In[].

• In[] is not a one-dimensional array.

Function

Precautions for Correct Use

ghi:=AryMax(abc[2], UINT#6, def, jkl);

LD ST

abc[2]

def def

ghi
jklUINT#6

AryMax
EN ENO
In
Size Num
InOutPos

Largest value = 9999

Not searched.

Not searched.

The lowest element number that contains the largest value is 3.

In[0]=abc[2]
In[1]=abc[3]
In[2]=abc[4]
In[3]=abc[5]
In[4]=abc[6]
In[5]=abc[7]

Size=UINT#6

9999
2345
9999
4321
4567
1234
9999
9999

INT#9999Out=ghi

InOutPos=def

Num=jkl UINT#2

UINT#3

2 Instruction Descriptions

2-314 NJ-series Instructions Reference Manual (W502)

ArySearch

The ArySearch instruction searches for the specified value in a one-dimensional array.

* If you omit an input parameter, the default value is not applied. A building error will occur.

Instruction Name FB/FUN Graphic expression ST expression

ArySearch Array Search FUN Out:=ArySearch(In, Size,
Key, InOutPos, Num);

Variables

Name Meaning I/O Description Valid range Unit Default

In[] (array) Array to
search

Input

Array to search Depends on data type.

*

Size Number of
elements to
search

Number of elements in In[]
to search

1 to 65535 1

Key Search key Value to search for Depends on data type. ---

InOutPos Found
element
number

In-out Array element number
where value was found

Depends on data type. --- ---

Out Search
result

Output

Search result

Depends on data type. --- ---
Num Number

found
Number found

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In[] (array) OK

Arrays of enumerations can also be specified.

Size OK

Key Must be same data type as the elements of In[].

InOutPos OK

Out OK

Num OK

(@)ArySearch
EN ENO
In Out
Size Num
Key
InOutPos

2-315

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
electio

n
 In

stru
ctio

n
s

2

A
ryS

earch

The ArySearch instruction searches Size elements of one-dimensional array to search In[] for elements
with the same value as search key Key. The search starts from In[0].

The values of search result Out, found element number InOutPos, and number found Num are as fol-
lows:

The following example is for when Size is UINT#6 and Key is INT#5555.

The input parameter that is passed to In[] is abc[2], so the search starts from abc[2].

• Always use a one-dimensional array for In[].

• Make sure that Key has the same data type as the elements of In[].

• If the value of Size is 0, the values of Out and Num are 0. The value of InOutPos does not change.

• When Key is an enumeration, always use a variable for the input parameter to pass to Key. A building
error will occur if a constant is passed.

• An error occurs in the following cases. ENO will be FALSE, and Out, Num, and InOutPos will not
change.

• Size exceeds the array area of In[].

• In[] or Key is STRING data and it does not end in a NULL character.

• In[] is not a one-dimensional array.

Function

Element with
same value as

Key
Out InOutPos Num

Exists. TRUE Lowest element number that con-
tains the same value as Key

Number of elements with
same value as Key

Does not exist. FALSE Does not change. 0

Precautions for Correct Use

ghi:=ArySearch(abc[2], UINT#6, INT#5555, def, jkl);

LD ST

abc[2]

def def

ghi
jklUINT#6

INT#5555

ArySearch
EN ENO
In
Size Num
Key
InOutPos

Not searched.

Not searched.

The lowest element number that
contains same value as Key is 3.

In[0]=abc[2]
In[1]=abc[3]
In[2]=abc[4]
In[3]=abc[5]
In[4]=abc[6]
In[5]=abc[7]

Size=UINT#6

5555
2345
5555
5555
4567
1234
9876
5555

TRUE

Key=INT#5555

Out=ghi

InOutPos=def

Num=jkl

UINT#3

UINT#2

2 Instruction Descriptions

2-316 NJ-series Instructions Reference Manual (W502)

D
ata M

ovem
en

t In
stru

ctio
n

s

2

2-317NJ-series Instructions Reference Manual (W502)

Data Movement Instructions

Instruction Name Page

MOVE Move 2-318

MoveBit Move Bit 2-321

MoveDigit Move Digit 2-323

TransBits Move Bits 2-325

MemCopy Memory Copy 2-327

SetBlock Block Set 2-329

Exchange Data Exchange 2-331

AryExchange Array Data Exchange 2-333

AryMove Array Move 2-335

Clear Initialize 2-337

Copy**ToNum (Bit String to
Signed Integer)

Bit Pattern Copy (Bit String to
Signed Integer) Group

2-339

Copy**To*** (Bit String to Real
Number)

Bit Pattern Copy (Bit String to
Real Number) Group

2-341

CopyNumTo** (Signed Integer
to Bit String)

Bit Pattern Copy (Signed Integer
to Bit String) Group

2-343

CopyNumTo** (Signed Integer
to Real Number)

Bit Pattern Copy (Signed Integer
to Real Number) Group

2-345

Copy**To*** (Real Number to
Bit String)

Bit Pattern Copy (Real Number to
Bit String) Group

2-347

Copy**ToNum (Real Number
to Signed Integer)

Bit Pattern Copy (Real Number to
Signed Integer) Group

2-349

2 Instruction Descriptions

2-318 NJ-series Instructions Reference Manual (W502)

MOVE

The MOVE instruction moves the value of a constant or variable to another variable.

* If you omit the input parameter, the default value is not applied. A building error will occur.

The MOVE instruction moves the value in move source In to move destination Out. The input parameter
that is passed to In can be a variable or constant. You can specify an enumeration, array, array element,
structure, or structure member for In.

The following figure shows a programming example. The content of variable abc is moved to variable
def.

Instruction Name FB/FUN Graphic expression ST expression

MOVE Move FUN Out:=In;

Variables

Name Meaning I/O Description Valid range Unit Default

In Move
source

Input Move source Depends on data type. --- *

Out Move
destination

Output Move destination Depends on data type.

*

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In
OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

An enumeration, array, array element, structure, or structure member can also be specified.

Out

OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

Must be the same data type as In if In is an enumeration, array element, structure, or structure member.
Must be an array with the same data type, size, and subscripts if In is an array,

Function

(@)MOVE
EN ENO
In Out

def:=abc;

LD ST

abc def

MOVE
EN ENO
In Out

2-319

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

D
ata M

ovem
en

t In
stru

ctio
n

s

2

M
O

V
E

• When moving an array, you can move either one element or all of the elements in the array. To move
only one element, add the subscript to the array variable name. To move the entire array, do not add
the subscript to the array variable name.

• When moving a structure, you can move either one member or all of the members in the structure. To
move only one member, specify the member. To move the entire structure, give only the structure
name.

• You can use the MemCopy instruction to move an entire array faster than with the MOVE instruction.

• The data types of In and Out can be different as long as they are both in one of the following groups.
The valid range of Out must include the valid range of In.

Additional Information

Precautions for Correct Use

Moving All Array Elements

Moving One Array Element

def[5]:=abc[3];

LD ST

abc[3] def[5]

def:=abc;

LD ST

abc def

MOVE
EN ENO
In Out

MOVE
EN ENO
In Out

Moving the Entire Structure

Moving One Member of a Structure

def.n:=abc.m;

LD ST

abc.m def.n

def:=abc;

LD ST

abc def

MOVE
EN ENO
In Out

MOVE
EN ENO
In Out

2 Instruction Descriptions

2-320 NJ-series Instructions Reference Manual (W502)

• BYTE, WORD, DWORD, and LWORD

• USINT, UINT, UDINT, ULINT, SINT, INT, DINT, LINT, REAL, and LREAL

• If In is an enumeration, array element, structure, or structure member, then Out must have the same
data type as In.

• If In is an array, an array of the same data type, size, and subscripts must be used for Out.

• An error occurs in the following cases. ENO will be FALSE, and Out will not change.

• In is STRING data and it does not end in a NULL character.

• Out is STRING data, but the text string that is moved exceeds the size of Out.

2-321

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

D
ata M

ovem
en

t In
stru

ctio
n

s

2

M
oveB

it

MoveBit

The MoveBit instruction moves one bit in a bit string.

* If you omit the input parameter, the default value is not applied. A building error will occur.

Instruction Name FB/FUN Graphic expression ST expression

MoveBit Move Bit FUN MoveBit(In, InPos, InOut,
InOutPos);

Variables

Name Meaning I/O Description Valid range Unit Default

In Move
source

Input

Move source Depends on data type.

*

InPos Move
source bit

Position of bit in In to move 0 to No. of bits in In − 1

0InOutPos Move
destination
bit

Position of bit in Out to
receive the bit

0 to No. of bits in InOut
− 1

InOut Move
destination

In-out Move destination Depends on data type. --- ---

Out Return
value

Output Always TRUE TRUE only --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK OK OK OK

InPos OK

InOutPos OK

InOut OK OK OK OK

Out OK

(@)MoveBit
EN ENO
In Out
InPos
InOut

InOutPos

2 Instruction Descriptions

2-322 NJ-series Instructions Reference Manual (W502)

The MoveBit instruction moves one bit from the bit position InPos in move source In to the bit position
InOutPos in move destination InOut.

The following example is for when InPos is USINT#3 and InOutPos is USINT#5.

• Return value Out is not used when the instruction is used in ST.

• An error occurs in the following cases. ENO will be FALSE, and InOut will not change.

• The value of InPos is outside of the valid range.

• The value of InOutPos is outside of the valid range.

Function

Precautions for Correct Use

MoveBit(abc, USINT#3, def, USINT#5);

LD ST

abc

def def

USINT#3

USINT#5

MoveBit
EN ENO
In
InPos
InOut

InOutPos

0 0

InPos=USINT#3

In=abc

InOut=def

InOutPos=USINT#5

0 0 1 0 0 0

0 0 1 0 0 0 0 0

Most-significant bit Bit 0

2-323

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

D
ata M

ovem
en

t In
stru

ctio
n

s

2

M
oveD

igit

MoveDigit

The MoveDigit instruction moves digits (4 bits per digit) in a bit string.

*1 If you omit the input parameter, the default value is not applied. A building error will occur.

*2 0 to No. of bits in In/4 − 1

*3 0 to No. of bits in InOut/4 − 1

*4 0 to No. of bits in In/4

Instruction Name FB/FUN Graphic expression ST expression

MoveDigit Move Digit FUN MoveDigit(In, InPos, InOut,
InOutPos, Size);

Variables

Name Meaning I/O Description Valid range Unit Default

In Move
source

Input

Move source Depends on data type.

*1

InPos Move
source digit

Position of digit in In to move *2

0InOutPos Move
destination
digit

Position of digit in Out to
receive the digit

*3

Size Number of
digits

Number of digits to move *4 1

InOut Move
destination

In-out Move destination Depends on data type. --- ---

Out Return
value

Output Always TRUE TRUE only --- ---
B

o
o

lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK OK OK OK

InPos OK

InOutPos OK

Size OK

InOut OK OK OK OK

Out OK

(@)MoveDigit
EN ENO
In Out
InPos
InOut

InOutPos
Size

2 Instruction Descriptions

2-324 NJ-series Instructions Reference Manual (W502)

The MoveDigit instruction moves Size digits from the InPos digit in move source In to the InOutPos digit
in move destination InOut. One digit is four bits.

The following example is for when InPos is USINT#1, InOutPos is USINT#2, and Size is USINT#2.

• If the position of the digit at the destination exceeds the most-significant digit of InOut, the remaining
digits are stored the least-significant digits of InOut.

• If the position of the digit at the source exceeds the most-significant digit of In, the remaining digits
are moved to the least-significant digits of In.

• If the value of Size is 0, the value of Out will be TRUE and InOut will not change.

• Return value Out is not used when the instruction is used in ST.

• An error occurs in the following cases. ENO will be FALSE, and InOut will not change.

• The value of InPos is outside of the valid range.

• The value of InOutPos is outside of the valid range.

• The value of Size is outside of the valid range.

Function

Precautions for Correct Use

MoveDigit(abc, USINT#1, def, USINT#2, USINT#2);

LD ST

abc

def def

USINT#1

USINT#2
USINT#2

MoveDigit
EN ENO
In
InPos
InOut

InOutPos
Size

Digit 0Digit 1Digit 2Digit 3

Digit 0Digit 1Digit 2Digit 3

1 digit = 4 bits

In=abc

InOut=def

InPos=USINT#1
Size=USINT#2

InOutPos=USINT#2

2-325

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

D
ata M

ovem
en

t In
stru

ctio
n

s

2

TransB
its

TransBits

The TransBits instruction moves one or more bits in a bit string.

*1 If you omit an input parameter, the default value is not applied. A building error will occur.

*2 0 to No. of bits in In − 1

*3 0 to No. of bits in InOut − 1

*4 0 to No. of bits in In

Instruction Name FB/FUN Graphic expression ST expression

TransBits Move Bits FUN TransBits(In, InPos, InOut,
InOutPos, Size);

Variables

Name Meaning I/O Description Valid range Unit Default

In Move
source

Input

Move source Depends on data type.

*1

InPos Move
source bit

Position of bit in In to move *2

0InOutPos Move
destination
bit

Position of bit in Out to
receive the bit

*3

Size Number of
bits

Number of bits to move *4 1

InOut Move
destination

In-out Move destination Depends on data type. --- ---

Out Return
value

Output Always TRUE TRUE only --- ---
B

o
o

lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK OK OK OK

InPos OK

InOutPos OK

Size OK

InOut OK OK OK OK

Out OK

(@)TransBits
EN ENO
In Out
InPos
InOut

InOutPos
Size

2 Instruction Descriptions

2-326 NJ-series Instructions Reference Manual (W502)

The TransBis instruction moves Size bits from the InPos bit in move source In to the InOutPos bit in
move destination InOut.

The following example is for when InPos is USINT#3, InOutPos is USINT#4, and Size is USINT#2.

The bits in the move source and move destination can overlap.

• Set the instruction so that the positions of the bits at the source and destination do not exceed the
most-significant bit in In or InOut. An error will occur and the instruction will not operate.

• Nothing is moved if the value of Size is 0.

• The bits in InOut that are not involved in the move operation do not change.

• Return value Out is not used when the instruction is used in ST.

• An error occurs in the following cases. ENO will be FALSE, and InOut will not change.

• The value of InPos is outside of the valid range.

• The value of InOutPos is outside of the valid range.

• The value of Size is outside of the valid range.

• The value of InPos or Size exceeds the number of bits in In.

• The value of InOutPos or Size exceeds the number of bits in InOut.

Function

Additional Information

Precautions for Correct Use

TransBits(abc, USINT#3, def, USINT#4, USINT#2);

LD ST

abc

def def

USINT#3

USINT#4
USINT#2

TransBits
EN ENO
In
InPos
InOut

InOutPos
Size

In=abc

InOut=def

0 0

InPos=USINT#3

InOutPos=USINT#4

0 0 0 0 0 0

1 1 0 0 1 1 1 1

Size=USINT#2

Most-significant bit Bit 0

2-327

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

D
ata M

ovem
en

t In
stru

ctio
n

s

2

M
em

C
opy

MemCopy

The MemCopy instruction moves one or more array elements. The move source and move destination
must have the same data type.

* If you omit the input parameter, the default value is not applied. A building error will occur.

Instruction Name FB/FUN Graphic expression ST expression

MemCopy Memory Copy FUN MemCopy(In, AryOut, Size);

Variables

Name Meaning I/O Description Valid range Unit Default

In[] (array) Move
source
array Input

Move source array

Depends on data type. ---

*

Size Number of
elements

Number of array elements to
move

1

AryOut[]
(array)

Move
destination
array

In-out Move destination array Depends on data type. --- ---

Out Return
value

Output Always TRUE TRUE only --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In[] (array)
OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

Arrays of enumerations or structures can also be specified.

Size OK

AryOut[]
(array)

Must be an array with the same data type as In[].

Out OK

(@)MemCopy
EN ENO
In Out
AryOut

Size

2 Instruction Descriptions

2-328 NJ-series Instructions Reference Manual (W502)

The MemCopy instruction moves Size elements of move source array In[] starting from In[0] to move
destination array AryOut[] starting from AryOut[0].

The following example is for when Size is UINT#3.

• You can specify different positions in the same array for In[] and AryOut[]. The source and destination
data can overlap.

The following example is for when In is A[2], AryOut is A[4], and Size is UINT#3.

• Use the AryMove instruction (page 2-335) if the source and destination have different data types.

• If the data types of In[] and AryOut[] are the same, this instruction is faster than the AryMove instruc-
tion.

• Use the MOVE instruction (page 2-318) to move variables that are not arrays.

• Use the same data type for In[] and AryOut[]. If they are different, a building error will occur.

• If In[] and AryOut[] are STRING arrays, their sizes must be the same.

• If the value of Size is 0, the value of Out will be TRUE and AryOut[] will not change.

• Return value Out is not used when the instruction is used in ST.

• An error occurs in the following cases. ENO will be FALSE, and AryOut[] will not change.

• Size exceeds the array area of In[].

• Size exceeds the array area of AryOut[].

Function

Additional Information

Precautions for Correct Use

MemCopy(abc[1], def[2], UINT#3);

LD ST

abc[1]

def[2] def[2]
UINT#3

MemCopy
EN ENO
In
AryOut

Size

In[0]=abc[1]
In[1]=abc[2]
In[2]=abc[3]

Size=UINT#3
1234
2345
3456

AryOut[0]=def[2]
AryOut[1]=def[3]
AryOut[2]=def[4]

1234
2345
3456

 A[1]
 In=A[2]
 A[3]
AryOut=A[4]
 A[5]
 A[6]

 A[1]
 In=A[2]
 A[3]
AryOut=A[4]
 A[5]
 A[6]

Size=UINT#3

1234
2345
3456
4567
5678
6789

1234
2345
3456
2345
3456
4567

2-329

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

D
ata M

ovem
en

t In
stru

ctio
n

s

2

S
etB

lock

SetBlock

The SetBlock instruction moves the value of a variable or constant to one or more array elements.

* If you omit the input parameter, the default value is not applied. A building error will occur.

The SetBlock instruction moves the value of move source In to Size locations in move destination array
AryOut[] starting from AryOut[0].

Instruction Name FB/FUN Graphic expression ST expression

SetBlock Block Set FUN SetBlock(In, AryOut, Size);

Variables

Name Meaning I/O Description Valid range Unit Default

In Move
source

Input

Move source

Depends on data type. ---

*

Size Number of
elements

Number of array elements to
move

1

AryOut[]
(array)

Move
destination
array

In-out Move destination array Depends on data type. --- ---

Out Return
value

Output Always TRUE TRUE only --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In
OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

An enumeration, structure, or structure member can also be specified.

Size OK

AryOut[]
(array)

Must be an array with elements that have the same data type as In.

Out OK

Function

(@)SetBlock
EN ENO
In Out
AryOut

Size

2 Instruction Descriptions

2-330 NJ-series Instructions Reference Manual (W502)

The following example is for when Size is UINT#3.

• Use the same data type for In and AryOut[]. If they are different, a building error will occur.

• If In and AryOut[] are STRING data, their sizes must be the same.

• If the value of Size is 0, the value of Out will be TRUE and AryOut[] will not change.

• Return value Out is not used when the instruction is used in ST.

• An error occurs in the following case. ENO will be FALSE, and AryOut[] will not change.

• The value of Size exceeds the array area of AryOut[].

Precautions for Correct Use

SetBlock(abc, def[1], UINT#3);

LD ST

abc

def[1] def[1]
UINT#3

SetBlock
EN ENO
In
AryOut

Size

In=abc
Size=UINT#3

1234 AryOut[0]=def[1]
AryOut[1]=def[2]
AryOut[2]=def[3]

1234
1234
1234

2-331

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

D
ata M

ovem
en

t In
stru

ctio
n

s

2

E
xchange

Exchange

The Exchange instruction exchanges the values of two variables.

The Exchange instruction exchanges the values of data to exchange InOut1 and InOut2. You can spec-
ify enumerations, structures, or structure members for InOut1 and InOut2.

The following figure shows a programming example. The values in variables abc and def are
exchanged.

Instruction Name FB/FUN Graphic expression ST expression

Exchange Data Exchange FUN Exchange(InOut1, InOut2);

Variables

Name Meaning I/O Description Valid range Unit Default

InOut1 and
InOut2

Data to
exchange

In-out Data to exchange Depends on data type. --- ---

Out Return
value

Output Always TRUE TRUE only --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

InOut1
OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

An enumeration, structure, or structure member can also be specified.

InOut2 Must be same data type as InOut1.

Out OK

Function

(@)Exchange
EN ENO
InOut1

InOut2

 Out

Exchange(abc, def);

LD ST

abc abc

def def

Exchange
EN ENO
InOut1

InOut2

 Out

2 Instruction Descriptions

2-332 NJ-series Instructions Reference Manual (W502)

• The data types of InOut1 and InOut2 must be the same. If they are different, a building error will
occur.

• Return value Out is not used when the instruction is used in ST.

• An error occurs in the following cases. ENO will be FALSE, and InOut1 and InOut2 will not change.

• Both InOut1 and InOut2 are STRING data and the length of the text string in one of them does not
fit into the other.

• InOut1 and InOut2 contain different data types.

Precautions for Correct Use

2-333

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

D
ata M

ovem
en

t In
stru

ctio
n

s

2

A
ryE

xchange

AryExchange

The AryExchange instruction exchanges the elements of two arrays.

The AryExchange instruction exchanges Size elements from InOut1[0] of array to exchange InOut1[]
with Size elements from InOut2[0] of array to exchange InOut2[].

Instruction Name FB/FUN Graphic expression ST expression

AryExchange Array Data
Exchange

FUN AryExchange(InOut1,
InOut2, Size);

Variables

Name Meaning I/O Description Valid range Unit Default

Size Number of
elements

Input Number of elements to
exchange

Depends on data type. --- 1

InOut1[]
and
InOut2[]
(arrays)

Arrays to
exchange

In-out Arrays to exchange Depends on data type. --- ---

Out Return
value

Output Always TRUE TRUE only --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

Size OK

InOut1[]
(array)

OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

Arrays of enumerations or structures can also be specified.

InOut2[]
(array)

Must be an array with the same data type as InOut1[].

Out OK

Function

(@)AryExchange
EN ENO
InOut1

InOut2

Size Out

2 Instruction Descriptions

2-334 NJ-series Instructions Reference Manual (W502)

The following example is for when Size is UINT#2.

• Use the MOVE instruction (page 2-318) to assign constants to variables.

• Use the MemCopy instruction (page 2-327) to copy the values of variables to other variables.

• Use the same data type for the elements of InOut1[] and InOut2[]. If they are different, a building error
will occur.

• If the value of Size is 0, the value of Out will be TRUE and InOut1[] and InOut2[] will not change.

• Return value Out is not used when the instruction is used in ST.

• An error occurs in the following cases. ENO will be FALSE, and InOut1[] and InOut2[] will not change.

• The value of Size exceeds the array range of InOut1[] or InOut2[].

• InOut1[] and InOut2[] are STRING arrays and there is an element with a text string that exceeds
the size of the element in the other array.

• InOut1[] and InOut2[] are STRING arrays and there is an element that does not end in a NULL
character.

Additional Information

Precautions for Correct Use

AryExchange(abc[1], def[2], UINT#2);

LD ST

abc[1] abc[1]

def[2]
UINT#2

def[2]

AryExchange
EN ENO
InOut1

InOut2

Size

ExchangedInOut1[0]=abc[1]
InOut1[1]=abc[2]

InOut2[0]=def[2]
InOut2[1]=def[3]Size=UINT#2

2-335

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

D
ata M

ovem
en

t In
stru

ctio
n

s

2

A
ryM

ove

AryMove

The AryMove instruction moves one or more array elements. The data types of the move source and
move destination can be different.

* If you omit the input parameter, the default value is not applied. A building error will occur.

The AryMove instruction moves Size elements of move source array In[] starting from In[0] to move
result array AryOut[] starting from AryOut[0]. The data types of In[] and AryOut[] can be different.

Instruction Name FB/FUN Graphic expression ST expression

AryMove Array Move FUN AryMove(In, AryOut, Size);

Variables

Name Meaning I/O Description Valid range Unit Default

In[] (array) Move
source
array Input

Array to move

Depends on data type. ---

*

Size Number of
elements

Number of elements to
move

1

AryOut[]
(array)

Move result
array

In-out Move result array Depends on data type. --- ---

Out Return
value

Output Always TRUE TRUE only --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In[] (array)
OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

Arrays of enumerations or structures can also be specified.

Size OK

AryOut[]
(array)

OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

Arrays of enumerations or structures can also be specified.

Out OK

Function

(@)AryMove
EN ENO
In Out
AryOut

Size

2 Instruction Descriptions

2-336 NJ-series Instructions Reference Manual (W502)

The following example is for when Size is UINT#2.

• If the data types of In[] and AryOut[] are the same, the MemCopy instruction is faster.

• You can specify the same array for In[] and AryOut[]. Also, the move source and destination data can
overlap. The following example is for when In[0] is A[2], AryOut[0] is A[4], and Size is UINT#3.

• The data types of In[] and AryOut[] can be different as long as they are both in one of the following
groups. The valid range of AryOut[] must include the valid range of In[].

• BYTE, WORD, DWORD, and LWORD

• USINT, UINT, UDINT, ULINT, SINT, INT, DINT, LINT, REAL, and LREAL

• If In[] is an array of structures, use the same data types for In[] and AryOut[].

• If the value of Size is 0, the value of Out will be TRUE and AryOut[] will not change.

• Return value Out is not used when the instruction is used in ST.

• An error occurs in the following case. ENO will be FALSE, and AryOut[] will not change.

• The value of Size exceeds the size of In[] or AryOut[].

• In[] and AryOut[] are STRING arrays and one of the elements to move does not end in a NULL
character.

• In[] or AryOut[] is a STRING array and the length of a text string in an element to move exceeds
the size of the element in AryOut[].

Additional Information

Precautions for Correct Use

AryMove(abc[1], def[2], UINT#2);

LD ST

abc[1]

def[2]
UINT#2

def[2]

AryMove
EN ENO
In
AryOut

Size

MovedIn[0]=abc[1]
In[1]=abc[2]

AryOut[0]=def[2]
AryOut[1]=def[3]Size=UINT#2

 A[0]
 A[1]
 In=A[2]
 A[3]
AryOut=A[4]
 A[5]
 A[6]

 A[0]
 A[1]
 In=A[2]
 A[3]
AryOut=A[4]
 A[5]
 A[6]

1234
2345
3456
4567
5678
6789
7890

1234
2345
3456
4567
3456
4567
5678

Size=UINT#3

2-337

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

D
ata M

ovem
en

t In
stru

ctio
n

s

2

C
lear

Clear

The Clear instruction initializes a variable.

The Clear instruction initializes the value of data to initialize InOut.
If an initial value attribute is set for a variable, the specified initial value is used. If an initial value
attribute is not set, the default value for the data type is used.

The default values for the data types are given below.

Instruction Name FB/FUN Graphic expression ST expression

Clear Initialize FUN Clear(InOut);

Variables

Name Meaning I/O Description Valid range Unit Default

InOut Data to
initialize

In-out Data to initialize Depends on data type. --- ---

Out Return
value

Output Always TRUE TRUE only --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

InOut
OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

An enumeration, array, array element, structure, or structure member can also be specified.

Out OK

Function

Data type Default

BOOL FALSE

BYTE, WORD, DWORD, or LWORD 16#0

USINT, UINT, UDINT, ULINT, SINT, INT, DINT, LINT,
REAL, or LREAL

0

TIME T#0ms

DATE D#1970-1-1

TOD TOD#0:0:0

DT DT#1970-1-1-0:0:0

STRING ''

(@)Clear
EN ENO
InOut

 Out

2 Instruction Descriptions

2-338 NJ-series Instructions Reference Manual (W502)

If InOut is an array, array element, structure, or structure member, the following processing is per-
formed.

The following figure shows a programming example. The value of variable abc is initialized.

• If InOut is an array that is used as a stack, execute this instruction and also set the variable that man-
ages the number of items stored in the stack to 0.

• If you initialize a cam data variable with this instruction, it will not contain the data that was saved with
the MC_SaveCamTable instruction. It will contain all zeros.

Return value Out is not used when the instruction is used in ST.

InOut Processing

Array All elements in the array are initialized.

Array element Only the specified element is initialized.

Structure All members in the structure are initialized.

Structure member Only the specified member is initialized.

Additional Information

Precautions for Correct Use

Clear(abc);

LD ST

abc abc

Clear
EN ENO
InOut

2-339

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

D
ata M

ovem
en

t In
stru

ctio
n

s

2

C
opy**ToN

um
 (B

it S
tring to S

igned Integer)

Copy**ToNum (Bit String to
Signed Integer)

The Copy**ToNum instruction copies the content of a bit string directly to a signed integer.

The Copy**ToNum instruction copies the content of copy source In directly to copy destination Out.

There are four instructions depending on the data types of In and Out.

Instruction Name FB/FUN Graphic expression ST expression

Copy**ToNum Bit Pattern Copy
(Bit String to Signed
Integer) Group

FUN Out:=Copy**ToNum(In);

"**" must be a bit string data
type.

Variables

Name Meaning I/O Description Valid range Unit Default

In Copy
source

Input Copy source Depends on data type. --- 0

Out Copy
destination

Output Copy destination Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK OK OK OK

Out Must be a signed integer data type that is the same size as the data type of In.

Function

In Out Instruction

BYTE SINT CopyByteToNum

WORD INT CopyWordToNum

DWORD DINT CopyDwordToNum

LWORD LINT CopyLwordToNum

"**" must be a bit string data type.

(@)Copy**ToNum
EN ENO
In Out

2 Instruction Descriptions

2-340 NJ-series Instructions Reference Manual (W502)

The following example for the CopyWordToNum instruction is for when In is WORD#16#4D2.

abc:=CopyWordToNum(WORD#16#4D2);

LD ST

WORD#16#4D2 abc

CopyWordToNum
EN ENO
In

In Out = abc
WORD#16#4D2
(WORD#2#00000100_11010010)

INT#1234
(2#00000100_11010010)

2-341

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

D
ata M

ovem
en

t In
stru

ctio
n

s

2

C
opy**To*** (B

it S
tring to R

eal N
um

ber)

Copy**To*** (Bit String to Real
Number)

The Copy**To*** instruction copies the content of a bit string directly to a real number.

Instruction Name FB/FUN Graphic expression ST expression

Copy**To*** Bit Pattern Copy
(Bit String to Real
Number) Group

FUN Out:=CopyDwordToReal(In);
or
Out:=CopyLwordToLreal(In);

Variables

Name Meaning I/O Description Valid range Unit Default

In Copy
source

Input Copy source Depends on data type. --- 0

Out Copy
destination

Output Copy destination Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK OK

Out Must be REAL if the data type of In is DWORD and LREAL if the data type of In is LWORD.

(@)CopyDwordToReal
EN ENO
In Out

(@)CopyLwordToLreal
EN ENO
In Out

2 Instruction Descriptions

2-342 NJ-series Instructions Reference Manual (W502)

The Copy**To*** instruction copies the content of copy source In directly to copy destination Out.
There are two instructions depending on the data types of In and Out.

The following example for the CopyDwordToReal instruction is for when In is DWORD#16#40200000.

Function

In Out Instruction

DWORD REAL CopyDwordToReal

LWORD LREAL CopyLwordToLreal

abc:=CopyDwordToReal(DWORD#16#40200000);

LD ST

DWORD#16#40200000 abc

CopyDwordToReal
EN ENO
In

In

Out = abc

DWORD#16#40200000
(DWORD#2#01000000_00100000_00000000_00000000)

REAL#2.5
(2#01000000_00100000_00000000_00000000)

2-343

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

D
ata M

ovem
en

t In
stru

ctio
n

s

2

C
opyN

um
To** (S

igned Integer to B
it S

tring)

CopyNumTo** (Signed Integer to
Bit String)

The CopyNumTo** instruction copies the content of a signed integer directly to a bit string.

The CopyNumTo** instruction copies the content of copy source In directly to copy destination Out.

There are four instructions depending on the data types of In and Out.

Instruction Name FB/FUN Graphic expression ST expression

CopyNumTo** Bit Pattern Copy
(Signed Integer to
Bit String) Group

FUN Out:=CopyNumTo**(In);

"**" must be a bit string data
type.

Variables

Name Meaning I/O Description Valid range Unit Default

In Copy
source

Input Copy source Depends on data type. --- 0

Out Copy
destination

Output Copy destination Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK OK OK OK

Out Must be a bit string data type that is the same size as the data type of In.

Function

In Out Instruction

SINT BYTE CopyNumToByte

INT WORD CopyNumToWord

DINT DWORD CopyNumToDword

LINT LWORD CopyNumToLword

"**" must be a bit string data type.

(@)CopyNumTo**
EN ENO
In Out

2 Instruction Descriptions

2-344 NJ-series Instructions Reference Manual (W502)

The following example for the CopyNumToWord instruction is for when In is INT#1234.

abc:=CopyNumToWord(INT#1234);

LD ST

INT#1234 abc

CopyNumToWord
EN ENO
In

In Out = abc WORD#16#4D2
(2#00000100_11010010)

INT#1234
(2#00000100_11010010)

2-345

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

D
ata M

ovem
en

t In
stru

ctio
n

s

2

C
opyN

um
To** (S

igned Integer to R
eal N

um
ber)

CopyNumTo** (Signed Integer to
Real Number)

The CopyNumTo** instruction copies the content of a signed integer directly to a real number.

The CopyNumTo** instruction copies the content of copy source In directly to copy destination Out.

There are two instructions depending on the data types of In and Out.

Instruction Name FB/FUN Graphic expression ST expression

CopyNumTo** Bit Pattern Copy
(Signed Integer to
Real Number)
Group

FUN Out:=CopyNumToReal(In);
or
Out:=CopyNumToLreal(In);

Variables

Name Meaning I/O Description Valid range Unit Default

In Copy
source

Input Copy source Depends on data type. --- 0

Out Copy
destination

Output Copy destination Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK OK

Out Must be REAL if the data type of In is DINT and LREAL if the data type of In is LINT.

Function

In Out Instruction

DINT REAL CopyNumToReal

LINT LREAL CopyNumToLreal

(@)CopyNumToReal
EN ENO
In Out

(@)CopyNumToLreal
EN ENO
In Out

2 Instruction Descriptions

2-346 NJ-series Instructions Reference Manual (W502)

The following example for the CopyNumToReal instruction is for when In is DINT#1075838976.

abc:=CopyNumToReal(DINT#1075838976);

LD ST

DINT#1075838976 abc

CopyNumToReal
EN ENO
In

In Out = abc
DINT#1075838976
(2#01000000_00100000_00000000_00000000)

REAL#2.5
(2#01000000_00100000_00000000_00000000)

2-347

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

D
ata M

ovem
en

t In
stru

ctio
n

s

2

C
opy**To*** (R

eal N
um

ber to B
it S

tring)

Copy**To*** (Real Number to Bit
String)

The Copy**To*** instruction copies the content of a real number directly to a bit string.

Instruction Name FB/FUN Graphic expression ST expression

Copy**To*** Bit Pattern Copy
(Real Number to Bit
String) Group

FUN Out:=CopyRealToDword(In);
or
Out:=CopyLrealToLword(In);

Variables

Name Meaning I/O Description Valid range Unit Default

In Copy
source

Input Copy source Depends on data type. --- 0.0

Out Copy
destination

Output Copy destination Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK OK

Out Must be DWORD if the data type of In is REAL and LWORD if the data type of In is LREAL.

(@)CopyRealToDword
EN ENO
In Out

(@)CopyLrealToLword
EN ENO
In Out

2 Instruction Descriptions

2-348 NJ-series Instructions Reference Manual (W502)

The Copy**To*** instruction copies the content of copy source In directly to copy destination Out.
There are two instructions depending on the data types of In and Out.

The following example for the CopyRealToDword instruction is for when In is REAL#2.5.

Function

In Out Instruction

REAL DWORD CopyRealToDword

LREAL LWORD CopyLrealToLword

abc:=CopyRealToDword(REAL#2.5);

LD ST

REAL#2.5 abc

CopyRealToDword
EN ENO
In

In Out = abc DWORD#16#40200000
(2#01000000_00100000_00000000_00000000)

REAL#2.5
(2#01000000_00100000_00000000_00000000)

2-349

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

D
ata M

ovem
en

t In
stru

ctio
n

s

2

C
opy**ToN

um
 (R

eal N
um

ber to S
igned Integer)

Copy**ToNum (Real Number to
Signed Integer)

The Copy**ToNum instruction copies the content of a real number directly to a signed integer.

The Copy**ToNum instruction copies the content of copy source In directly to copy destination Out.

There are two instructions depending on the data types of In and Out.

Instruction Name FB/FUN Graphic expression ST expression

Copy**ToNum Bit Pattern Copy
(Real Number to
Signed Integer)
Group

FUN Out:=CopyRealToNum(In);
or
Out:=CopyLrealToNum(In);

Variables

Name Meaning I/O Description Valid range Unit Default

In Copy
source

Input Copy source Depends on data type. --- 0.0

Out Copy
destination

Output Copy destination Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK OK

Out Must be DINT if the data type of In is REAL and LINT if the data type of In is LREAL.

Function

In Out Instruction

REAL DINT CopyRealToNum

LREAL LINT CopyLrealToNum

(@)CopyLrealToNum
EN ENO
In Out

(@)CopyRealToNum
EN ENO
In Out

2 Instruction Descriptions

2-350 NJ-series Instructions Reference Manual (W502)

The following example for the CopyRealToNum instruction is for when In is REAL#2.5.

abc:=CopyRealToNum(REAL#2.5);

LD ST

REAL#2.5 abc

CopyRealToNum
EN ENO
In

In Out = abc
DINT#1075838976
(2#01000000_00100000_00000000_00000000)

REAL#2.5
(2#01000000_00100000_00000000_00000000)

S
h

ift In
stru

ctio
n

s

2

2-351NJ-series Instructions Reference Manual (W502)

Shift Instructions

Instruction Name Page

AryShiftReg Shift Register 2-352

AryShiftRegLR Reversible Shift Register 2-354

ArySHL and ArySHR Array N-element Left Shift/
Array N-element Right Shift

2-357

SHL and SHR N-bit Left Shift/
N-bit Right Shift

2-360

NSHLC and NSHRC Shift N-bits Left with Carry/
Shift N-bits Right with Carry

2-362

ROL and ROR Rotate N-bits Left/
Rotate N-bits Right

2-364

2 Instruction Descriptions

2-352 NJ-series Instructions Reference Manual (W502)

AryShiftReg

The AryShiftReg instruction shifts a shift register one bit to the left and inserts the input value to the
least-significant bit. The shift register consists of array elements.

Instruction Name FB/FUN Graphic expression ST expression

AryShiftReg Shift Register FB AryShiftReg_instance(Shift,
Reset, In, InOut, Size);

Variables

Name Meaning I/O Description Valid range Unit Default

Shift Shift

Input

Shifted when signal
changes to TRUE.

Depends on data type. ---

FALSEReset Reset TRUE: Register is reset.

In Input value Value to insert to least-sig-
nificant bit of InOut[].

Size Number of
elements in
array of bit
strings

Number of elements to use
as a shift register in InOut[].

1

InOut[]
(array)

Array of bit
strings

In-out Array of bit strings Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

Shift OK

Reset OK

In OK

Size OK

InOut[]
(array)

OK OK OK OK OK

AryShiftReg

AryShiftReg_instance

 Shift ENO
 Reset
 In
 InOut

 Size

2-353

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
h

ift In
stru

ctio
n

s

2

A
ryS

hiftR
eg

The AryShiftReg instruction shifts Size array elements in the array of bit strings InOut[] to the left (i.e.,
toward most-significant bit) when Shift changes to TRUE. The shift operation starts from InOut[0]. Input
value In is inserted to the least-significant bit. The most-significant bit of the array of bit strings is output
to the Carry (CY) Flag (P_CY).

When Reset is TRUE, CY and all of bits in Size elements starting from InOut[0] are set to FALSE.

The following example is for when InOut[] is a BYTE array and Size is UINT#2.

• While Reset is TRUE, the register is not shifted even if Shift changes to TRUE.

• ENO will change to TRUE when Shift changes to TRUE and the shift operation is performed normally,
or when Reset is TRUE and the reset operation is performed normally.

• The InOut[] does not change if the value of Size is 0.

• An error occurs in the following case. ENO will be FALSE, and InOut[] will not change.

• The value of Size exceeds the array area of InOut[].

Function

Related System-defined Variables

Name Meaning Data type Description

P_CY Carry (CY) Flag BOOL Value stored in Carry Flag

Precautions for Correct Use

InP_CY
Size elements

InOut[0]InOut[1]

AryShiftReg_instance(A, abc, def, ghi[1], UINT#2);

LD ST

abc

A

def

ghi[1] ghi[1]

UINT#2

AryShiftReg

AryShiftReg_instance

 Shift ENO
 Reset
 In
 InOut

 Size

InOut[0]=ghi[1]
1 1 0 1 0 0 1 1 1

1

Size=UINT#2

In=defInOut[1]=ghi[2]
1 0 1 0 1 0 0 0

InOut[0]=ghi[1]
1 0 1 0 0 1 1 1

P_CY InOut[1]=ghi[2]
0 1 0 1 0 0 0 1

2 Instruction Descriptions

2-354 NJ-series Instructions Reference Manual (W502)

AryShiftRegLR

The AryShiftRegLR instruction shifts a bit string one bit to the left or right and inserts the input value to
the least-significant or most-significant bit. The bit string consists of array elements.

Instruction Name FB/FUN Graphic expression ST expression

AryShiftRegLR Reversible Shift
Register

FB AryShiftRegLR_instance
(ShiftL, ShiftR,Reset, In,
InOut, Size);

Variables

Name Meaning I/O Description Valid range Unit Default

ShiftL Left shift

Input

Shifted left when signal
changes to TRUE.

Depends on data type. ---

FALSE

ShiftR Right shift Shifted right when signal
changes to TRUE.

Reset Reset TRUE: Register is reset.

In Input value Value to insert to least-sig-
nificant or most-significant
bit of InOut[]

Size Number of
elements in
array of bit
strings

Number of elements to use
as a shift register in InOut[].

1

InOut[]
(array)

Array of bit
strings

In-out Array of bit strings Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

ShiftL OK

ShiftR OK

Reset OK

In OK

Size OK

InOut[]
(array)

OK OK OK OK OK

AryShiftRegLR

AryShiftRegLR_instance

 ShiftL ENO
 ShiftR
 Reset
 In
 InOut

 Size

2-355

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
h

ift In
stru

ctio
n

s

2

A
ryS

hiftR
egLR

The AryShiftRegLR instruction shifts Size array elements of array of bit strings InOut[] to the left when
ShiftL changes to TRUE. The shift operation starts from InOut[0]. Input value In is inserted to the least-
significant bit. The most-significant bit of the array of bit strings is output to the Carry (CY) Flag (P_CY).

When ShiftR changes to TRUE, the bits are shifted one bit to the right and In is inserted to the most-sig-
nificant bit. The least-significant bit of the array of bit strings is output to the Carry (CY) Flag (P_CY).

When Reset is TRUE, P_CY and all of the bits in Size elements starting from InOut[0] are set to FALSE.

The following example is for when InOut is BYTE data, Size is UINT#2 and ShiftL changes to TRUE.

Function

InP_CY

Size elements

InOut[0]InOut[1]

In P_CY

Size elements

InOut[0]InOut[1]

AryShiftRegLR_instance(A, B, abc, def, ghi[1], UINT#2);

LD ST

abc

A

def

ghi[1] ghi[1]
UINT#2

B

AryShiftRegLR

AryShiftRegLR_instance

 ShiftL ENO
 ShiftR
 Reset
 In
 InOut

 Size

InOut[0]=ghi[1]
1 1 0 1 0 0 1 1 1

1

Size=UINT#2

In=defInOut[1]=ghi[2]
1 0 1 0 1 0 0 0

InOut[0]=ghi[1]
1 0 1 0 0 1 1 1

P_CY InOut[1]=ghi[2]
0 1 0 1 0 0 0 1

2 Instruction Descriptions

2-356 NJ-series Instructions Reference Manual (W502)

• While Reset is TRUE, the register is not shifted even if ShiftL or ShiftR changes to TRUE.

• The register is not shifted if both ShiftL and ShiftR change to TRUE at the same time.

• ENO will change to TRUE when ShiftL or ShiftR changes to TRUE and the shift operation is per-
formed normally, or when Reset is TRUE and the reset operation is performed normally.

• The InOut[] does not change if the value of Size is 0.

• An error occurs in the following case. ENO will be FALSE, and InOut[] will not change.

• The value of Size exceeds the array area of InOut[].

Related System-defined Variables

Name Meaning Data type Description

P_CY Carry (CY) Flag BOOL Value stored in Carry Flag

Precautions for Correct Use

2-357

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
h

ift In
stru

ctio
n

s

2

A
ryS

H
L and A

ryS
H

R

ArySHL and ArySHR
These instructions shift array elements by one or more elements.

ArySHL: Shifts the array to the left (toward the higher elements).

ArySHR: Shifts the array to the right (toward the lower elements).

Instruction Name FB/FUN Graphic expression ST expression

ArySHL Array N-element
Left Shift

FUN ArySHL(InOut, Size, Num);

ArySHR Array N-element
Right Shift

FUN ArySHR(InOut, Size, Num);

Variables

Name Meaning I/O Description Valid range Unit Default

Size Number of
elements in
shift
register Input

Number of elements in shift
register

Depends on data type. --- 1

Num Number of
elements to
shift

Number of elements to shift

InOut[]
(array)

Shift
register
array

In-out Shift register array Depends on data type. --- ---

Out Return
value

Output Always TRUE TRUE only --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

Size OK

Num OK

InOut[]
(array)

OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

Arrays of structures can also be specified.

Out OK

(@)ArySHL
EN ENO
InOut

Size Out
Num

(@)ArySHR
EN ENO
InOut

Size Out
Num

2 Instruction Descriptions

2-358 NJ-series Instructions Reference Manual (W502)

These instructions shift the upper Size elements in shift register array InOut[] by Num elements.

The values that are shifted out of the array are discarded.

The default value for the data type of InOut[] is stored in the empty elements. If an initial value attribute
is set for InOut[], the specified initial value is used. If an initial value attribute is not set, the default value
for the data type is used. If InOut[] is an array of structures, the members of the structures in all ele-
ments are initialized.

The default values for the data types are given below.

ArySHL
The ArySHL instruction shifts the array to the left (toward the higher elements of the array).

ArySHR
The ArySHR instruction shifts the array to the right (toward the lower elements of the array).

The following example shows the ArySHL instruction when Size is UINT#6 and Num is UINT#2.

Function

Data type of InOut Default

BOOL FALSE

BYTE, WORD, DWORD, or LWORD 16#0

USINT, UINT, UDINT, ULINT, SINT, INT, DINT, LINT,
REAL, or LREAL

0

TIME T#0ms

DATE D#1970-1-1

TOD TOD#0:0:0

DT DT#1970-1-1-0:0:0

STRING ''

ArySHL(abc[1], UINT#6, UINT#2);

LD ST

abc[1] abc[1]
UINT#6
UINT#2

ArySHL
EN ENO
InOut

Size
Num

2-359

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
h

ift In
stru

ctio
n

s

2

A
ryS

H
L and A

ryS
H

R

If InOut[] is BOOL data, the results will be the same as shifting a bit string of Size bits by Num bits.

• The shift operation is not performed if the value of Num is 0.

• If the value of Num is larger than Size, all values from InOut[0] to InOut[Size−1] are initialized.

• Return value Out is not used when the instruction is used in ST.

• An error occurs in the following case. ENO will be FALSE, and InOut[] will not change.

• The value of Size exceeds the array area of InOut[].

Additional Information

Precautions for Correct Use

Discarded.

Zeros inserted.

InOut[5]
=abc[6]

Size=UINT#6

9 8 7 3 2 1

7 3 2 1 0 0

InOut[4]
=abc[5]

InOut[3]
=abc[4]

InOut[2]
=abc[3]

InOut[1]
=abc[2]

InOut[0]
=abc[1]

InOut[5]
=abc[6]

InOut[4]
=abc[5]

InOut[3]
=abc[4]

InOut[2]
=abc[3]

InOut[1]
=abc[2]

InOut[0]
=abc[1]

2 Instruction Descriptions

2-360 NJ-series Instructions Reference Manual (W502)

SHL and SHR
These instructions shift a bit string by one or more bits.

* If you omit the input parameter, the default value is not applied. A building error will occur.

These instructions shift data to shift In (bit string data) by the number of bits specified in number to shift
Num. The bits that are shifted out of the register are discarded and zeros are inserted into the other end
of the register.

SHL
The SHL instruction shifts bits from right to left (from least-significant to most-significant bits).

SHL: Shifts the bit string to the left (toward the higher bits).

SHR: Shifts the bit string to the right (toward the lower bits).

Instruction Name FB/FUN Graphic expression ST expression

SHL N-bit Left Shift FUN Out:=SHL(In, Num);

SHR N-bit Right Shift FUN Out:=SHR(In, Num);

Variables

Name Meaning I/O Description Valid range Unit Default

In Data to
shift

Input

Data to shift Depends on data type. --- *

Num Number to
shift

Number of bits to shift 0 to No. of bits in In Bits 1

Out Processing
result

Output Processing result Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK OK OK OK

Num OK

Out Must be same data type as In

Function

(@)SHL
EN ENO
In Out
Num

(@)SHR
EN ENO
In Out
Num

2-361

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
h

ift In
stru

ctio
n

s

2

S
H

L and S
H

R

The following example if for when In is BYTE#16#89 and Num is USINT#2.

SHR
The SHR instruction shifts bits from left to right (from most-significant to least-significant bits).

The following example shows the SHR instruction when In is BYTE#16#89 and Num is USINT#2.

The ROL and ROR instructions insert the bits that are shifted out of the register into the other end of the
register.

• The data types of In and Out must be the same.

• If Num is 0, an error will not occur and the value of In will be assigned directly to Out.

• If the value of Num exceeds the number of bits specified in In, an error will not occur and the value of
Out will be 16#0.

Additional Information

Precautions for Correct Use

abc:=SHL(BYTE#16#89, USINT#2);

LD ST

BYTE#16#89 abc
USINT#2

SHL
EN ENO
In
Num

Shifted 2 bits left. Zeros inserted to lower 2 bits.

1 0 0 0 1 0 0 1In 0 0 1 0 0 1 0 0Out=abc
Bit 7 Bit 0

abc:=SHR(BYTE#16#89, USINT#2);

LD ST

BYTE#16#89 abc
USINT#2

SHR
EN ENO
In
Num

Shifted 2 bits right. Zeros inserted to upper 2 bits.

1 0 0 0 1 0 0 1In 0 0 1 0 0 0 1 0Out=abc
Bit 7 Bit 0

2 Instruction Descriptions

2-362 NJ-series Instructions Reference Manual (W502)

NSHLC and NSHRC
These instructions shift an array of bit strings by one or more bits. The Carry (CY) Flag is included.

NSHLC: Shifts the array to the left (toward the higher elements).

NSHRC: Shifts the array to the right (toward the lower elements).

Instruction Name FB/FUN Graphic expression ST expression

NSHLC Shift N-bits Left with
Carry

FUN NSHLC(InOut, Size, Num);

NSHRC Shift N-bits Right
with Carry

FUN NSHRC(InOut, Size, Num);

Variables

Name Meaning I/O Description Valid range Unit Default

Size Number of
bits in shift
register Input

Number of bits in shift
register

Depends on data type. Bits 1
Num Number of

bits to shift
Number of bits to shift

InOut[]
(array)

Shift
register
array

In-out Bit string array to shift Depends on data type. --- ---

Out Return
value

Output Always TRUE TRUE only --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

Size OK

Num OK

InOut[]
(array)

OK OK OK OK OK

Out OK

(@)NSHLC
EN ENO
InOut

Size Out
Num

(@)NSHRC
EN ENO
InOut

Size Out
Num

2-363

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
h

ift In
stru

ctio
n

s

2

N
S

H
LC

 and N
S

H
R

C

These instructions shift Size array elements in shift register array InOut[] by the number of bits specified
in Num. The shift register starts at InOut[0]. The last bit that is shifted out of the register is output to the
Carry (CY) Flag. Zeros are inserted for the bits at the other end.

NSHLC
The NSHLC instruction shifts bits from the lower elements in the array to the higher elements and from
the least-significant bits to the most-significant bits.

NSHRC
The NSHRC instruction shifts bits from the higher elements in the array to the lower elements and from
the most-significant bits to the least-significant bits.

The following example shows the NSHLC instruction when InOut[] is a BYTE array, Size is USINT#80
and Num is USINT#3.

• The shift operation is not performed if the value of Num is 0.

• If the value of Num is larger than Size, Size bits from bit 0 of InOut[0] are changed to FALSE. The
value of the Carry Flag (CY) changes to FALSE.

• Return value Out is not used when the instruction is used in ST.

• An error occurs in the following case. ENO will be FALSE, and InOut[] will not change.

• The value of Size exceeds the array area of InOut[].

Function

Related System-defined Variables

Name Meaning Data type Description

P_CY Carry (CY) Flag BOOL Value stored in Carry Flag

Precautions for Correct Use

NSHLC(abc[1], USINT#80, USINT#3);

LD ST

abc[1] abc[1]
USINT#80

USINT#3

NSHLC
EN ENO
InOut

Size
Num

Discarded.

Last bit shifted out of register is stored in CY Flag.

InOut[0]
=abc[1]

Size = USINT#80 bits

InOut[1]
=abc[2]

InOut[1]
=abc[2]

InOut[8]
=abc[9]

InOut[8]
=abc[9]

InOut[9]
=abc[10]

InOut[9]
=abc[10]

InOut[0]
=abc[1]CY

1 0 1

1 0 1 0 0 1

0 0 1 0 0 01

0 1 1

Num = USINT#3 (Shift 3 bits.)

FALSE inserted for Num = USINT#3 (3 bits).
Bit 0Bit 7

2 Instruction Descriptions

2-364 NJ-series Instructions Reference Manual (W502)

ROL and ROR
These instructions rotate a bit string by one or more bits.

* If you omit the input parameter, the default value is not applied. A building error will occur.

These instructions rotate data to rotate In (bit string data) by the number of bits specified in number of
bits Num. Bits that are shifted out of the register are inserted into the other end of the register.

ROL
The ROL instruction rotates bits from right to left (from least-significant to most-significant bits).

ROL: Rotates the bit string to the left (toward the higher bits).

ROR: Rotates the bit string to the right (toward the lower bits).

Instruction Name FB/FUN Graphic expression ST expression

ROL Rotate N-bits Left FUN Out:=ROL(In, Num);

ROR Rotate N-bits Right FUN Out:=ROR(In, Num);

Variables

Name Meaning I/O Description Valid range Unit Default

In Data to
rotate

Input

Data to rotate Depends on data type. --- *

Num Number of
bits

Number of bits to rotate 0 to No. of bits in In Bits 1

Out Processing
result

Output Processing result Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK OK OK OK

Num OK

Out Must be same data type as In

Function

(@)ROL
EN ENO
In Out
Num

(@)ROR
EN ENO
In Out
Num

2-365

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
h

ift In
stru

ctio
n

s

2

R
O

L and R
O

R

The following example is for when In is BYTE#16#89 and Num is USINT#2.

ROR
The ROR instruction rotates bits from left to right (from most-significant to least-significant bits).

The following example shows the ROR instruction when In is BYTE#16#89 and Num is USINT#2.

The SHL and SHR instructions discard the bits that are shifted out of the register and insert zeros into
the other end of the register.

• The data types of In and Out must be the same.

• If Num is 0, an error will not occur and the value of In will be assigned directly to Out.

• If the value of Num exceeds the number of bits specified in In, an error will not occur and the bits will
be rotated by the number of bits specified in Num. For example, if In is WORD data, the value of Out
will be the same regardless of whether the value of Num is USINT#1 or USINT#17.

Additional Information

Precautions for Correct Use

abc:=ROL(BYTE#16#89, USINT#2);

LD ST

abc
USINT#2

BYTE#16#89

ROL
EN ENO
In
Num

Shifted 2 bits left.

Most-significant 2 bits of In are inserted into least-significant 2 bits.

1 0 0 0 1 0 0 1In 0 0 1 0 0 1 1 0Out=abc
Bit 7 Bit 0

abc:=ROR(BYTE#16#89, USINT#2);

LD ST

abc
USINT#2

BYTE#16#89

ROR
EN ENO
In
Num

Shifted 2 bits right. Least-significant 2 bits of In are inserted into most-significant 2 bits.

1 0 0 0 1 0 0 1In 0 1 1 0 0 0 1 0Out=abc
Bit 0Bit 7

2 Instruction Descriptions

2-366 NJ-series Instructions Reference Manual (W502)

C
o

nversio
n

 In
stru

ctio
n

s

2

2-367NJ-series Instructions Reference Manual (W502)

Conversion Instructions

Instruction Name Page Instruction Name Page
Swap Swap Bytes 2-368 FixNumToString Fixed-decimal Number-to-Text String Conver-

sion
2-428

Neg Reverse Sign 2-369 StringToFixNum Text String-to-Fixed-decimal Conversion 2-430
Decoder Bit Decoder 2-371 DtToString Date and Time-to-Text String Conversion 2-433
Encoder Bit Encoder 2-374 DateToString Date-to-Text String Conversion 2-435
BitCnt Bit Counter 2-376 TodToString Time of Day-to-Text String Conversion 2-436
ColmToLine_** Column to Line Conversion Group 2-377 GrayToBin_** and

BinToGray_**
Gray Code-to-Binary Code Conversion
Group/
Binary Code-to-Gray Code Conversion

2-438

LineToColm Line to Column Conversion 2-379 StringToAry Text String-to-Array Conversion 2-441
Gray Gray Code Conversion 2-381 AryToString Array-to-Text String Conversion 2-443
PWLApprox Broken Line Approximation 2-384 DispartDigit Four-bit Separation 2-445
MovingAver-
age

Moving Average 2-387 UniteDigit_** Four-bit Join Group 2-447

PIDAT PID with Autotuning 2-393 Dispart8Bit Byte Data Separation 2-449
DispartReal Separate Mantissa and Exponent 2-418 Unite8Bit_** Byte Data Join Group 2-451
UniteReal Combine Real Number Mantissa

and Exponent
2-421 ToAryByte Conversion to Byte Array 2-453

NumToDec-
String and
NumToHex-
String

Fixed-length Decimal Text String
Conversion/
Fixed-length Hexadecimal Text
String Conversion

2-423 AryByteTo Conversion from Byte Array 2-458

HexStringToN
um_**

Hexadecimal Text String-to-Num-
ber Conversion Group

2-426 SizeOfAry Get Number of Array Elements 2-463

2 Instruction Descriptions

2-368 NJ-series Instructions Reference Manual (W502)

Swap

The Swap instruction swaps the upper byte and lower byte of a 16-bit value.

The Swap instruction swaps the upper byte and lower byte of data to convert In and assigns the result
to conversion result Out.

The following example is for when In is WORD#16#1234.

Instruction Name FB/FUN Graphic expression ST expression

Swap Swap Bytes FUN Out:=Swap(In);

Variables

Name Meaning I/O Description Valid range Unit Default

In Data to
convert

Input Data to convert Depends on data type. --- 0

Out Conver-
sion result

Output Conversion result Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK

Out OK

Function

(@)Swap
EN ENO
In Out

abc:=Swap(WORD#16#1234);

LD ST

abcWORD#16#1234

Swap
EN ENO
In

0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0

0 0 1 1 0 1 0 0 0 0 0 1 0 0 1 0

Bit
0

Bit
15

Bit
0

Bit
15

Lower byte
(bits 0 to 7)

Upper byte
(bits 8 to 15)

In

Out = abc

2-369

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

nversio
n

 In
stru

ctio
n

s

2

N
eg

Neg

The Neg instruction reverses the sign of a number.

* If you omit the input parameter, the default value is not applied. A building error will occur.

The Neg instruction reverses the sign of data to convert In. The value of Out depends on the data type
of In.

Instruction Name FB/FUN Graphic expression ST expression

Neg Reverse Sign FUN Out:=Neg(In);

Variables

Name Meaning I/O Description Valid range Unit Default

In Data to
convert

Input Data to convert Depends on data type. --- *

Out Conver-
sion result

Output Conversion result Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK OK OK OK OK OK OK OK OK OK

Out OK OK OK OK OK OK OK OK OK OK

Function

Data type of In Value of Out

Signed integer:
SINT, INT, DINT, or LINT

All bits in In are reversed and then 1 is
added. (This is the same as multiplying
In by −1.)

Unsigned integers:
USINT, UNIT, UDINT, or ULINT

All bits in In are reversed and then 1 is
added.

Real numbers:
REAL or LREAL

In × (−1)

(@)Neg
EN ENO
In Out

2 Instruction Descriptions

2-370 NJ-series Instructions Reference Manual (W502)

The following example is for when In is INT#123.

The following example is for when In is UINT#123.

If you use a different data type for In and Out, make sure the valid range of Out includes the valid range
of In. Otherwise, an error will not occur and the value of Out will be an illegal value. For example, if the
value of In is SINT#-128 and the data type of Out is INT, the value of Out will be INT#-128 instead of
INT#128.

Precautions for Correct Use

abc:=Neg(INT#123);

LD ST

abcINT#123

Neg
EN ENO
In

Out = abc123(2#0000_0000_0111_1011) −123(2#1111_1111_1000_0101)In

Bits reversed and 1 added.

Out = abc123(2#0000_0000_0111_1011) 65413(2#1111_1111_1000_0101)In

Bits reversed and 1 added.

2#1000_0000

2#0000_0000_1000_0000

2#1111_1111_1000_0000

In=SINT#−128

Out=INT#−128

Bits reversed and 1 added.

Expanded to INT data.

2-371

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

nversio
n

 In
stru

ctio
n

s

2

D
ecoder

Decoder

The Decoder instruction sets the specified bit to TRUE and the other bits to FALSE in array elements
that consist of a maximum of 256 bits.

OLL

The Decoder instruction converts array elements with 2Size bits that start from InOut[0] in array to con-
vert InOut[]. It sets the specified bit to TRUE. It sets the other bits to FALSE. The bit to make TRUE is
specified by the Size bits in the lower byte of conversion bit position In. Always attach the element num-
ber to the in-out parameter that is passed to InOut[], e.g., array[3].

Consider an example where In is BYTE#16#09, Size is USINT#4, and InOut[] is a BYTE array. The
value of the Size bits in the lower bits of In is 16#9, which is 9 decimal. Therefore, the ninth bit from the
least-significant bit of InOut[] is made TRUE and the other bits are made FALSE.

Instruction Name FB/FUN Graphic expression ST expression

Decoder Bit Decoder FUN Decoder(In, Size, InOut);

Variables

Name Meaning I/O Description Valid range Unit Default

In Conver-
sion bit
position Input

Bit position to convert Depends on data type. --- 0

Size Bits to
convert

Number of bits to convert 0 to 8 Bits 1

InOut[]
(array)

Array to
convert

In-out Array to convert Depends on data type. --- ---

Out Return
value

Output Always TRUE TRUE only --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK

Size OK

InOut[]
(array)

OK OK OK OK OK

Out OK

Function

(@)Decoder
EN ENO
In Out
Size
InOut

2 Instruction Descriptions

2-372 NJ-series Instructions Reference Manual (W502)

InOut[] is a BYTE array, so the ninth bit from the least-significant bit is bit 1 in InOut[1]. Therefore, bit 1
in InOut[1] is made TRUE, all other bits in InOut[1] are made FALSE, and all bits in InOut[0] are made
FALSE.

If the number of bits in the elements of InOut[] is larger than the number of bits specified by Size, the
values of the remaining bits are retained. Consider an example where In is BYTE#16#02, Size is
USINT#2, and InOut[] is a WORD array.
Size is USINT#2, so the value is set in the lower 4 bits of InOut[0]. The values of the remaining bits in
InOut[0] (bits 4 to 15) are retained.

Use the Encoder instruction (page 2-374) to find the position of the highest TRUE bit in array elements
that consist of a maximum of 256 bits.

• If the value of Size is 0, all bits in InOut[] change to FALSE.

• Return value Out is not used when the instruction is used in ST.

• An error occurs in the following cases. ENO will be FALSE, and InOut[] will not change.

Additional Information

Precautions for Correct Use

Decoder(BYTE#16#09, USINT#4, abc[3]);

LD ST

abc[3] abc[3]

BYTE#16#09
USINT#4

Decoder
EN ENO
In
Size
InOut

The corresponding
bit is made TRUE.
(2#1001 = Bit 9)
Other bits are
made FALSE.

2Size = 16 bits

In

InOut[0]=abc[3]

InOut[1]=abc[4]

0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

Size=USINT#4

Bit
0

Bit
7

Bit
0

Bit
7

Bit
0

Bit
7

Bit 2: Changed to TRUE.
Bits 0, 1, and 3: Changed to FALSE.

InOut[0]

0 0 0 0 0 0 1 0

0 1 0 1 1 0 0 1 0 0 1 0 0 1 0 0

Bits 4 to 15: Retained.

Size=USINT#2

2Size = 4 bits

In

Bit
4

Bit
0

Bit
15

Bit
0

Bit
7

2-373

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

nversio
n

 In
stru

ctio
n

s

2

D
ecoder

• The value of Size is outside of the valid range.

• The value of Size exceeds the array area of InOut[].

• InOut[] is not a BOOL array or an array of bit strings.

• An array without a subscript is passed to InOut[].

2 Instruction Descriptions

2-374 NJ-series Instructions Reference Manual (W502)

Encoder

The Encoder instruction finds the position of the highest TRUE bit in array elements that consist of a
maximum of 256 bits.

* If you omit the input parameter, the default value is not applied. A building error will occur.

The Encoder instruction finds the position of a TRUE bit in a specified range of bits in array to convert
In[]. The instruction looks for a TRUE bit in 2Size bits from In[0]. The position of the TRUE bit in this
range is expressed in binary and stored in the Size bits in the lower bits of conversion result Out. FALSE
is stored in the remaining bits of Out.

If there is more than one TRUE bit in the specified range, the position of the highest bit that is TRUE is
found. Always attach the element number to input parameter that is passed to In[], e.g., array[3].

Consider an example for when Size is USINT#4 and In[] is a BYTE array. Size is USINT#4, so the range
in which to find a TRUE bit is 24, or 16 bits, from In[0]. In the following diagram, the ninth bit in the range
is TRUE.

Instruction Name FB/FUN Graphic expression ST expression

Encoder Bit Encoder FUN Out:=Encoder(In, Size);

Variables

Name Meaning I/O Description Valid range Unit Default

In[] (array) Array to
convert

Input

Array to convert Depends on data type. --- *

Size Bits to
convert

Number of bits to convert 0 to 8 Bits 1

Out Conver-
sion result

Output Conversion result Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In[] (array) OK OK OK OK OK

Size OK

Out OK

Function

(@)Encoder
EN ENO
In Out
Size

2-375

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

nversio
n

 In
stru

ctio
n

s

2

E
ncoder

Size is USINT#4, so 2#1001 (i.e., 9) is stored in the lower 4 bits of Out. FALSE is stored in the upper
four bits of Out.

Use the Decoder instruction (page 2-371) to make one bit TRUE and the other bits FALSE in array ele-
ments that consist of a maximum of 256 bits.

• If the value of Size is 0, all bits in Out change to FALSE.

• An error occurs in the following cases. ENO will be FALSE, and Out will not change.

• The value of Size is outside of the valid range.

• The value of Size exceeds the array area of In[].

• The value of all bits in In[] that are specified by Size change to FALSE.

• In[] is not a BOOL array or an array of bit strings.

• An array without a subscript is passed to In[].

Additional Information

Precautions for Correct Use

def:=Encoder(abc[3], USINT#4);

LD ST

abc[3] def
USINT#4

Encoder
EN ENO
In
Size

The position of the
TRUE bit is output.
Bit 9 is indicated by
2#1001.

Bit
0

Bit
7

Bit
0

Bit
7

2Size = 16 bits

Out=def

In[0]=abc[3]

In[1]=abc[4]

0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

Size=USINT#4FALSE is set.

2 Instruction Descriptions

2-376 NJ-series Instructions Reference Manual (W502)

BitCnt

The BitCnt instruction counts the number of TRUE bits in a bit string.

* If you omit the input parameter, the default value is not applied. A building error will occur.

The BitCnt instruction counts the number of TRUE bits in count string In. The following example is for
when In is BYTE data with a value of BYTE#16#85.

Instruction Name FB/FUN Graphic expression ST expression

BitCnt Bit Counter FUN Out:=BitCnt(In);

Variables

Name Meaning I/O Description Valid range Unit Default

In Count
string

Input String in which to count
TRUE bits

Depends on data type. --- *

Out Count
result

Output Number of TRUE bits 0 to No. of bits in In --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK OK OK OK

Out OK

Function

(@)BitCnt
EN ENO
In Out

abc:=BitCnt(BYTE#16#85);

LD ST

BYTE#16#85 abc

BitCnt
EN ENO
In

In 1 0 0 0 1 0 0 1

3Out = abc

The number of TRUE (1) bits is counted.

2-377

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

nversio
n

 In
stru

ctio
n

s

2

C
olm

ToLine_**

ColmToLine_**

The ColmToLine_** instruction extracts bit values from the specified position of array elements and out-
puts them as a bit string.

* If you omit the input parameter, the default value is not applied. A building error will occur.

The ColmToLine_** instruction extracts bit values from the specified position of array elements and out-
puts them in order as a bit string.

First, Size elements are extracted from array to convert In[] starting from In[0]. Then, only the values of
bits in Pos are extracted. These are placed in order in a bit string of Size bits and stored in conversion
result Out from the least-significant bit. FALSE is stored in the remaining bits of Out.

The name of the instruction is determined by the data type of Out. For example, if Out is the BYTE data
type, the instruction is ColmToLine_BYTE.

Always attach the element number to input parameter that is passed to In[], e.g., array[3].

Instruction Name FB/FUN Graphic expression ST expression

ColmToLine_** Column to Line
Conversion Group

FUN Out:=ColmToLine_**(In,
Size, Pos);

"**" must be a bit string data
type.

Variables

Name Meaning I/O Description Valid range Unit Default

In[] (array) Array to
convert

Input

Array to convert Depends on data type.

*

Size Number of
elements to
convert

Number of elements in In[]
to convert

0 to No. of bits in Out 1

Pos Bit position
to convert

Bit position to convert 0 to No. of bits in
In[] − 1

0

Out Conver-
sion result

Output Conversion result Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In[] (array) OK OK OK OK

Size OK

Pos OK

Out OK OK OK OK

Function

(@)ColmToLine_**
EN ENO
In Out
Size
Pos

"**" must be a bit string data type.

2 Instruction Descriptions

2-378 NJ-series Instructions Reference Manual (W502)

The following example shows the ColmToLine_BYTE instruction when Pos is USINT#3 and Size is
USINT#4.

Use the LineToColm instruction (page 2-379) to output a bit string to the specified bit position in array
elements.

• If the value of Size is 0, all bits in Out change to FALSE.

• An error occurs in the following cases. ENO will be FALSE, and Out will not change.

• The value of Size is outside of the valid range.

• The value of Pos is outside of the valid range.

• The value of Size exceeds the array area of In[].

• In[] is not an array of bit strings.

• An array without a subscript is passed to In[].

Additional Information

Precautions for Correct Use

def:=ColmToLine_BYTE(abc[3], USINT#4, USINT#3);

LD ST

defabc[3]
USINT#4
USINT#3

ColmToLine_BYTE
EN ENO
In
Size
Pos

Bit 0
Pos=
USINT#3Most-significant bit

Out=def

In[0]=abc[3]
In[1]=abc[4]
In[2]=abc[5]
In[3]=abc[6]

0 0 0 0 1 0 1 0

Size=USINT#4

Size=USINT#4

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0

FALSE is set.

2-379

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

nversio
n

 In
stru

ctio
n

s

2

LineToC
olm

LineToColm

The LineToColm instruction takes the bits from a bit string and outputs them to the specified bit position
in array elements.

* If you omit the input parameter, the default value is not applied. A building error will occur.

The LineToColm instruction takes the bits from a bit string and outputs them to the specified bit position
in array elements.

Instruction Name FB/FUN Graphic expression ST expression

LineToColm Line to Column
Conversion

FUN LineToColm(In, InOut, Size,
Pos);

Variables

Name Meaning I/O Description Valid range Unit Default

In Data to
convert

Input

Data to convert Depends on data type.

*

Size Number of
elements in
result

Number of elements in
result

0 to No. of bits in In 1

Pos Conver-
sion bit
position

Bit position to receive the
conversion

0 to No. of bits in
InOut[] − 1

0

InOut[]
(array)

Conver-
sion result
array

In-out Conversion result Depends on data type. --- ---

Out Return
value

Output Always TRUE TRUE only --- ---
B

o
o

lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK OK OK OK

Size OK

Pos OK

InOut[]
(array)

OK OK OK OK

Out OK

Function

(@)LineToColm
EN ENO
In Out
InOut

Size
Pos

2 Instruction Descriptions

2-380 NJ-series Instructions Reference Manual (W502)

First, Size bits are extracted from the least-significant bit of data to convert In. These bits are treated
individually. Then, the bits are stored in conversion result array InOut[] in the Pos bit of the elements
starting from InOut[0]. Size specifies the number of array elements to receive bits. The values of all bits
for which values are not stored are retained.

The following example is for when Pos is USINT#3 and Size is USINT#4.

Use the ColmToLine_** instruction (page 2-377) to extract bit values from the specified position of array
elements and output them as a bit string.

• If the value of Size is 0, the values in InOut[] do not change.

• Return value Out is not used when the instruction is used in ST.

• An error occurs in the following cases. ENO will be FALSE, and InOut[] will not change.

• The value of Size is outside of the valid range.

• The value of Pos is outside of the valid range.

• The value of Size exceeds the array area of InOut[].

• InOut[] is not an array of bit strings.

• An array without a subscript is passed to InOut[].

Additional Information

Precautions for Correct Use

LineToColm(abc, def[1], USINT#4, USINT#3);

LD ST

def[1]def[1]

abc

USINT#4
USINT#3

LineToColm
EN ENO
In
InOut

Size
Pos

Bit 0
Pos=
USINT#3Most-significant bit

Bit
0Most-significant bit

In = abc

Size=USINT#4

Size=USINT#4

Retained

0 0 0 0 0 0

InOut[0]=def[1]
InOut[1]=def[2]
InOut[2]=def[3]
InOut[3]=def[4]

0 0 1 0 1 0

0 0 1 0 0 0
0 1 0 1 0 0
0 0 0 1 1 0
1 1 0 1 0 1

1 0 0 0 0 1
0 0 1 0 1 0
1 0 0 0 0 0
0 0 1 0 0 0

2-381

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

nversio
n

 In
stru

ctio
n

s

2

G
ray

Gray

The Gray instruction converts a gray code into an angle.

* 0 to 359.999999999999

The Gray instruction converts the gray code in In to an integer, compensates (decreases) it by encoder
remainder correction ERC and zero point correction ZPC. It then converts the result to an angle accord-
ing to resolution Resolution. The conversion result Out will be an angle in degrees.

Instruction Name FB/FUN Graphic expression ST expression

Gray Gray Code Conver-
sion

FUN Out:=Gray(In, Resolution,
ERC, ZPC);

Variables

Name Meaning I/O Description Valid range Unit Default

In Data to
convert

Input

Gray code to convert Depends on data type.

0

Resolution Resolution Resolution _R256, _R1B to
_R15B, _R360, _R720,
or _R1024

_R256

ERC Encoder
remainder
correction

Encoder remainder
correction

0 to Resolution 0

ZPC Zero point
correction

Zero point correction

Out Conver-
sion result

Output Conversion result * ° ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK

Resolution Refer to Function for the enumerators of the enumerated type _eGRY_RESOLUTION.

ERC OK

ZPC OK

Out OK

Function

(@)Gray
EN ENO
In Out
Resolution
ERC
ZPC

2 Instruction Descriptions

2-382 NJ-series Instructions Reference Manual (W502)

The data type of Resolution is enumerated type _eGRY_RESOLUTION. The meaning of the enumera-
tors are as follows:

The following example is for when In is WORD#16#1A9, Resolution is _R10B, ERC is UINT#0, and
ZPC is UINT#337. The value of Out will be LREAL#348.75.

Enumerator Meaning

_R256 256

_R1B 1-bit (2)

_R2B 2-bit (4)

_R3B 3-bit (8)

_R4B 4-bit (16)

_R5B 5-bit (32)

_R6B 6-bit (64)

_R7B 7-bit (128)

_R8B 8-bit (256)

_R9B 9-bit (512)

_R10B 10-bit (1024)

_R11B 11-bit (2048)

_R12B 12-bit (4096)

_R13B 13-bit (8192)

_R14B 14-bit (16384)

_R15B 15-bit (32768)

_R360 360

_R720 720

_R1024 1024

abc:=Gray(WORD#16#1A9, _R10B, UINT#0, UINT#337);

LD ST

abc
_R10B

WORD#16#1A9

UINT# 0
UINT#337

Gray
EN ENO
In
Resolution
ERC
ZPC

In

Out = abc

Gray code is converted to binary.
 16#01A9 → 16#0131(10#305)
Correction (Subtract ERC and ZPC.)
 305 − 0 − 337 → −32
Converted to an angle
 −32 × 360 ÷ 210 → −11.25
 360 − 11.25 → 348.75

Bit
0

Bit
15

0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 1

LREAL#348.75

2-383

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

nversio
n

 In
stru

ctio
n

s

2

G
ray

Refer to the user documentation for your rotary encoder for the values to specify for Resolution and
ERC.

An error occurs in the following cases. ENO will be FALSE, and Out will not change.

• The value of Resolution is outside of the valid range.

• The value of ERC exceeds the resolution that is specified in Resolution.

• The value of ZPC exceeds the resolution that is specified in Resolution.

• In, when converted to a bit string, is smaller than the value of ERC.

• The value of the bit string after correction for ERC exceeds the resolution that is specified in Resolu-
tion.

Additional Information

Precautions for Correct Use

2 Instruction Descriptions

2-384 NJ-series Instructions Reference Manual (W502)

PWLApprox

The PWLApprox instruction performs broken line approximations for integer or real number data.

* If you omit the input parameter, the default value is not applied. A building error will occur.

The PWLApprox instruction performs approximation for data to convert In. The approximation is based
on broken line data that consists of Num times 2 elements that start with Line[0][0] in broken line data
array Line[].

Instruction Name FB/FUN Graphic expression ST expression

PWLApprox Broken Line
Approximation

FUN Out:=PWLApprox(In, Line,
Num);

Variables

Name Meaning I/O Description Valid range Unit Default

In Data to
convert

Input

Data to convert

Depends on data type. ---

*
Line[]
(array)

Broken line
data array

Broken line data array

Num Number of
broken line
data

Number of broken line data 1

Out Conver-
sion result

Output Conversion result Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK OK OK OK OK OK OK OK OK OK

Line[]
(array)

Must be an array with elements that have the same data type as In.

Num OK

Out OK OK OK OK OK OK OK OK OK OK

Function

(@)PWLApprox
EN ENO
In Out
Line
Num

2-385

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

nversio
n

 In
stru

ctio
n

s

2

P
W

LA
pprox

Line[] must be a two-dimensional or three-dimensional array. Set the number of elements for the first
dimension to 2. Set the number of elements for the second dimension to 2. Set the array elements from
Line[0,0] to X1, Y1, X2, Y2, etc., as shown in the following figure.

Always attach the element numbers to the input parameter that is passed to Line[], e.g., array[3,4].

The following example is for when Num is UINT#3, In is INT#3, (X1,Y1) is (1,5), (X2,Y2) is (2,6), and
(X3,Y3) is (4,2).

• If the value of In is smaller than the value of Line[0,0] (i.e., the value of X1), then the value of Out will
be the value of Line[0,1] (i.e., the value of Y1).

Precautions for Correct Use

X

Y

(X1,Y1)

(X2,Y2)

(X3,Y3)

(X Num −1,Y Num −1)

(X Num,Y Num)

Xa

Ya

The instruction will find the Ya
that corresponds to Xa on the
broken line graph.

def:=PWLApprox(INT#3, abc[3,4], UINT#3);

LD ST

def INT#3
 abc[3,4]
 UINT#3

PWLApprox
EN ENO
In
Line
Num

In Out = def

X

Y

(1,5)

(2,6)

(4,2)

3

4

Line[0,0]=abc[3,4]
Line[0,1]=abc[3,5]
Line[1,0]=abc[4,4]
Line[1,1]=abc[4,5]
Line[2,0]=abc[5,4]
Line[2,1]=abc[5,5]

1
5
2
6
4
2

UINT#3 4

2 Instruction Descriptions

2-386 NJ-series Instructions Reference Manual (W502)

• If the value of In is larger than the value of Line[Num−1,0] (i.e., the value of XNum), then the value of
Out will be the value of Line[Num−1,1] (i.e., the value of YNum).

• Line[] must be a two-dimensional or three-dimensional array. Set the number of elements for the first
dimension to 2.

• If the value of Num is 0, the value of Out is 0.

• An error occurs in the following cases. ENO will be FALSE, and Out will not change.

• The value of Num exceeds the array area of Line[].

• The broken line data does not meet this requirement: X1 < X2 < ... < XNum.

• In and Line[] are REAL data and their values are nonnumeric data or infinity.

2-387

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

nversio
n

 In
stru

ctio
n

s

2

M
ovingA

verage

MovingAverage

The MovingAverage instruction calculates a moving average.

* If you omit the input parameter, the default value is not applied.A building error will occur.

Instruction Name FB/FUN Graphic expression ST expression

MovingAverage Moving Average FUN Out:=MovingAverage(In,
CurIndex, Buf, BufSize, Q);

Variables

Name Meaning I/O Description Valid range Unit Default

In Input value

Input

Number to include in aver-
age

Depends on data type. ---

*

BufSize Maximum
number
stored

Maximum number of ele-
ments to include in average

1

CurIndex Input value
storage
position

In-out

Position in Buf[] in which to
store In

Depends on data type. --- ---

Buf[]
(array)

Input value
storage
array

Array to store In values

Q Calculation
completed
flag

TRUE: BufSize elements or
more have been stored in
Buf[]

FALSE: BufSize elements
are not yet stored in Buf[]

Out Calculation
result

Output Calculation result Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK OK OK OK OK OK OK OK OK OK

BufSize OK

CurIndex OK

Buf[] (array) Must be an array with elements that have the same data type as In.

Q OK

Out OK OK OK OK OK OK OK OK OK OK

(@)MovingAverage
EN ENO
In Out
CurIndex

Buf

BufSize
Q

2 Instruction Descriptions

2-388 NJ-series Instructions Reference Manual (W502)

The MovingAverage instruction stores the value of input value In in input value storage array Buf[] each
time it is executed. It stores the average of the stored values in calculation result Out. Specify the maxi-
mum number of elements to include in the average with BufSize.

The processing procedure when BufSize is UINT#3 is described below as an example. The instruction
and statement are written as follows:

The input value storage position CurIndex is set to 0 and the instruction is executed.
Buf[0] to Buf[BufSize−1] of input value storage array Buf[] are cleared to zeros and the first input value
In is stored in Buf[0].
The value of calculation completed flag Q changes to FALSE. This indicates that the number of values
that are stored in Buf[] has not reached BufSize yet.
While the value of Q is FALSE, the average value is calculated for the CurIndex + 1 numbers that start
from Buf[0]. The calculation result is stored in Out.
Finally, the value of CurIndex is incremented.

Function

First Time a Number Is Input

jkl:=MovingAverage(abc, def, ghi[1], UINT#3, mno);

LD ST

jkl

def

ghi[1]

mno

 abc

 def

 ghi[1]
UINT#3

 mno

MovingAverage
EN ENO
In
CurIndex

Buf

BufSize
Q

Out=jkl

Q=mno

First Execution of Instruction

The value of In is stored in Buf[0].

Incremented

Average of Buf[0] to Buf[0]
(i.e., the value of Buf[0])

CurIndex=def

CurIndex=def

In=abc

Cleared to zeros.

FALSE because the number of numbers
stored has not reached BufSize.

Buf[0]=ghi[1]
Buf[1]=ghi[2]
Buf[2]=ghi[3]

1234
 0
 0

1234

FALSE

0

1

1234

2-389

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

nversio
n

 In
stru

ctio
n

s

2

M
ovingA

verage

Each time the instruction is executed, the value of In is stored in Buf[CurIndex]. The average of CurIn-
dex + 1 numbers that start from Buf[0] is calculated and stored in Out.

When the number of instruction executions reaches BufSize, the value of Q changes to TRUE.

Each time the instruction is executed, Buf[0] to Buf[BufSize−1] are overwritten with the value of In in
cyclic fashion. The average of Buf[0] to Buf[BufSize−1] is calculated and stored in Out.
The value of CurIndex returns to 1 after it reaches BufSize and it is then incremented again. The value
of Q remains TRUE.

Inputting Numbers Up to BufSize

Inputting Numbers after Reaching BufSize

CurIndex=def

In=abc

CurIndex=def

In=abc

Second Execution of Instruction

Out=jkl

Q=mno

The value of In is stored in Buf[1].

Average of Buf[0] and Buf[1]

Incremented

Incremented

CurIndex=def

Third Execution of Instruction

Out=jkl

Q=mno

The value of In is stored in Buf[2].

Average of Buf[0] to Buf[2]

CurIndex=def

TRUE because the number of
numbers stored has reached BufSize.

FALSE because the number of numbers
stored has not reached BufSize.

1

2

2345

1234
2345
 0

1789

FALSE

2

3456

1234
2345
3456

2345

TRUE

3

Buf[0]=ghi[1]
Buf[1]=ghi[2]
Buf[2]=ghi[3]

Buf[0]=ghi[1]
Buf[1]=ghi[2]
Buf[2]=ghi[3]

CurIndex=def

In=abc

CurIndex=def

In=abc

Fourth Execution of Instruction

Out=jkl

Q=mno

Buf[0] is overwritten with the value of In.

Average of Buf[0] to Buf[2]

Returns to 1.

Incremented

CurIndex=def

Fifth Execution of Instruction

Out=jkl

Q=mno

Buf[1] is overwritten with the value of In.

Average of Buf[0] to Buf[2]

CurIndex=def

TRUE because the number of
numbers stored has reached BufSize.

TRUE because the number of
numbers stored has reached BufSize.

1

4567

4567
2345
3456

3456

TRUE

1

3

5678

4567
5678
3456

4567

TRUE

2

Buf[0]=ghi[1]
Buf[1]=ghi[2]
Buf[2]=ghi[3]

Buf[0]=ghi[1]
Buf[1]=ghi[2]
Buf[2]=ghi[3]

2 Instruction Descriptions

2-390 NJ-series Instructions Reference Manual (W502)

If the value of CurIndex is set to 0 before the instruction is executed, the values in Buf[0] to Buf[BufSize−
1] are set to 0 and the current value of In is stored again in Buf[0].

The value of CurIndex changes to 1 and the value of Q changes to FALSE.

If you change the value of BufSize and execute the instruction, operation is performed with the new
value of BufSize and the current value of CurIndex.

• Use the same data type for In and the elements of Buf[].

• Use a Buf[] array that is at least as large as the value of BufSize.

• Even if the calculation result exceeds the valid range of Out, an error will not occur. The value of Out
will be an illegal value.

• If the value of BufSize is 0, the values of Out and CurIndex change to 0. The value of Q changes to
TRUE.

• If you change the value of BufSize, always set the value of CurIndex to 0 and initialize the stored val-
ues.

• An error occurs in the following cases. ENO will be FALSE, and Out will not change.

• In and Buf[] are different data types.

• The value of BufSize is outside of the valid range.

• The value of BufSize exceeds the size of the Buf[] array.

• Buf[] is not an integer array.

• An array without a subscript is passed to Buf[].

Initializing the Stored Values

Changing the Value of BufSize

Precautions for Correct Use

CurIndex=def

In=abc

Status before Instruction Execution BufSize=3

Out=jkl

Q=mno

CurIndex is equal to or higher than BufSize,
so the value of CurIndex returns to 1.

Not included in the average.

CurIndex=def

Instruction Execution after Setting BufSize to 2

Out=jkl

Q=mno

Average of Buf[0] and Buf[1]

CurIndex=def

CurIndex is equal to or higher than BufSize,
so the value of In is stored in Buf[1].

TRUE because the number of numbers
stored has reached BufSize.

2

4567
2345
3456

3456

TRUE

2

5678

5678
2345
3456

4011

TRUE

1

Buf[0]=ghi[1]
Buf[1]=ghi[2]
Buf[2]=ghi[3]

Buf[0]=ghi[1]
Buf[1]=ghi[2]
Buf[2]=ghi[3]

2-391

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

nversio
n

 In
stru

ctio
n

s

2

M
ovingA

verage

This sample shows how to eliminate the effect of noise and other disturbances in analog input data,
e.g., from a sensor. It assigns the average (DataAve) of the last 25 values of the input data (InputData)
to the input data (InputDataForOperating) for the next process.
InputData is input every task period as long as the value of the execution condition (Trigger) is TRUE.
Until 25 values of InputData are input, there is not enough data to calculate the average, so the most
recent value of InputData is assigned to InputDataForOperating.

When the value of Trigger changes to TRUE, the average is cleared and input of InputData is started
again from the beginning.

Sample Programming

Time
Average of last 25 values is assigned to InputDataForOperating.

Task period

InputData: Measured value for the current task period
Measured value

Variable

When there are 25 or more input values for InputData , DataAve is assigned to InputDataForOperating.

When Trigger changes to TRUE, 0 is assigned to IndexNo.
While Trigger is TRUE, the value of InputData is input every task period and the average is calculated.

Until there are 25 or more input values for InputData , InputData is assigned to InputDataForOperating.

Data type Initial value

LD

Trigger

UINT#0 IndexNo

UINT#25

OneRound

InputData

IndexNo

Buffer[0]

Trigger
InputData
Buffer
DataAve
OneRound
IndexNo
InputDataForOperating

False
10
[25(0)]
0
False
0
0

BOOL
INT
ARRAY[0..24] OF INT
INT
BOOL
UINT
INT

Execution condition
Input value
Input value storage array
Average value
Flag that indicates 25 inputs
Input value storage position
Input to next operation

@MOVE
EN ENO
In Out

MovingAverage
EN ENO
In DataAve
CurIndex

Buf

BufSize
Q

OneRound

DataAve InputDataForOperating

MOVE
EN ENO
In Out

OneRound

InputData InputDataForOperating

MOVE
EN ENO
In Out

Comment

2 Instruction Descriptions

2-392 NJ-series Instructions Reference Manual (W502)

Variable Data type Initial value

IF ((Trigger=TRUE) AND (LastTrigger=FALSE)) THEN
 OperatingStart:=TRUE;
 Operating:=TRUE;
END_IF;
LastTrigger:=Trigger;

IF (OperatingStart=TRUE) THEN
 IndexNo:=UINT#0;
 OperatingStart:=FALSE;
END_IF;

IF (Operating=TRUE) THEN
 DataAve:=MovingAverage(
 In :=InputData,
 CurIndex:=IndexNo,
 Buf :=Buffer[0],
 BufSize :=UINT#25,
 Q :=OneRound);

 IF (OneRound=TRUE) THEN

 InputDataForOperating:=DataAve;
 ELSE

 InputDataForOperating:=InputData;
 END_IF;
END_IF;

IF (Trigger=FALSE) THEN
 Operating:=FALSE;
END_IF;

ST

// Detect when Trigger changes to TRUE.

// Clear the average.

// Calculate the moving average.

// Assign the average of last 25 values to InputDataForOperating.

// End average processing.

// Assign the most recent value to InputDataForOperating.

Trigger
LastTrigger
Operating
OperatingStart
Buffer
InputData
DataAve
OneRound
IndexNo
InputDataForOperating

False
False
False
False
[25(0)]
10
0
False
0
0

BOOL
BOOL
BOOL
BOOL
ARRAY[0..24] OF INT
INT
INT
BOOL
UINT
INT

Execution condition
Value of Trigger from previous task period
Processing
Processing started
Input value storage array
Input value
Average value
Flag that indicates 25 inputs
Input value storage position
Input to next operation

Comment

2-393

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

nversio
n

 In
stru

ctio
n

s

2

P
ID

AT

PIDAT

The PIDAT instruction performs PID control with autotuning (2-PID control with set point filter).

Instruction Name FB/FUN Graphic expression ST expression

PIDAT PID Control with
Autotuning

FB PIDAT_instance(
Run,
ManCtl,
StartAT,
PV,
SP,
OprSetParams,
InitSetParams,
ProportionalBand,
IntegrationTime,
DerivativeTime,
ManMV,
ATDone,
ATBusy,
Error,
ErrorID,
MV);

Variables

Name Meaning I/O Description Valid range Unit Default

Run Execution con-
dition

Input

TRUE: Execute

FALSE: Stop

Depends on data type.

FALSE

ManCtl Manual/auto
control

TRUE: Manual operation

FALSE: Automatic operation

StartAT Autotuning exe-
cution condition

TRUE: Execute

FALSE: Cancel

PV Process value Process value
*1

SP Set point Set point

OprSet
Params

Operation set-
ting parameters

Parameters set during opera-
tion

0

InitSet
Params

Initial setting
parameters

Initial setting parameters ---

Propor-
tional Band

Proportional
band

In-out

Proportional band 0.01 to 1000.00 % FS

Integration-
Time

Integration time Integration time
The higher the value is, the
weaker the integral action is.
No integral action is performed
for 0.

T#0.0000s to
T#10000.0000s*2

s
Deriva-
tiveTime

Derivative time Derivative time
The higher the value is, the
stronger the derivative action is.
No derivative action is per-
formed for 0.

T#0.0000s to
T#10000.0000s*2

ManMV Manual manip-
ulated variable

Manual manipulated variable −320 to 320 %

PIDAT

PIDAT_instance

Run ATDone
ManCtl ATBusy
StartAT Error
PV ErrorID
SP MV
OprSetParams
InitSetParams
ProportionalBand

IntegrationTime

DerivativeTime

ManMV

2 Instruction Descriptions

2-394 NJ-series Instructions Reference Manual (W502)

*1 Value of input range lower limit InitSetParams.RngLowLmt to Value of input range upper limit InitSetParams.RngUpLmt

*2 Digits below 0.0001 s are truncated.

*3 FALSE indicates an error end, that PID control is in progress without autotuning, or that PID control is not in progress.

The PIDAT instruction performs PID control of a manipulated variable for a temperature controller or
other device. PID control is started when the value of execution condition Run changes to TRUE. While
the value of Run is TRUE, the following process is repeated periodically: process value PV is read, PID
processing is performed, and manipulated variable MV is output. PID control is stopped when the value
of Run changes to FALSE.

Autotuning is supported to automatically find the optimum PID constants. When the value of the auto-
tuning execution condition StartAT changes to TRUE, the PID constants are autotuned.

ATDone Autotuning nor-
mal completion

Output

TRUE: Normal completion

FALSE: *3
Depends on data type. ---

ATBusy Autotuning

busy
TRUE: Autotuning

FALSE: Not autotuning

MV Manipulated
variable

Manipulated variable −320 to 320 %

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

Run OK

ManCtl OK

StartAT OK

PV OK

SP OK

OprSet
Params

Refer to Function for details on the structure _sOPR_SET_PARAMS.

InitSet
Params

Refer to Function for details on the structure _sINIT_SET_PARAMS.

Propor-
tional Band

OK

Integration-
Time

OK

Deriva-
tiveTime

OK

ManMV OK

ATDone OK

ATBusy OK

MV OK

Function

Name Meaning I/O Description Valid range Unit Default

2-395

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

nversio
n

 In
stru

ctio
n

s

2

P
ID

AT

The data type of operation setting parameter OprSetParams is structure _sOPR_SET_PARAMS. The
specifications are as follows:

* MVLowLmt must be less than MVUpLmt.

The data type of initial setting parameter InitSetParams is structure _sINIT_SET_PARAMS. The specifi-
cations are as follows:

* RngLowLmt must be less than RngUpLmt.

Structure Specifications

Name Meaning Description Data type Valid range Unit Default

OprSetParams Operation Set-
ting Parame-
ters

Parameters that are set
during operation.

_sOPR_SET_
PARAMS

--- --- ---

MVLowLmt MV Lower
Limit

The lower limit of the
MV.

REAL

−320 to 320*

%

0

MVUpLmt MV Upper
Limit

The upper limit of the
MV.

REAL 100

ManResetVal Manual Reset
Value

The value of MV when
the deviation is 0 for the
proportional action.

REAL −320 to 320 0

MVTrackSw MV Tracking
Switch

TRUE: ON

FALSE: OFF

BOOL Depends on
data type.

--- FALSE

MVTrackVal MV Tracking
Value

The value that is set in
MV during MV tracking.

REAL

−320 to 320 %

0

StopMV Stop MV The value that is set in
MV when instruction
execution is stopped.

REAL

ErrorMV Error MV The value that is set in
MV when an error
occurs.

REAL

Alpha 2-PID Param-
eter α

The set point filter is dis-
abled if the set point filter
coefficient α is 0.

REAL 0.00 to 1.00

0.65

ATCalcGain Autotuning
Calculation
Gain

Adjustment coefficient
from autotuning results.
Stability is given higher
priority with higher val-
ues. The speed of
response is given higher
priority with lower val-
ues.

REAL

0.1 to 10.0

1.0

ATHystrs Autotuning
Hysteresis

The hysteresis of the
limit cycle.

REAL % FS 0.2

Name Meaning Description Data type Valid range Unit Default

InitSetParams Initial Setting
Parameters

Initial setting parameters. _sINIT_SET_
PARAMS

--- --- ---

SampTime Sampling
Period

The period for PID pro-
cessing.

TIME T#0.0001s to
#100.0000s

s T#0.1s

RngLowLmt Lower Limit of
Input Range

The lower limit of PV and
SP.

REAL

−32000 to
32000*

0

RngUpLmt Upper Limit of
Input Range

The upper limit of PV and
SP.

REAL 100

DirOpr Action Direc-
tion

TRUE: Forward action

FALSE: Reverse action

BOOL Depends on
data type.

FALSE

2 Instruction Descriptions

2-396 NJ-series Instructions Reference Manual (W502)

The meanings of the variables that are used in this command are described below.

Run (Execution Condition)
This is the execution condition for the instruction. PID control is performed while the value is TRUE.
PID control is stopped when the value changes to FALSE.

ManCtl (Manual/Auto Control)
This instruction can be executed in one of two modes: Manual operation or automatic operation. The
value of ManCtl determines which mode is used.

StartAT (Autotuning Execution Condition)
This is the execution condition for autotuning the PID constants. If the value of StartAT is TRUE
when the value of Run changes to TRUE, autotuning is performed when PID control is started. If the
value of StartAT changes to TRUE during PID control (i.e., when the value of Run is TRUE), autotun-
ing is performed during PID control. In either case, autotuning is canceled if the value of StartAT
changes to FALSE during autotuning. Autotuning is described in more detail later.

PV (Process Value)
This is the process value of the controlled system.

SP (Set Point)
This is the set point for the controlled system.

MVLowLmt (MV Lower Limit) and MVUpLmt (MV Upper Limit)
You can limit the value of MV. MVLowLmt and MVUpLmt are the lower and upper limits to MV.
MVLowLmt must always be less than MVUpLmt.

If stop MV StopMV, error MV ErrorMV, or manual MV ManMV is set in manipulated variable MV, limit
control is not applied.

ManResetVal (Manual Reset Value)
This is the value of MV when the deviation (i.e., the difference between PV and SP) is 0 for the pro-
portional action. The value of ManResetVal determines the location of the proportional action band.

MVTrackSw (MV Tracking Switch)
MV tracking is a function that sets the MV to an external input value (called the MV tracking value)
during automatic operation. MV tracking is performed while the value of MVTrackSw is TRUE. When
the value of MVTrackSw changes to FALSE, the value of MV returns to the result of PID processing.
The value of MV is changed smoothly at this time (bumpless).

Meanings of Variables

Value of ManCtl Operation mode Value of MV

TRUE Manual Value of ManMV (PID control is not performed.)

FALSE Automatic Value that is calculated for PID control

MV from PID processing Value of MV

Less than MVLowLmt MvLowLmt

Between MVLowLmt and MVUpLmt, inclusive MV from PID processing

Greater than MVUpLmt MvUpLmt

2-397

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

nversio
n

 In
stru

ctio
n

s

2

P
ID

AT

MVTrackVal (MV Tracking Value)
This is the value to which MV is set during MV tracking. The value of MVTrackVal does not have to
be between MVLowLmt and MVUpLmt.

StopMV (Stop MV)
This is the value to which MV is set when the value of Run is FALSE (i.e., when execution of this
instruction is stopped).

ErrorMV (Error MV)
This is the value to which MV is set when an error occurs (i.e., when the value of Err is TRUE). If the
value of ErrorMV is not within the valid range (−320 to 320), the value of MV will be 0 when an error
occurs.

Alpha (2-PID Parameter α)
This parameter determines the coefficient of the set point filter. Refer to the description in 2-PID
Control with Set Point Filter for details. Normally set the value of Alpha to 0.65.

AtCalcGain (Autotuning Calculation Gain)
This variable gives the coefficient of the PID constants that were calculated by autotuning when they
are applied to the actual PID constants. If a value of 1.00 is specified, the results of autotuning are
used directly. Increase the value of ATCalcGain to give priority to stability and decrease it to give pri-
ority to response.

ATHystrs (Autotuning Hysteresis)
This is the hysteresis that is used in the limit cycle for autotuning. More accurate tuning is achieved if
the value of ATHystrs is small. However, if the process value is not stable and proper autotuning is
difficult, increase the value. Refer to the description of autotuning for details.

SampTime (Sampling Period)
This is the minimum value of the period for PID processing. Refer to the description of the execution
timing of PID processing for details. PID processing is not performed again until the time specified
for SampTime has elapsed since the last time PID processing was performed.

RngLowLmt (Lower Limit of Input Range) and RngUpLmt (Upper Limit of
Input Range)
These are the lower limit and upper limit of PV and SP. An error will occur if the value of the parame-
ter connected to PV or SP exceeds either of these limits. RngLowLmt must always be less than
RngUpLmt.

Time

MVTrackSw = TRUE

MVTrackSw = FALSE

MV

MVTrackVal

2 Instruction Descriptions

2-398 NJ-series Instructions Reference Manual (W502)

DirOpr (Action Direction)
This variable specifies if MV is increased or decreased for changes in the value of PV. These are
called a forward action and a reverse action.

The difference between a forward action and reverse action are described here for temperature con-
trol. A forward action is used to control the MV for a cooler. That is, the higher the process tempera-
ture, the larger the MV of the cooler must be. On the other hand, a reverse action is used to control
the MV for a heater. That is, the lower the process temperature, the larger the MV of the heater must
be.

ProportionalBand (Proportional Band)
This is one of the three PID constants. Refer to the description of the proportional action for details.
The larger the ProportionalBand is, the greater the offset is. Hunting occurs if the ProportionalBand
is too small.

IntegrationTime (Integration Time)
This is one of the three PID constants. Refer to the description of the integral action for details. The
larger the value of IntegrationTime is, the weaker the integral action is.

DerivativeTime (Derivative Time)
This is one of the three PID constants. Refer to the description of the derivative action for details.
The larger the value of DerivativeTime is, the stronger the derivative action is.

ManMV (Manual Manipulated Variable)
MV is set to this value during manual operation (while ManCtl is TRUE). However, immediately after
changing from automatic to manual operation, the value of MV from automatic operation is used. MV
is set to the value of ManMV only when it changes after operation switches to manual operation.
When operation changes from manual to automatic operation, the value of MV from manual opera-
tion is used. The value of ManMV does not have to be between MVLowLmt and MVUpLmt.

Value of DirOpr Meaning Value of MV

TRUE Forward action Increases with the value of PV.

FALSE Reverse action Decrease with the value of PV.

MVUpLmt

MVLowLmt

MVUpLmt

MVLowLmt

PV

PV

MV

MV

Forward Action (DirOpr = TRUE)

Reverse Action (DirOpr = FALSE)

Cooler
The MV increases as the process temperature rises.

Heater
The MV increases as the process temperature falls.

2-399

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

nversio
n

 In
stru

ctio
n

s

2

P
ID

AT

ATDone (Autotuning Normal Completion)
This flag indicates when autotuning was completed normally. It changes to TRUE when autotuning
is completed normally and remains TRUE as long as the value of StartAT is TRUE. It is FALSE in the
following cases.

• An autotuning error end occurred.

• Autotuning is in progress (i.e., while the value of ATBusy is TRUE).

• PID control is in progress without autotuning.

• PID control is not in progress (i.e., the value of Run is FALSE).

• The value of StartAT is FALSE.

ATBusy (Autotuning Busy)
This flag indicates when autotuning is in progress. It is TRUE while autotuning is in progress. Other-
wise it is FALSE.

MV (Manipulated Variable)
This is the manipulated variable that is applied to the controlled system.

PID control is a feedback control method that repeatedly measures the process value of the controlled
system and calculates a manipulated variable so that the process value approaches a set point. This
instruction therefore outputs a manipulated variable for the following inputs: process value, set point,
and calculation parameters. PID control periodically measures the process value, calculates the manip-
ulated variable, and outputs the manipulated variable so that the process value approaches the set
point.

PID control is performed by combining the proportional action, integral action, and derivative action.
These actions are described next.

Introduction to PID Control

Proportional (P), Integral (I), and Derivative (D) Actions

Time

ManCtl changed to TRUE. ManCtl changed to FALSE.

Value of MV from automatic operation used.

Value of MV from manual operation used.

Value of ManMV changed.

MV

Set point
Manipulated
variable

Process value

Repeatedly executed.

Parameters

PID
processing

Controlled
system

2 Instruction Descriptions

2-400 NJ-series Instructions Reference Manual (W502)

Proportional Action (P)
The proportional action increases the absolute value of the manipulated variable in proportion to the
deviation between the process value and the set point. The process value of the controlled system
changes as shown below.

The proportional band is one of the settings that are used for the proportional action. The propor-
tional band is the range of the process value to which the proportional action is applied. If the pro-
cess value is not in the proportional band, the manipulated variable is set to 100% or 0%.
The proportional band is expressed as the percentage of the input range in which to perform the
proportional action (% FS). The following diagram shows the proportional band set to 10% FS.

Another parameter for the proportional action is the manual reset value. The manual reset value is
the manipulated variable that is used when the deviation is 0. The manual reset value determines
the position of the proportional action range in the process value−manipulated variable graph. The
relationship between the manual reset value and the proportional action region is shown below.

The position of the proportional action range is determined so that the manipulated variable when
the process value and the set point are the same equals the manual reset value.

Time

A large deviation produces a large MV,
which produces a large change in the process value.

A small deviation produces a small MV,
which produces a small change in the process value.

Process value

Set point

100%

0%

Manipulated
variable

Process value

Proportional band
at 10% FS

Lower limit of input range

100% FS input range

Upper limit of input range

100%

0%

Proportional action region
when the manual reset value is a.

Proportional action region
when the manual reset value is b.

Manipulated
variable

a

b

Process value

Set point

The position of the proportional action
range is determined so that the
manipulated variable when the process
value and the set point are the same
equals the manual reset value.

2-401

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

nversio
n

 In
stru

ctio
n

s

2

P
ID

AT

If the manual reset value is not suitable, the deviation will never reach 0. The remaining deviation is
called the offset or the residual deviation. You can make the proportional band narrower to reduce
the offset. If the proportional band is too narrow, the process value will not stop at the set point. This
is called overshooting. If the process value does not stabilize and oscillates around the set point, it is
called hunting.

Integral Action (I)
Very accurate adjustment of the proportional band and manual reset value is required to bring the
offset to 0 with only the proportional action. Also, the size of the offset varies with the disturbance, so
it is necessary to repeat the adjustment frequently. To simplify the operation, an integral action is
used in combination with the proportional action. The integral action integrates the deviation on the
time axis and then increases the absolute value of the manipulated variable in proportion to the
result. When normal distribution operation is performed, the manual reset value is ignored. The fol-
lowing graph on the left shows changes in the manipulated variable for the integral action when a
deviation occurs in stepwise fashion. The following graph on the right shows changes in the manipu-
lated variable when the integral and proportional actions are combined.

One of the parameters for the integral action is the integration time. This is the time for the manipu-
lated variable from the integral action to equal the manipulated variable from the proportional action
when a stepwise deviation occurs. The shorter the integration time is, the stronger the integral action
is. A short integration time reduces the time for the offset to reach 0, but it can also cause hunting.

Proportional band is too narrow
(hunting occurs).

The proportional band is suitable.

Proportional band is too wide
(there is a large offset).

Offset

Time

Process value

Set point

Manipulated Variable for Integral Action

0 0

0 0

Stepwise response

Manipulated Variable for Integral and
Proportional Actions Together

Stepwise response

Time Time

Deviation Deviation

Proportional and integral actions

Integral action only

Proportional action only

Time Time

M
an

ip
ul

at
ed

va

ria
bl

e

M
an

ip
ul

at
ed

va

ria
bl

e

0
Stepwise response

Time

Deviation

0

Proportional and integral actions

Integral action only

Proportional action only

TimeIntegration time

Manipulated
variable

2 Instruction Descriptions

2-402 NJ-series Instructions Reference Manual (W502)

Derivative Action (D)
If the proportional and integral actions are used together, the offset will reach 0 and the process
value will reach the set point. However, if disturbance causes the process value to change quickly,
time is required to restore the original state. The derivative action functions to quickly return the pro-
cess value to the set point when there is a disturbance. The derivative action differentiates the devi-
ation on the time axis and then increases the absolute value of the manipulated variable in
proportion to the result. In other words, the larger the change in the process value is, the larger the
absolute value of the manipulated variable for the derivative action is. The changes in the manipu-
lated variable for the derivative action when a deviation occurs in stepwise fashion are shown below.
The changes in the manipulated variable when the derivative and proportional actions are combined
are also shown.

One of the parameters for the derivative action is the derivative time. This is the time for the manipu-
lated variable from the derivative action to equal the manipulated variable from the proportional
action when a ramp deviation occurs. The longer the derivative time is, the stronger the derivative
action is. A long derivative time provides a rapid response to disturbances, but it can also cause
hunting.

The total of the manipulated variables for the proportional, integral, and derivative actions is the
manipulated variable for PID control. The changes in the manipulated variable for PID control for a
stepwise and ramp deviations are shown below.

Manipulated Variable for Derivative Action

0
Stepwise response

Time

Deviation

Manipulated Variable for Derivative and
Proportional Actions Together

0
Stepwise response

Time

Deviation

0 0
Time

Manipulated
variable

Proportional and
derivative actions

Proportional action only Time

Derivative action only

Manipulated
variable

Ramp response
0

Time

Deviation

Proportional and derivative actions

Proportional action

Derivative action

0
TimeDerivative time

Manipulated
variable

2-403

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

nversio
n

 In
stru

ctio
n

s

2

P
ID

AT

There are three main parameters that you must adjust to perform PID control: the proportional band,
integration time, and derivative time. These are called the PID constants. The values of the PID con-
stants affect the following two performances of PID control.

• Set point response: The ability to follow changes in the set point.

• Disturbance response: The ability of correcting the process value for large changes that are caused
by disturbances

A block diagram for basic PID control is shown below. The set point and disturbance enter the block dia-
gram at different positions. Therefore, finding the optimum PID constants for both set point response
performance and disturbance response performance is difficult. In other words, if the PID constants are
set for set point response, response to disturbances is slow. If the PID constants are set for disturbance
response, overshooting occurs.

To enable both set point response and disturbance response, 2-PID control is used. The 2 in “2-PID”
indicates that there are separate parameters to adjust the set point response and the disturbance
response. A block diagram for this is shown below. A set point filter that includes an adjustment param-
eter is added. The PID constants are adjusted to maximize disturbance response. A set point filter
adjusts the set point to optimize the set value response for those values. You can adjust the values of
the PID constants and the set value of the set point filter independently to increase both the set point
response and the disturbance response.

The formulas of the blocks of this instruction are shown below. The set point filter value (i.e., a coeffi-
cient for the set point) is adjusted by using the integration time and the 2-PID parameter α. The opti-
mum value of α is 0.65. It normally does not need to be changed. The lower the value of α is, the
smaller the influence of the set point filter is.

2-PID Control with Set Point Filter

Stepwise response Ramp response
0

Time Time

Deviation

0

Deviation

0
Time Time

PID control

PID control

Integral action only

Derivative action only

Proportional action only

Integral action only

Proportional action only

Derivative action only

Manipulated
variable

0

Manipulated
variable

Set point
Deviation

Manipulated
variable Process value

P+I
Controlled
system

Disturbance

D

+ +
+

+

− −

Set point

Adjustment for set point response Adjustment for disturbance response

Deviation
Manipulated
variable Process value

P+I
Controlled
systemSet point filter

Disturbance

D

+ +
+

+

− −

2 Instruction Descriptions

2-404 NJ-series Instructions Reference Manual (W502)

You must use suitable PID constants to execute this instruction. There are the following two ways to
achieve this.

When Suitable PID Constants Are Not Known
Perform autotuning at the start of operation to find suitable PID constants. Change the value of Run
to TRUE while the value of StartAT is TRUE. First, autotuning is executed, and then PID control is
started with the PID constants that are found.

When Suitable PID Constants Are Known
Set suitable PID constants in ProportinalBand, IntegrationTime, and DerivativeTime, and then
change Run to TRUE. ProportinalBand, IntegrationTime, and DerivativeTime are in-out variables.
You cannot set constants for the input parameters. Always define suitable variables, and then assign
the values to input parameters.

You can change the PID constants during operation. You can also perform autotuning during opera-
tion. To start autotuning during operation, change the value of StartAT to TRUE.

Manipulated variable MV is determined according to the control status as shown in the following table.

Starting PID Control

Control Status and Manipulated Variable

Control status

Value of variable

Manipulated vari-
able MV

ManCtl
(man-

ual/auto
control)

Run (exe-
cution con-

dition)

Error (error
end)

Man-
TrackSw
(manual
tracking
switch)

ATBusy
(autotun-
ing busy)

Error end

FALSE

TRUE

TRUE ---

FALSE

ErrorMV (error MV)

MV tracking dur-
ing automatic
operation

FALSE

TRUE MVTrackVal (MV
tracking value)

Autotuning dur-
ing automatic
operation

FALSE TRUE Value repeatedly
changes between
upper limit of MV
and lower limit of
MV.

Not autotuning
during automatic
operation

FALSE Value calculated
with current PID
constants.

Instruction exe-
cution stopped

FALSE --- --- StopMV (Stop MV)

Manual opera-
tion

TRUE --- ManMV (manual
manipulated vari-
able)

Set
point

Deviation
Manipulated
variable Process valueControlled

system

Set point filter
DisturbanceProportional +

integral components

Advanced derivative
component

+ +
+

+

− − Kp: Proportional constant
Ti: Integration time
Td: Derivative time
s: Laplace operator
α: 2-PID parameter
λ: Incomplete derivative coefficient

1 + (1−α)Ti ⋅ s
1 + Ti ⋅ s

Kp ⋅ Td ⋅ s
1 + λ ⋅ Td ⋅ s

Kp +
Kp

Ti ⋅ s

2-405

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

nversio
n

 In
stru

ctio
n

s

2

P
ID

AT

The 2-PID parameter α is not adjusted very often, so the main parameters that are adjusted for this
instruction are the PID constants. The PIDAT instruction supports autotuning of the PID constants. The
limit cycle method is used for autotuning. With the limit cycle method, the manipulated variable is tem-
porarily changed to the upper and lower limits of the manipulated variable to find the optimum PID con-
stants based on the resulting changes in the process value. If autotuning is executed when the set point
is greater than the process value, the manipulated variable is first set to the upper limit. When the devi-
ation reaches 0, the manipulated variable is set to the lower limit. When the deviation becomes greater
than the autotuning hysteresis, the manipulated variable is set to the upper limit again. This process is
repeated twice to calculate the optimum PID constants.

If autotuning is executed when the set point is less than the process value, the manipulated variable is
first set to the lower limit. Then, the optimum values for the PID constants are calculated with the proce-
dure that is given above.

Autotuning is executed during PID control (i.e., when the value of Run is TRUE) if the value of StartAT
changes to TRUE. If StartAT is TRUE when Run changes to TRUE, autotuning is executed at the start
of PID control. When autotuning is completed normally, the calculated PID constants are used immedi-
ately. Autotuning is canceled if the value of StartAT changes to FALSE during autotuning (i.e., when
ATBusy is TRUE). If autotuning is canceled, PID control is started again with the previous PID con-
stants.

PID control is repeated periodically. PID processing is performed when the PIDAT instruction is exe-
cuted in the user program. However, if sampling period SampTime has not elapsed since the last time
PID processing was performed, PID processing is nor performed. If the elapsed time since the last time
PID processing was executed exceeds SampTime, the excess time (elapsed time − SampTime) is car-
ried forward to the next period. This is shown in the following diagram.

Autotuning

Execution Timing of PID Control

Process valueSet point

Autotuning hysteresis

MV upper limit

MV lower limit

Manipulated variable

Time

Time

Autotuning executed.

The manipulated variable is
set to the MV upper limit.

When the deviation reaches 0, the
manipulated variable is set to the MV
lower limit.

When the deviation becomes greater than
the autotuning hysteresis, the manipulated
variable is set to the MV upper limit again.

2 Instruction Descriptions

2-406 NJ-series Instructions Reference Manual (W502)

Timing charts for the instruction variables are provided below for different situations.

Timing Charts

Task period

60 ms

PIDAT PIDAT

PID processing
executed.

Time

Task period = 60 ms and SampTime < 60 ms

The task period is greater than or equal to SampTime, so PID processing is executed once every task period.

60 ms

PID processing
executed.

60 ms

PID processing
executed.

60 ms

PID processing
executed.

PID processing
executed.

Task period Task period Task period Task period

PIDAT PIDAT AutoPID

Task period

60 ms

PIDAT PIDAT

PID processing
executed.

60 ms

Not executed because elapsed time
(60 ms) < 100 ms.

60 ms

PID processing
executed.

PID processing
not executed.

Executed because elapsed time (60 + 60 ms = 120 ms) > 100 ms.
The remaining 20 ms is carried over.

60 ms

PID processing
not executed.

Not executed because elapsed time
(20 + 60 ms = 80 ms) < 100 ms.

PID processing
executed.

Executed because elapsed time
(80 + 60 ms = 140 ms) > 100 ms.
The remaining 40 ms is carried over.

Task period Task period Task period Task period

PIDAT PIDAT PIDAT

Time

Task period = 60 ms and SampTime = 100 ms

The task period is less than SampTime, so DIP processing is not executed every period.

2-407

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

nversio
n

 In
stru

ctio
n

s

2

P
ID

AT

Autotuning Executed during Automatic Operation

Time

MV

PV

SP

ATBusy

Run

StartAT

ATDone

Time

PID constants updated for
results of autotuning.

MV set to StopMV.

PID processing PID
processing

Autotuning

StopMV

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

2 Instruction Descriptions

2-408 NJ-series Instructions Reference Manual (W502)

Autotuning Executed at the Start of PIDAT Execution

Time

MV

PV

SP

ATBusy

Run

StartAT

ATDone

Time

PID constants updated for
results of autotuning.

MV set to StopMV.

PID
processing

Autotuning

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

StopMV

2-409

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

nversio
n

 In
stru

ctio
n

s

2

P
ID

AT

Autotuning Canceled

Time

MV

PV

SP

ATBusy

Run

StartAT

ATDone

Time

Autotuning canceled.
The PID constants from
before autotuning was started are set.

MV set to StopMV.

ATDone remains FALSE.

ATBusy also changes to FALSE
when autotuning is canceled.

PID
processing

PID
processing

Autotuning

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

StopMV

2 Instruction Descriptions

2-410 NJ-series Instructions Reference Manual (W502)

An Autotuning Error Occurs during Autotuning
An autotuning error occurs and autotuning is stopped in the following cases.

• If the MV equals the MV upper limit and the time for the deviation to reach 0 exceeds 19,999 s.

• If the MV equals the MV lower limit and the time for the deviation to reach AtHystrs or higher
exceeds 19,999 s.

If autotuning is canceled, PID control is started again with the previous PID constants.

• If you need to eliminate hunting even if it takes time to stabilize the control system, increase the value
of ProportionalBand. If a certain amount of hunting is not a problem, but it is necessary for the con-
trolled system to stabilize quickly, decrease the value of ProportionalBand.

Additional Information

Adjusting PID Constants

Time

Error occurs.
The PID constants from before
autotuning was started are set.

MV is set to StopMV.

ATBusy changes to FALSE as soon as an error occurs.

PID
processing

PID
processing

Autotuning

MV

PV

SP

ATBusy

Run

StartAT

TRUE
FALSE

ATDone
TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

StopMV

ATDone remains FALSE.

Time

Large ProportionalBand.

Time

PV

SP

Small ProportionalBand.

2-411

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

nversio
n

 In
stru

ctio
n

s

2

P
ID

AT

• If hunting continues too long, increase ProportionalBand or increase IntegrationTime.

• If rapid hunting occurs, decrease DerivativeTime.

If you use the PIDAT instruction for temperature control, use the following initial values of the PID con-
stants as reference. Use the default values for the other variables.

* If you perform autotuning, use the results from autotuning.

• The values of PV and SP must be between the values of RngLowLmt and RngUpLmt, inclusive. Align
the units of these variables as shown below.

* MAX: Upper limit of input range in physical units, MIN: Lower limit of input range in physical units,

• The following table shows which variables can be changed depending on the operating status.

Initial PID Constants for Temperature Control

Variables Initial values (reference values)*

ProportinalBand 10%FS

IntegrationTime 233 s

DerivativeTime 40 s

Precautions for Correct Use

Unit Values of PV and SP
Values of RngLowLmt and

RngUpLmt
% FS PV = (Process value in physical units − MIN)/(MAX − MIN) × 100

SP = (Set point in physical units − MIN)/(MAX − MIN) × 100*

RngLowLmt = 0

RngUpLmt = 100
Physi-
cal unit

PV = Process value in physical units

SV = Set point in physical units

RngLowLmt = MIN

RngUpLmt = MAX*

Variables

Control status

Instruction execution
stopped*1

Automatic operation
when autotuning is not

being executed*2

Automatic operation
when autotuning is being

executed*3

Run Possible Possible Possible
ManCtl Possible Possible Possible

StartAT Possible Possible Possible

PV Possible Possible Possible
SP Possible Possible Not possible

MVLowLmt Possible Possible Not possible

MVUpLmt Possible Possible Not possible
ManResetVal Possible Possible Not possible

MVTrackSw Possible Possible Not possible

Time

Increase ProportionalBand or increase IntegrationTime.

PV

SP

Time

PV

SP

Decrease DerivativeTime.

2 Instruction Descriptions

2-412 NJ-series Instructions Reference Manual (W502)

*1 ManCtl is TRUE, Run is FALSE, Error is TRUE, or MVTrackSw is TRUE.

*2 MacCtl is FALSE, Run is TRUE, Error is FALSE, MVTrackSw is FALSE, and ATBusy is FALSE.

*3 MacCtl is FALSE, Run is TRUE, Error is FALSE, MVTrackSw is FALSE, and ATBusy is TRUE.

• SampTime is truncated below 100 nanoseconds.

• If the value of StartAT changes to TRUE while the value of ManCtl is TRUE, autotuning starts the next
time the value of ManCtl changes to FALSE.

• If the value of ErrorMV is not within the valid range (−320 to 320), the value of MV will be 0 when an
error occurs.

• Autotuning is canceled if the value of ManCtl changes to TRUE during autotuning.

• The value of Error does not change to TRUE even if an error occurs during autotuning.

• An error occurs in the following case. Error will change to TRUE, and an error code is assigned to
ErrorID. ATDone and ATBusy change to FALSE. MV is set to the value of ErrorMV if the values of
ManCtl and Run are FALSE. If the value of ErrorMV is outside of the valid range, the value of MV is 0.

• If an error stop is required for conditions other than the above, program the system so that the value
of Run changes to FALSE when the error occurs.

• If an error occurs because the value of PV or SP exceeds the valid range, the error status is main-
tained for five seconds even if the value returns to within the valid range sooner. That is, the value of
Error will remain FALSE for five seconds.

• PID control is restarted automatically if the value of Run is TRUE after the error is reset. Autotuning is
restarted automatically if the values of Run and StartAT are TRUE.

• A check is made for errors each sampling period.

In this sample, the PIDAT instruction is used to perform temperature control.

MVTrackVal Possible Possible Not possible

StopMV Possible Possible Possible
ErrorMV Possible Possible Possible

Alpha Possible Possible Not possible

ATCalcGain Possible Possible Not possible
ATHystrs Possible Possible Not possible

SampTime Possible Not possible Not possible

RngLowLmt Possible Not possible Not possible
RngUpLmt Possible Not possible Not possible

DirOpr Possible Not possible Not possible

ProportinalBand Possible Possible Not possible
IntegrationTime Possible Possible Not possible

DerivativeTime Possible Possible Not possible

ManMV Possible Possible Possible

Error Value of ErrorID

The value of an input variable is outside of the valid range. 16#0400

RngLowLmt is greater than or equal to RngUpLmt. 16#0401

MVLowLmt is greater than or equal to MVUpLmt.

Sample Programming

Variables

Control status

Instruction execution
stopped*1

Automatic operation
when autotuning is not

being executed*2

Automatic operation
when autotuning is being

executed*3

2-413

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

nversio
n

 In
stru

ctio
n

s

2

P
ID

AT

Temperature control is performed according to the following specifications.

The following setting is used for the CJ1W-PH41U Analog Input Unit.

The following I/O map settings are used.

• The manipulation value MV of the PIDAT instruction is obtained to control the output to the tempera-
ture controller. The output to the temperature controller is turned ON and OFF.

• The sampling period (InitSetParams.SampTime) of the PIDAT instruction is set to 100 ms. The task
period must be sufficiently shorter than 100 ms. Therefore, the value of MV is refreshed every 100
ms.

• The output control period is 1 s. During that period, the ON time and OFF time of the output control
value are controlled with a time-proportional output. For example, if the obtained value of MV is 20%,
the output to the temperature control is ON for 200 ms and OFF for 800 ms. This is repeated at a 1-s
period.

• If the most recent value of MV is smaller than the value of MV when the output control values were
determined, the output control values do not change. If the most recent value of MV is larger than the
value of MV when the output control values were determined, the most recent value is immediately
reflected in the output control values. For example, assume that the output control values were deter-
mined when the value of MV was 20% (ON 200 ms, OFF 800 ms). If after 100 ms, the new value of
MV is 30%, the output control values are immediately changed to turn the output ON for 300 ms and
OFF for 700 ms.

Specifications

Item Specification

Input type K thermocouple

Input Unit CJ1W-PH41U Analog Input Unit with Universal Inputs

Output Unit CJ1W-OD212 Transistor Output Unit

Set point 90°C

Sampling period for PID control 100 ms

Output control period 1 s

Configuration and Settings

Setting Set value

Input1:Input signal type K(1)

Unit I/O port Description Variable

CJ1W-PH41U Ch1_AIInPV Measurement value for input 1 (INT data) AI1

CJ1W-OD212 Ch1_Out00 Bit 00 of output word 1 DO1

Processing

200 ms 800 ms

PID processing

100-ms period

1-s period

Output control value

Time
MV at this point: 20% MV at this point: 30%

ON
OFF

300 ms 700 ms

2 Instruction Descriptions

2-414 NJ-series Instructions Reference Manual (W502)

• If autotuning is performed and the value of MV is 100%, the output is immediately turned ON regard-
less of the control period.

200 ms 800 ms

PID processing

100-ms period

1-s period

Output control value

TimeMV at this point: 20%

ON
OFF

MV at this point: 30%
The output control values are
immediately changed to turn the
output ON for 300 ms and OFF
for 700 ms.

2-415

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

nversio
n

 In
stru

ctio
n

s

2

P
ID

AT

Application Programming

LD

Run1
ManCtl1
StartAT1
PV1
SP1
OprSetParams1

InitSetParams1

PB1
TI1
TD1
ManMV1
ATDone1
ATBusy1
Error1
ErrorID1
MV1
PulseOnTime
PulseCycTime
ResetPulse
PIDAT_instance
TOF_instance
TON_instance

False
False
False
0.0
90
(MVLowLmt:=0.0, MVUpLmt:=100.0,
 ManResetVal:=0.0, MVTrackSw:=False,
 MVTrackVal:=0.0, StopMV:=0.0,
 ErrorMV=0.0, Alpha:=0.65,
 ATCalcGain:=1.0, ATHystrs:=0.2)
(SampTime:=T#100ms, RngLowLmt:=0.0,
 RngUpLmt:=1000.0, DirOpr:=False)
10
T#0S
T#0S
0.0
False
False
False
16#0
0.0
T#0s
T#1s
False

BOOL
BOOL
BOOL
REAL
REAL
_sOPR_SET_PARAMS

_sINIT_SET_PARAMS

REAL
TIME
TIME
REAL
BOOL
BOOL
BOOL
WORD
REAL
TIME
TIME
BOOL
PIDAT
TOF
TON

Obtain the process value.
Inline ST

Execution condition
Manual/auto control
Autotuning execution condition
Process value
Set point
Operation setting parameters

Initial setting parameters

Proportional band
Integration time
Derivative time
Manual manipulated variable
Autotuning normal completion
Executing autotuning
Error
Error ID
Manipulated variable
Control output ON time
Control period
Timer reset

1 PV1:=INT_TO_REAL(AI1)/REAL#10.0;

Execute PIDAT instruction.

// Convert PV AI1 to real number.
// CJ1W-PH41U output is ten times the process value, so divide by 10.0.

Run1

 ManCtl1
 StartAT1
 PV1
 SP1
OprSetParams1
 InitSetParams1

 PB1

 TI1

 TD1

 ManMV1

ATBusy1
Error1
ErrorID1
MV1

PB1

TI1

TD1

ManMV1

PIDAT

PIDAT_instance
ATDone1

Run ATDone
ManCtl ATBusy
StartAT Error
PV ErrorID
SP MV
OprSetParams
InitSetParams
ProportionalBand

IntegrationTime

DerivativeTime

ManMV

Variable Data type Initial value Retain Comment

2 Instruction Descriptions

2-416 NJ-series Instructions Reference Manual (W502)

Inline ST

 1 PulseOnTime:=MULTIME(PulseCycTime, MV1/REAL#100.0);
 2 TOF_instance(In:=BOOL#FALSE, PT:=PulseOnTime, Q=>DO1);
 3 TON_instance(In:=BOOL#TRUE, PT:=PulseCycTime, Q=>ResetPulse);
 4 IF (ResetPulse=BOOL#TRUE) THEN
 5 TOF_instance(In:=BOOL#TRUE);
 6 TON_instance(In:=BOOL#FALSE);
 7 END_IF;
 8 IF ((ATBusy1=BOOL#TRUE) & (MV1=REAL#100.0)) THEN
 9 DO1:=BOOL#TRUE;
10 END_IF;

Time-proportional output

// Calculate ON time output control value.
// Switch between ON and OFF with TOF instruction.
// Measure timer reset time with TON instruction.
// Reset timer.

// If MV1 = 100% for autotuning...
// Turn ON the output immediately.

2-417

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

nversio
n

 In
stru

ctio
n

s

2

P
ID

AT

ST

PV1:=INT_TO_REAL(AI1)/REAL#10.0;

PIDAT_instance(
 Run :=Run1,
 ManCtl :=Manctl1,
 StartAT :=StartAT1,
 PV :=PV1,
 SP :=SP1,
 OprSetParams :=OprSetParams1,
 InitSetParams :=InitSetParams1,
 ProportionalBand:=PB1,
 IntegrationTime :=TI1,
 DerivativeTime :=TD1,
 ManMV :=ManMV1,
 ATDone =>ATDone1,
 ATBusy =>ATBusy1,
 Error =>Error1,
 ErrorID =>ErrorID1,
 MV =>MV1);

PulseOnTime:=MULTIME(PulseCycTime, MV1/REAL#100.0);
TOF_instance(In:=BOOL#FALSE, PT:=PulseOnTime, Q=>DO1);
TON_instance(In:=BOOL#TRUE, PT:=PulseCycTime, Q=>ResetPulse);
IF (ResetPulse=BOOL#TRUE) THEN
 TOF_instance(In:=BOOL#TRUE);
 TON_instance(In:=BOOL#FALSE);
END_IF;
IF ((ATBusy1=BOOL#TRUE) & (MV1=REAL#100.0)) THEN
 DO1:=BOOL#TRUE;
END_IF;

// Convert PV AI1 to real number.

// Execute PIDAT instruction.

// Time-proportional output

Run1
ManCtl1
StartAT1
PV1
SP1
OprSetParams1

InitSetParams1

PB1
TI1
TD1
ManMV1
ATDone1
ATBusy1
Error1
ErrorID1
MV1
PulseOnTime
PulseCycTime
ResetPulse
PIDAT_instance
TOF_instance
TON_instance

False
False
False
0.0
90
(MVLowLmt:=0.0, MVUpLmt:=100.0,
 ManResetVal:=0.0, MVTrackSw:=False,
 MVTrackVal:=0.0, StopMV:=0.0,
 ErrorMV=0.0, Alpha:=0.65,
 ATCalcGain:=1.0, ATHystrs:=0.2)
(SampTime:=T#100ms, RngLowLmt:=0.0,
 RngUpLmt:=1000.0, DirOpr:=False)
10
T#0S
T#0S
0.0
False
False
False
16#0
0.0
T#0s
T#1s
False

BOOL
BOOL
BOOL
REAL
REAL
_sOPR_SET_PARAMS

_sINIT_SET_PARAMS

REAL
TIME
TIME
REAL
BOOL
BOOL
BOOL
WORD
REAL
TIME
TIME
BOOL
PIDAT
TOF
TON

Execution condition
Manual/auto control
Autotuning execution condition
Process value
Set point
Operation setting parameters

Initial setting parameters

Proportional band
Integration time
Derivative time
Manual manipulated variable
Autotuning normal completion
Executing autotuning
Error
Error ID
Manipulated variable
Control output ON time
Control period
Timer reset

// CJ1W-PH41U output is ten times the process value, so divide by 10.0.

// Calculate ON time output control value.
// Switch between ON and OFF with TOF instruction.
// Measure timer reset time with TON instruction.
// Reset timer.

// If MV1 = 100% for autotuning...
// Turn ON the output immediately.

Variable Data type Initial value Retain Comment

2 Instruction Descriptions

2-418 NJ-series Instructions Reference Manual (W502)

DispartReal

The DispartReal instruction separates a real number into the signed mantissa and the exponent.

*1 If you omit the input parameter, the default value is not applied. A building error will occur.

*2 The valid ranges depend on the data types of In and Fraction. Refer to Function for details.

*3 If In is REAL data, −44 to 32. If In is LREAL data, −322 to 294

The DispartReal instruction separates real number In into signed mantissa Fraction and exponent
Exponent.

If In is REAL data, Fraction is a 7-digit integer. If In is LREAL data, Fraction is a 15-digit integer.

Instruction Name FB/FUN Graphic expression ST expression

DispartReal Separate Mantissa
and Exponent

FUN Out:=DispartReal(In, Frac-
tion, Exponent);

Variables

Name Meaning I/O Description Valid range Unit Default

In Real num-
ber

Input Real number to separate Depends on data type. --- *1

Out Return
value

Output

Always TRUE TRUE only

--- ---Fraction Signed
mantissa

Signed mantissa *2

Exponent Exponent Exponent *3

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK OK

Out OK

Fraction Must be DINT if the data type of In is REAL and LINT if the data type of In is LREAL.

Exponent OK

Function

(@)DispartReal
EN ENO
In Out
 Fraction
 Exponent

2-419

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

nversio
n

 In
stru

ctio
n

s

2

D
ispartR

eal

The following example is for when In is REAL data with a value of REAL#−123.456.

The following example is for when In is LREAL data with a value of LREAL#−123.456789.

The following table shows the valid ranges for Fraction according to the data types In and Fraction.

Use the UniteReal instruction (page 2-421) to combine a signed mantissa and exponent to form a real
number.

• Depending on the value of In, error may occur in the conversion to an integer.

Data type of In Data type of Fraction Valid range of Fraction

REAL DINT −9999999 to 9999999

LREAL LINT −999999999999999 to 999999999999999

Additional Information

Precautions for Correct Use

DispartReal(REAL#−123.456, abc, def);

LD ST

abc
def

REAL#−123.456

DispartReal
EN ENO
In
 Fraction
 Exponent

Fraction = abc

Exponent = def

In

Exponent

Signed mantissa

−1234560

−4

REAL#−123.456

DispartReal(LREAL#−123.456789, abc, def);

LD ST

abc
def

LREAL#−123.456789

DispartReal
EN ENO
In
 Fraction
 Exponent

−123456789000000Fraction = abc

−12Exponent = def

LREAL#−123.456789In

Signed mantissa

Exponent

2 Instruction Descriptions

2-420 NJ-series Instructions Reference Manual (W502)

• If the number of valid digits in In exceeds the number of valid digits of Fraction, the value is rounded
to fit in the valid range of Fraction. The following table shows how values are rounded.

• An error occurs in the following case. ENO will be FALSE, and Fraction and Exponent will not
change.

• The value of In is nonnumeric or infinity.

Value of fractional part Treatment Examples

Less than 0.5 The fractional part is truncated. 1.49 → 1

−1.49 → −1

0.5 If the ones digit is an even number, the value is trun-
cated. If it is an odd number, the value is rounded up.

1.50 → 2

2.50 → 2

−1.50 → −2

−2.50 → −2

Greater than 0.5 The fractional part is rounded up. 1.51 → 2

−1.51 → −2

2-421

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

nversio
n

 In
stru

ctio
n

s

2

U
niteR

eal

UniteReal

The UniteReal instruction combines a signed mantissa and exponent to make a real number.

* If you omit the input parameter, the default value is not applied. A building error will occur.

The UniteReal instruction combines signed mantissa Fraction and exponent Exponent to make real
number Out.

The following example is for when Fraction is DINT#−15 and Exponent is INT#−1.

Instruction Name FB/FUN Graphic expression ST expression

UniteReal Combine Real
Number Mantissa
and Exponent

FUN Out:=UniteReal(Fraction,
Exponent);

Variables

Name Meaning I/O Description Valid range Unit Default

Fraction Signed man-
tissa Input

Signed mantissa

Depends on data type. ---

*

Exponent Exponent Exponent 0

Out Real number Output Real number Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

Fraction OK OK

Exponent OK

Out Must be REAL if the data type of Fraction is DINT and LREAL if the data type of Fraction is LINT.

Function

(@)UniteReal
EN ENO
Fraction Out
Exponent

abc:=UniteReal(DINT#15, INT#-1);

LD ST

abcDINT#-15
INT# -1

UniteReal
EN ENO
Fraction
Exponent

Exponent

Signed mantissa

DINT#−15Fraction

INT#−1Exponent

REAL#−1.5Out=abc

2 Instruction Descriptions

2-422 NJ-series Instructions Reference Manual (W502)

Use the DispartReal instruction (page 2-418) to separate a real number into the signed mantissa and
exponent.

• Depending on the values of Fraction and Exponent, error may occur in the conversion from an integer
to a real number.

• If the combined result exceeds the valid range of Out and Exponent is positive, the value of Out will
be infinity with the same sign as Fraction. If Exponent is negative, the value of Out will be 0.

Additional Information

Precautions for Correct Use

2-423

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

nversio
n

 In
stru

ctio
n

s

2

N
um

ToD
ecS

tring and N
um

ToH
exS

tring

NumToDecString and
NumToHexString

* If you omit the input parameter, the default value is not applied. A building error will occur.

NumToDecString
The NumToDecString instruction converts integer In to a decimal text string of UTF-8 alphanumeric
characters. If In contains a negative value, a minus sign (−) is added to the front of the text string.

NumToDecString: Converts an integer to a fixed-length decimal text string.

NumToHexString: Converts an integer to a fixed-length hexadecimal text string.

Instruction Name FB/FUN Graphic expression ST expression

NumToDecString Fixed-length
Decimal Text String
Conversion

FUN Out:=NumToDecString(In,
L, Fill);

NumToHexString Fixed-length
Hexadecimal Text
String Conversion

FUN Out:=NumToHexString(In, L,
Fill);

Variables

Name Meaning I/O Description Valid range Unit Default

In Integer

Input

Integer Depends on data type.

*

L Number of
characters

Number of characters in Out 0 to 1985 1

Fill Fill
character

Fill character _BLANK or _ZERO _BLANK

Out Text string Output Text string Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK OK OK OK OK OK OK OK

L OK

Fill Refer to Function for the enumerators for the enumerated type _eFILL_CHR.

Out OK

Function

(@)NumToDecString
EN ENO
In Out
L
Fill

(@)NumToHexString
EN ENO
In Out
L
Fill

2 Instruction Descriptions

2-424 NJ-series Instructions Reference Manual (W502)

NumToHexString
The NumToHexString instruction converts integer In to a hexadecimal text string of UTF-8 alphanu-
meric characters. If In is negative, it is expressed in its two’s complement (bits inverted and then 1
added).

For either instruction, the number of characters in text string Out is adjusted to number of characters L.
If there are not enough characters, the upper digits are filled with fill character Fill. If the number of char-
acters in the conversion result exceeds L, L characters from the lower digits of the conversion result are
assigned to Out. The NULL character is not included in the number of characters.

The data type of Fill is enumerated type _eFILL_CHR. The meaning of the enumerators are as follows:

The following examples are for the NumToDecString instruction.

The following examples are for the NumToHexString instruction.

Enumerator Meaning

_BLANK '' (blank character)

_ZERO ‘0’

jkl:=NumToDecString(abc, def, ghi);

LD ST

jklabc
def
ghi

NumToDecString
EN ENO
In
L
Fill

In = abc = INT#128, L = def = UINT#8, Fill = ghi = _BLANK

Out = jkl 1 2 8

In = abc = INT#−128, L = def = UINT#8, Fill = ghi = _BLANK

Out = jkl − 1 2 8

In = abc = INT#−128, L = def = UINT#8, Fill = ghi = _ZERO

Out = jkl − 0 0 0 0 1 2 8

jkl:=NumToHexString(abc, def, ghi);

LD ST

jklabc
def
ghi

NumToHexString
EN ENO
In
L
Fill

In = abc = INT#128, L = def = UINT#8, Fill = ghi = _BLANK

Out = jkl 8 0

In = abc = INT#128, L = def = UINT#8, Fill = ghi = _ZERO

Out = jkl 0 0 0 0 0 0 8 0

In = abc = INT#−128, L = def = UINT#8, Fill = ghi = _BLANK

Out = jkl F F F F F F 8 0

2-425

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

nversio
n

 In
stru

ctio
n

s

2

N
um

ToD
ecS

tring and N
um

ToH
exS

tring

• The value of Out does not change if the value of L is 0.

• If the number of characters in the conversion result exceeds the value of L, L characters from the
lower characters of the conversion result are stored in Out. The following is an example.

• An error occurs in the following cases. ENO will be FALSE, and Out will not change.

• The value of L is outside of the valid range.

• The value of Fill is outside of the valid range.

• The conversion result exceeds the range of Out.

Precautions for Correct Use

Instruction Value of In Value of L Value of Out

NumToDecString
128 2

28

NumToHexString 80

2 Instruction Descriptions

2-426 NJ-series Instructions Reference Manual (W502)

HexStringToNum_**

The HexStringToNum_** instruction converts a hexadecimal text string to an integer.

The HexStringToNum_** instruction converts hexadecimal text string In to an integer. Any spaces
(16#20) or ‘0’ (16#30) in the upper digits are ignored. Underbars (16#5F) in the text string are ignored.

The name of the instruction is determined by the data type of Out. For example, if Out is the INT data
type, the instruction is HexStringToNum_INT.

A few examples are given below.

Instruction Name FB/FUN Graphic expression ST expression

HexStringTo
Num_**

Hexadecimal Text
String-to-Number
Conversion Group

FUN Out:=HexStringToNum_**(In);
"**" must be an integer data
type.

Variables

Name Meaning I/O Description Valid range Unit Default

In Hexadecimal
text string

Input Hexadecimal text string Depends on data type. --- ''

Out Integer Output Integer Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK

Out OK OK OK OK OK OK OK OK

Function

(@)HexStringToNum_**
EN ENO
In Out

"**" must be an integer data type.

def:=HexStringToNum_INT(abc);

LD ST

defabc

HexStringToNum_INT
EN ENO
In

In = abc 8 0

In = abc − 8 0

In = abc

Out = def = −128

Out = def = −15 − 0 0 0 0 0 0 F

Out = def = 128

2-427

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

nversio
n

 In
stru

ctio
n

s

2

H
exS

tringToN
um

_**

• Even if the conversion result exceeds the valid range of Out, an error will not occur. The value of Out
will be an illegal value.

• An error occurs in the following cases. ENO will be FALSE, and Out will not change.

• In does not end in a NULL character.

• The content of In includes characters that cannot be converted to numbers.

Precautions for Correct Use

2 Instruction Descriptions

2-428 NJ-series Instructions Reference Manual (W502)

FixNumToString

The FixNumToString instruction converts a signed fixed-decimal number to a decimal text string.

The FixNumToString instruction converts signed fixed-decimal number In to a decimal text string. The
following conversion is used.

1 The hexadecimal number In is converted to a decimal number.

2 The result is divided by 1,000.

Zero augmentation Zero specifies whether to add ‘0’ to the third decimal place of Out when there are
less than three decimal digits in In. If the value of Zero is TRUE, ‘0’ is added. A NULL character is
placed at the end of Out.

Instruction Name FB/FUN Graphic expression ST expression

FixNumToString Fixed-decimal
Number-to-Text
String Conversion

FUN Out:=FixNumToString(In,
Zero);

Variables

Name Meaning I/O Description Valid range Unit Default

In Fixed-
decimal
number

Input

Signed fixed-decimal
number

Depends on data type. ---

0

Zero Zero
augmenta-
tion

Augmentation of zeros if
there are less than 3
decimal digits

TRUE: Add ‘0’

FALSE: Do not add ‘0’

TRUE

Out Decimal
text string

Output Hexadecimal text string Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK

Zero OK

Out OK

Function

(@)FixNumToString
EN ENO
In Out
Zero

2-429

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

nversio
n

 In
stru

ctio
n

s

2

F
ixN

um
ToS

tring

A few examples are given below.

The format for fixed-point decimal numbers is the same as the fixed-decimal output format of the
OMRON FZ-series Vision Sensors.

An error occurs in the following case. ENO will be FALSE, and Out will not change.

• The conversion result exceeds the valid range of Out.

In = abc
Out = ghi

Zero = def = TRUE Zero = def = FALSE

16#0001462C
(10#83500)

‘83.500’ ‘83.5’

16#00051AA4
(10#334500)

‘334.500’ ‘334.5’

16#0003BEFC
(10#245500)

‘245.500’ ‘245.5’

Additional Information

Precautions for Correct Use

ghi:=FixNumToString(abc, def);

LD ST

def
abc ghi

FixNumToString
EN ENO
In
Zero

2 Instruction Descriptions

2-430 NJ-series Instructions Reference Manual (W502)

StringToFixNum

The StringToFixNum instruction converts a decimal text string to a signed fixed-decimal number.

The StringToFixNum instruction converts decimal text string In to a fixed-decimal number. The following
conversion is used.

1 The number in In is multiplied by 1,000.

2 The fractional part is truncated.

3 The result is given as a 32-bit hexadecimal number (DWORD).

A few examples are given below.

Instruction Name FB/FUN Graphic expression ST expression

StringToFixNum Text String-to-
Fixed-decimal
Conversion

FUN Out:=StringToFixNum(In);

Variables

Name Meaning I/O Description Valid range Unit Default

In Decimal text
string

Input Decimal text string Depends on data type. --- ''

Out Fixed-decimal
number

Output Fixed-decimal number Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK

Out OK

Function

(@)StringToFixNum
EN ENO
In Out

def:=StringToFixNum(abc);

LD ST

abc def

StringToFixNum
EN ENO
In

2-431

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

nversio
n

 In
stru

ctio
n

s

2

S
tringToF

ixN
um

The format of the text sting in In is given below.

Example 1: The following example uses the sign, decimal point, and fractional part, but does not
use an exponent.

In = abc Out = def

‘83.5’ 16#0001462C
(10#83500)

‘334.5’ 16#00051AA4
(10#334500)

‘245.5’ 16#0003BEFC
(10#245500)

Name Format

Sign • Any consecutive blank characters (16#20) at the beginning of the text string are ignored. Any sin-
gle plus or minus sign that follows is treated as the sign.

• The sign can be omitted.

• Any consecutive blank characters after the sign are ignored.

Integer
part

• Consecutive numbers (‘0’ to ‘9’) after the sign and up to the decimal point are taken as the integer
part. The sign may sometimes be omitted. There may be blank characters between the sign and
the integer part.

• If the decimal point and fractional part are omitted, the characters up to the exponent are taken
as the integer part.

• If the decimal point, fractional part, and exponent are omitted, the characters up to the end of the
text string are taken as the integer part.

• The integer part cannot be omitted.

• The maximum number of digits in the integer part is the maximum text string length of 1986
minus the total number of bytes in the following: the sign, decimal point, fractional part, exponent,
and blank characters before and after the sign.

Decimal
point

• A single dot (‘.’) following the integer part is taken as the decimal point.
• Omit the decimal point if there is no fractional part.

Fractional
part

• Consecutive numbers (‘0’ to ‘9’) after the decimal point and up to the exponent are taken as the
fractional part.

• If the exponent is omitted, the characters up to the end of the text string are taken as the frac-
tional part.

• The fractional part can be omitted. If there is no decimal point, then there is no fractional part.

• The fractional part can consist of a maximum of 15 digits.

Exponent • The exponent consists of a single ‘e’ or ‘E’ after the fractional part, a following single plus or
minus sign, and the remaining continuous numbers (‘0’ to ‘9’) to the end of the text string.

• If there is no fractional part, then the above text string after the decimal point is taken as the expo-
nent.

• If there is no decimal point or fractional part, then the above text string after the integer part is
taken as the exponent.

• The exponent can be omitted.

• The numeric part of the exponent can consist of a maximum of three digits.

(Blank)

ExponentFractional partSign Integer
part

(Blank)

- i i i i . f f f f f f f f e + n n

Decimal point

0001E240In Out + 1 2 3 . 4 5 6 7
‘ ’

2 Instruction Descriptions

2-432 NJ-series Instructions Reference Manual (W502)

Example 2: The following example uses the sign, decimal point, fractional part, and exponent.

Example 3: The following example does not use the sign, but uses the decimal point, fractional
part, and exponent.

Example 4: The following example does not use the sign, fractional part, decimal point, and expo-
nent.

The format for fixed-point decimal numbers is the same as the fixed-decimal output format of the
OMRON FZ-series Vision Sensors.

• The digits after the third decimal digit are truncated in In.

• Underbars (16#5F) in the text string in In are ignored.

• An error occurs in the following cases. ENO will be FALSE, and Out will not change.

• In does not end in a NULL character.

• The content of In includes characters that cannot be converted to numbers.

• The content of In has a decimal point but not a fractional part.

• The conversion result exceeds the valid range of Out.

Additional Information

Precautions for Correct Use

 0001E240In Out
‘ ’
 + 1 . 2 3 4 5 6 7 e + 0 2

0001E240In Out 1 2 3 4 5 . 6 7 e - 0 2
‘ ’

00003E8In Out
‘ ’

 1

2-433

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

nversio
n

 In
stru

ctio
n

s

2

D
tToS

tring

DtToString

The DtToString instruction converts a date and time to a text string.

The DtToString instruction converts date and time In to a text string. A NULL character is placed at the
end of text string Out.

An example when In is 2010-5-23-07:00:15.873232345 (7:00 am and 15.873232345 seconds on May
23, 2010) is given below. The value of variable abc will be ‘2010-05-23-07:00:15.873232345’.

Instruction Name FB/FUN Graphic expression ST expression

DtToString Date and
Time-to-Text String
Conversion

FUN Out:=DtToString(In);

Variables

Name Meaning I/O Description Valid range Unit Default

In Date and
time

Input Date and time Depends on data type. Year, month,
day, hour,
minutes,
seconds

DT#197
0-1-1-
0:0:0

Out Text string Output Text string 30 bytes (29 single-byte
alphanumeric charac-
ters plus the final NULL
character)

--- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK

Out OK

Function

(@)DtToString
EN ENO
In Out

abc:=DtToString(DT#2010-05-23-07:00:15.873232345);

LD ST

abcDT#2010-05-23-07:00:15.873232345

DtToString
EN ENO
In

2 Instruction Descriptions

2-434 NJ-series Instructions Reference Manual (W502)

Out is in nanoseconds. To get a text string in seconds or milliseconds, combine this instruction with the
LEFT or RIGHT instruction (page 2-522).

An example to get a text string in seconds is given below.

An error occurs in the following case. ENO will be FALSE, and Out will not change.

• The conversion result exceeds the valid range of Out.

Additional Information

Precautions for Correct Use

DtToString
EN ENO
In

LEFT
EN ENO
In
L

DT#2000-01-23-01:23:45.678

UINT#19
def

abc

abc

● LD

● ST

def:=LEFT(DtToString(DT#2000-01-23-01:23:45.678), UINT#19);

P_On

2-435

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

nversio
n

 In
stru

ctio
n

s

2

D
ateToS

tring

DateToString

The DateToString instruction converts a date to a text string.

The DateToString instruction converts date In to a text string. A NULL character is placed at the end of
Out.

An example when In is 2010-5-23 (May 23, 2010) is given below. The value of variable abc will be
‘2010-05-23’.

An error occurs in the following case. ENO will be FALSE, and Out will not change.

• The conversion result exceeds the valid range of Out.

Instruction Name FB/FUN Graphic expression ST expression

DateToString Date-to-Text String
Conversion

FUN Out:=DateToString(In);

Variables

Name Meaning I/O Description Valid range Unit Default

In Date Input Date Depends on data type. Year, month,
day

D#1970-1-1

Out Text string Output Text string 11 bytes (10 single-byte
alphanumeric characters plus
the final NULL character)

--- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK

Out OK

Function

Precautions for Correct Use

(@)DateToString
EN ENO
In Out

abc:=DateToString(D#2010-05-23);

LD ST

abcD#2010-05-23

DateToString
EN ENO
In

2 Instruction Descriptions

2-436 NJ-series Instructions Reference Manual (W502)

TodToString

The TodToString instruction converts a time of day to a text string.

The TodToString instruction converts time of day In to a text string. A NULL character is placed at the
end of Out. An example when In is 07:00:15.873232345 (7:00 am and 15.873232345 seconds) is given
below. The value of variable abc will be ‘07:00:15.873232345’.

Out is in nanoseconds. To get a text string in seconds or milliseconds, combine this instruction with the
LEFT or RIGHT instruction (page 2-522).

Instruction Name FB/FUN Graphic expression ST expression

TodToString Time of Day-to-Text
String Conversion

FUN Out:=TodToString(In);

Variables

Name Meaning I/O Description Valid range Unit Default

In Time of day Input Time of day Depends on data type. Hour,
minutes,
seconds

TOD#0:0:0

Out Text string Output Text string 19 bytes (18 single-byte alpha-
numeric characters plus the
final NULL character)

--- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK

Out OK

Function

Additional Information

(@)TodToString
EN ENO
In Out

abc:=TodToString(TOD#07:00:15.873232345);

LD ST

abcTOD#07:00:15.873232345

TodToString
EN ENO
In

2-437

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

nversio
n

 In
stru

ctio
n

s

2

TodToS
tring

An example to get a text string in seconds is given below.

An error occurs in the following case. ENO will be FALSE, and Out will not change.

• The conversion result exceeds the valid range of Out.

Precautions for Correct Use

LEFT
EN ENO
In
L

TOD#01:23:45.678

UINT#8
def

abc

abc

● LD

● ST

def:=LEFT(TodToString(TOD#01:23:45.678), UINT#8);

TodToString
EN ENO
In

2 Instruction Descriptions

2-438 NJ-series Instructions Reference Manual (W502)

GrayToBin_** and BinToGray_**

GrayToBin_**
The GrayToBin_** instructions convert the gray code in date to convert In to a bit string. The conversion
procedure is as follows for when In and Out are BYTE data.

1 The most-significant bit (bit 7) of In is used as is as the most-significant bit (bit 7) of Out.

2 An exclusive logical OR is taken of the value of bit 6 in In and the value of bit 7 in Out. The result

is used as bit 6 of Out.

3 This process is repeated through the least-significant bit (bit 0) of Out.

GrayToBin_**: Converts a gray code to a bit string.

BinToGray_**: Converts a bit string to a gray code.

Instruction Name FB/FUN Graphic expression ST expression

GrayToBin_** Gray Code-to-
Binary Code
Conversion Group

FUN Out:=GrayToBin_**(In);

"**" must be a bit string data
type.

BinToGray_** Binary Code-to-
Gray Code
Conversion

FUN Out:=BinToGray_**(In);

"**" must be a bit string data
type.

Variables

Name Meaning I/O Description Valid range Unit Default

In Data to
convert

Input Data to convert Depends on data type. --- 0

Out Conver-
sion result

Output Conversion result Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK OK OK OK

Out Must be same data type as In

Function

(@)GrayToBin_**
EN ENO
In Out

"**" must be a bit string data type.

(@)BinToGray_**
EN ENO
In Out

"**" must be a bit string data type.

2-439

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

nversio
n

 In
stru

ctio
n

s

2

G
rayToB

in_** and B
inToG

ray_**

The following example for the GrayToBin_BYTE instruction is for when In is BYTE#16#A5.

BinToGray_**
The BinToGray_** instructions convert the bit string in data to convert In to a gray code. The conversion
procedure is as follows for when In and Out are BYTE data.

1 The most-significant bit (bit 7) of In is used as is as the most-significant bit (bit 7) of Out.

2 An exclusive logical OR is taken of the value of bit 7 in In and the value of bit 6 in In. The result

is used as bit 6 of Out.

3 This process is repeated through the least-significant bit (bit 0) of Out.

The following example for the BinToGray_BYTE instruction is for when In is BYTE#16#C6.

The name of the instruction is determined by the data types of In and Out. For example, if In and Out
are the WORD data type, the instruction is GrayToBin_WORD or BinToGray_WORD.

abc:=GrayToBin_BYTE(BYTE#16#A5);

LD ST

abcBYTE#16#A5

GrayToBin_BYTE
EN ENO
In

XOR XOR XOR XOR XOR XOR

Bit 0
Most-significant
bit

In 1 0 1 0 0 1 0 1

1 1 0 0 0 1 1 0Out = abc

XOR

abc:=BinToGray_BYTE(BYTE#16#C6);

LD ST

abcBYTE#16#C6

BinToGray_BYTE
EN ENO
In

In 1 1 0 0 0 1 1 0

Out = abc

XOR

1 0 1 0 0 1 0 1

XOR XOR XOR XOR XOR XOR

Bit 0
Most-significant
bit

2 Instruction Descriptions

2-440 NJ-series Instructions Reference Manual (W502)

The data types of In and Out must be the same.

Precautions for Correct Use

2-441

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

nversio
n

 In
stru

ctio
n

s

2

S
tringToA

ry

StringToAry

The StringToAry instruction converts a text string to a BYTE array.

The StringToAry instruction takes the character codes in text string In as numbers and stores them indi-
vidually in a BYTE array, AryOut[]. The number of bytes that was converted is stored in Out.

Instruction Name FB/FUN Graphic expression ST expression

StringToAry Text String-to-Array
Conversion

FUN Out:=StringToAry(In, Ary-
Out);

Variables

Name Meaning I/O Description Valid range Unit Default

In Text string Input Text string Depends on data type. --- ''

AryOut[]
(array)

BYTE array In-out BYTE array Depends on data type. --- ---

Out Number of
bytes to
convert

Output Number of bytes to convert 0 to 1985 Bytes ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK

AryOut[]
(array)

OK

Out OK

Function

(@)StringToAry
EN ENO
In Out
AryOut

2 Instruction Descriptions

2-442 NJ-series Instructions Reference Manual (W502)

The following example is for when In is ‘XYZ’.

• The NULL character at the end of In is not stored in AryOut[].

• If the In text string contains only the NULL character, the value of Out will be 0 and AryOut[] will not
change.

• An error occurs in the following cases. ENO will be FALSE, and Out and AryOut[] will not change.

• In does not end in a NULL character.

• The number of bytes in In is larger than the number of elements in AryOut[].

Precautions for Correct Use

def:=StringToAry(’XYZ’, abc[1]);

LD ST

abc[1] abc[1]

def‘XYZ’

StringToAry
EN ENO
In
AryOut

In Character code for ‘Z’

Character code for ‘Y’

Character code for ‘X’

‘XYZ’

UINT#3

16#58

16#59

16#5A

AryOut[0]=abc[1]

AryOut[1]=abc[2]

AryOut[2]=abc[3]

Out=def

2-443

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

nversio
n

 In
stru

ctio
n

s

2

A
ryToS

tring

AryToString

The AryToString instruction converts a BYTE array to a text string.

* If you omit the input parameter, the default value is not applied. A building error will occur.

The AryToString instruction takes the elements of a BYTE array, In[], from In[0] as character codes and
stores them in text string Out. A NULL character is placed at the end of Out. Size specifies the number
of elements of In[] to convert. If there is a NULL character between In[0] and In[Size−1], no character
codes past it are stored in Out.

Instruction Name FB/FUN Graphic expression ST expression

AryToString Array-to-Text String
Conversion

FUN Out:=AryToString(In, Size);

Variables

Name Meaning I/O Description Valid range Unit Default

In[] (array) BYTE array

Input

BYTE array
Maximum number of
elements: 1985

Depends on data type.

*

Size Number of
elements to
convert

Number of elements of In[]
for conversion

0 to 1985 1

Out Text string Output Text string Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In[] (array) OK

Size OK

Out OK

Function

(@)AryToString
EN ENO
In Out
Size

2 Instruction Descriptions

2-444 NJ-series Instructions Reference Manual (W502)

The following example is for when Size is UINT#3.

An error occurs in the following cases. ENO will be FALSE, and Out will not change.

• The value of Size exceeds the array area of In[].

• The conversion result exceeds the valid range of Out.

Precautions for Correct Use

def:=AryToString(abc[1], UINT#3);

LD ST

UINT#3
defabc[1]

AryToString
EN ENO
In
Size

Out = defSize = UINT#3

Character code for ‘Z’

Character code for ‘Y’

Character code for ‘X’

Character code for ‘W’

Character code for ‘V’

‘VWX’

16#58

16#59

16#5A

In[0]=abc[1]

In[1]=abc[2]

In[2]=abc[3]

In[3]=abc[4]

In[4]=abc[5]

16#56

16#57

2-445

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

nversio
n

 In
stru

ctio
n

s

2

D
ispartD

igit

DispartDigit

The DispartDigit instruction separates a bit string into 4-bit units.

* If you omit the input parameter, the default value is not applied. A building error will occur.

The DispartDigit instruction separates data to separate In into 4-bit units (digits) and stores them in
separation results array AryOut[].

First, In is separated into 4-bit units. Then, the lowest 4 bits are stored in AryOut[0]. AryOut[0] is BYTE
data, so 16#0 is stored in bits 4 to 7. This process is repeated for the number of digits that is specified
in number of digits to separate Num.

Instruction Name FB/FUN Graphic expression ST expression

DispartDigit Four-bit Separation FUN DispartDigit(In, Num, Ary-
Out);

Variables

Name Meaning I/O Description Valid range Unit Default

In Data to separate
Input

Bit string to separate Depends on data type.

*

Num Number of digits
to separate

Number of digits to separate 0 to No. of bits in In 1

AryOut[]
(array)

Separation
results array

In-out Separation results array 16#00 to 16#0F --- ---

Out Return value Output Always TRUE TRUE only --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK OK OK OK

Num OK

AryOut[]
(array)

OK

Out OK

Function

(@)DispartDigit
EN ENO
In Out
Num
AryOut

2 Instruction Descriptions

2-446 NJ-series Instructions Reference Manual (W502)

The following example is for when Num is USINT#3.

Use the UniteDigit_** instruction (page 2-447) to join 4-bit units from array elements.

• The values in AryOut[] do not change if the value of Num is 0.

• Return value Out is not used when the instruction is used in ST.

• An error occurs in the following cases. ENO will be FALSE, and AryOut[] will not change.

• The value of Num is outside of the valid range.

• The value of Num exceeds the array area of AryOut[].

• AryOut[] is not a BYTE array.

• An array without a subscript is passed to AryOut[].

Additional Information

Precautions for Correct Use

DispartDigit(abc, USINT#3, def[1]);

LD ST

USINT#3

def[1]def[1]

abc

DispartDigit
EN ENO
In
Num
AryOut

Bits
0 to 3

Bits
4 to 7

Digit 0Digit 1Digit 2
Highest
digit

In=abc

 Num=USINT#3

 Num=USINT#3

C 7 5 2 A 6

 6 0 AryOut[0]=def[1]

 A 0 AryOut[1]=def[2]

 2 0AryOut[2]=def[3]

 16#0

2-447

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

nversio
n

 In
stru

ctio
n

s

2

U
niteD

igit_**

UniteDigit_**

The UniteDigit_** instructions join 4-bit units of data into a bit string.

* If you omit the input parameter, the default value is not applied. A building error will occur.

The UniteDigit_** instructions join 4-bit units from the elements of array to join In[]. It creates a bit string
in joined result Out. (Four bits is one digit.)

Number of digits to join Num specifies the number of array elements to join. First, the lower four bits
from each element from In[0] to In[Num−1] are joined to create a bit string with Num digits. To this, 16#0
is added to the upper digits for the number of digits of Out minus the value of Num. The result is stored
in Out.

The name of the instruction is determined by the data type of Out. For example, if Out is the WORD
data type, the instruction is UniteDigit_WORD.

Instruction Name FB/FUN Graphic expression ST expression

UniteDigit_** Four-bit Join Group FUN Out:=UniteDigit_**(In,
Num);

"**" must be a bit string data
type.

Variables

Name Meaning I/O Description Valid range Unit Default

In[] (array) Array to join

Input

Array to join Depends on data type.

*

Num Number of digits
to join

Number of digits to join 0 to No. of bits in Out 1

Out Joined result Output Bit string with joined result Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In[] (array) OK

Num OK

Out OK OK OK OK

Function

(@)UniteDigit_**
EN ENO
In Out
Num

"**" must be a bit string data type.

2 Instruction Descriptions

2-448 NJ-series Instructions Reference Manual (W502)

The following example shows the UniteDigit_WORD instruction when Num is USINT#3.

Use the DispartDigit instruction (page 2-445) to separate a bit string into 4-bit units.

• If the value of Num is 0, the value of Out is 0.

• An error occurs in the following cases. ENO will be FALSE, and Out will not change.

• The value of Num is outside of the valid range.

• The value of Num exceeds the array area of In[].

• In[] is not a BYTE array.

• An array without a subscript is passed to In[].

Additional Information

Precautions for Correct Use

def:=UniteDigit_WORD(abc[1], USINT#3);

LD ST

USINT#3
defabc[1]

UniteDigit_WORD
EN ENO
In
Num

Digit 0Digit 1Digit 2
Highest
digit

Bits
0 to 3

Bits
4 to 7

Out=def

 Num=USINT#3
 16#0

Num=USINT#3

0 2 A 6

 6 1 In[0]=abc[1]

 A 0 In[1]=abc[2]

 2 4In[2]=abc[3]

 5 In[3]=abc[4] B

2-449

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

nversio
n

 In
stru

ctio
n

s

2

D
ispart8B

it

Dispart8Bit

The Dispart8Bit instruction separates a bit string into individual bytes.

* If you omit the input parameter, the default value is not applied. A building error will occur.

The Dispart8Bit instruction separates data to separate In into individual bytes and stores them in sepa-
ration results array AryOut[].

First, In is separated into bytes. Then, the lowest byte is stored in AryOut[0]. Then, the next byte is
stored in AryOut[1]. This process is repeated for the number of bytes that is specified in number of
bytes to separate Num.

Instruction Name FB/FUN Graphic expression ST expression

Dispart8Bit Byte Data
Separation

FUN Dispart8Bit(In, Num, Ary-
Out);

Variables

Name Meaning I/O Description Valid range Unit Default

In Data to separate

Input

Bit string to separate Depends on data type.

*

Num Number of bytes
to separate

Number of bytes to separate 0 to No. of bytes in In 1

AryOut[]
(array)

Separation
results array

In-out Separation results array Depends on data type. --- ---

Out Return value Output Always TRUE TRUE only --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK OK OK OK

Num OK

AryOut[]
(array)

OK

Out OK

Function

(@)Dispart8Bit
EN ENO
In Out
Num
AryOut

2 Instruction Descriptions

2-450 NJ-series Instructions Reference Manual (W502)

The following example is for when Num is USINT#3.

Use the Unite8Bit_** instruction (page 2-451) to join 1-byte units from array elements.

• Return value Out is not used when the instruction is used in ST.

• An error occurs in the following cases. ENO will be FALSE, and AryOut[] will not change.

• The value of Num is outside of the valid range.

• The value of Num exceeds the number of bytes in In.

• AryOut[] is not a BYTE array.

• An array without a subscript is passed to AryOut[].

Additional Information

Precautions for Correct Use

Dispart8Bit(abc, USINT#3, def[1]);

LD ST

USINT#3

def[1] def[1]

abc

Dispart8Bit
EN ENO
In
Num
AryOut

Byte 0Byte 1Byte 2
Highest
byte

In=abc

Num=USINT#3

 Num=USINT#3

AryOut[0]=def[1]

AryOut[1]=def[2]

AryOut[2]=def[3]

A0 23 06 21 AA 36

36

AA

21

2-451

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

nversio
n

 In
stru

ctio
n

s

2

U
nite8B

it_**

Unite8Bit_**

The Unite8Bit_** instructions join bytes of data into a bit string.

* If you omit the input parameter, the default value is not applied. A building error will occur.

The Unite8Bit_** instructions join elements of array to join In[] to create a bit string in joined result Out.

Number of bytes to join Num specifies the number of array elements to join. First, In[0] to In[Num−1] are
joined to create a bit string with Num bytes. To this, 16#00 is added to the upper bytes for the number of
bytes of Out minus the value of Num. The result is stored in Out.

The name of the instruction is determined by the data type of Out. For example, if Out is the DWORD
data type, the instruction is Unite8Bit_DWORD.

Instruction Name FB/FUN Graphic expression ST expression

Unite8Bit_** Byte Data Join
Group

FUN Out:=Unite8Bit_**(In, Num);

"**" must be a bit string data
type.

Variables

Name Meaning I/O Description Valid range Unit Default

In[] (array) Array to join

Input

Array to join Depends on data type.

*

Num Number of
bytes to join

Number of bytes to join 0 to No. of bytes in Out 1

Out Joined result Output Bit string with joined result Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In[] (array) OK

Num OK

Out OK OK OK OK

Function

(@)Unite8Bit_**
EN ENO
In Out
Num

"**" must be a bit string data type.

2 Instruction Descriptions

2-452 NJ-series Instructions Reference Manual (W502)

The following example shows the Unite8Bit_DWORD instruction when Num is USINT#3.

Use the Dispart8Bit instruction (page 2-449) to separate a bit string into 1-byte units.

• If the value of Num is 0, the value of Out is 0.

• An error occurs in the following cases. ENO will be FALSE, and Out will not change.

• The value of Num is outside of the valid range.

• The value of Num exceeds the array area of In[].

• In[] is not a BYTE array.

• An array without a subscript is passed to In[].

Additional Information

Precautions for Correct Use

def:=Unite8Bit_DWORD(abc[1], USINT#3);

LD ST

USINT#3
defabc[1]

Unite8Bit_DWORD
EN ENO
In
Num

Byte 0Byte 1Byte 2Highest
byte

Out=def

Num=USINT#3
 16#00

Num=USINT#3

In[0]=abc[1]

In[1]=abc[2]

In[2]=abc[3]

In[3]=abc[4]

36

AA

21

A0

00 21 AA 36

2-453

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

nversio
n

 In
stru

ctio
n

s

2

ToA
ryB

yte

ToAryByte

The ToAryByte instruction separates a variable into bytes and stores the bytes in a BYTE array.

* If you omit the input parameter, the default value is not applied. A building error will occur.

The ToAryByte instruction separates the value of data to convert In into individual bytes and stores
them in order in conversion results array AryOut[] starting from AryOut[0]. Number of elements in result
Out contains the number of elements stored in AryOut[].

Conversion order Order specifies the order in which to convert the value of In to bytes. The data type of
Order is enumerated type _eBYTE_ORDER. The meaning of the enumerators are as follows:

Instruction Name FB/FUN Graphic expression ST expression

ToAryByte Conversion to Byte
Array

FUN Out:=ToAryByte(In, Order,
AryOut);

Variables

Name Meaning I/O Description Valid range Unit Default

In Data to convert

Input

Data to convert Depends on data type.

*

Order Conversion
order

Conversion order _LOW_HIGH or
_HIGH_LOW

_LOW
_HIGH

AryOut[]
(array)

Conversion
results array

In-out Conversion results array Depends on data type. --- ---

Out Number of ele-
ments in result

Output Number of elements in
result

Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In
OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

An enumeration, array, array element, structure, or structure member can also be specified.

Order Refer to Function for the enumerators for the enumerated type _eBYTE_ORDER.

AryOut[]
(array)

OK

Out OK

Function

Enumerator Meaning

_LOW_HIGH Lower byte first, higher byte last

_HIGH_LOW Higher byte first, lower byte last

(@)ToAryByte
EN ENO
In Out
Order
AryOut

2 Instruction Descriptions

2-454 NJ-series Instructions Reference Manual (W502)

If the data type of In is two bytes or larger, In is separated into bytes and stored in AryOut[]. The follow-
ing data types have two bytes or more.

The processing procedure is as follows:

1 First, the value in In is separated into words (two bytes).

2 The lowest word is separated into bytes.

3 If Order is _LOW_HIGH, the lower byte is stored in AryOut[0] and the higher byte is stored in

AryOut[1]. If Order is _HIGH_LOW, the higher byte is stored in AryOut[0] and the lower byte is
stored in AryOut[1].

4 The next word is separated into bytes and stored in AryOut[2] and AryOut[3] in the same way.

5 This process is repeated to the end of the value of In. If In is an array, the same process is

repeated to the last element in In.

The following example is for when In is a DWORD array with three elements and Order is _LOW_HIGH.

When the Data Type of In Is Two Bytes or Larger

Classification Data type

Bit strings WORD, DWORD, and LWORD

Integers UINT, UDINT, ULINT, INT, DINT, and LINT

Real numbers REAL and LREAL

Times, durations, dates,
and text strings

TIME, DATE, TOD, DT, and STRING types of two bytes or more

Others An enumeration, an array for which the total for all elements is 2 bytes or more, an
array element that is 2 bytes or more, a structure for which the total for all members is
2 bytes or more, or a structure member that is 2 bytes or more

ghi:=ToAryByte(abc, _LOW_HIGH, def[1]);

LD ST

def[1] def[1]

ghiabc
_LOW_HIGH

ToAryByte
EN ENO
In
Order
AryOut

Out = ghi = UINT#12

In[0]=abc[0] DWORD#16#01234567

In[2]=abc[2]

DWORD#16#89ABCDEF

DWORD#16#CCDDEEFF

:

In[1]=abc[1]

AryOut[0]=def[1] 16#67

16#45

AryOut[11]=def[12]

16#23

16#01

16#EF

16#CD

16#AB

16#89

16#FF

16#EE

16#DD

16#CC

AryOut[10]=def[11]

AryOut[9]=def[10]

AryOut[8]=def[9]

AryOut[7]=def[8]

AryOut[6]=def[7]

AryOut[5]=def[6]

AryOut[4]=def[5]

AryOut[3]=def[4]

AryOut[2]=def[3]

AryOut[1]=def[2]

2-455

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

nversio
n

 In
stru

ctio
n

s

2

ToA
ryB

yte

The following example is for when In is the same as above and Order is _HIGH_LOW.

If the data type of In is one byte, In is stored in AryOut[] as one byte. The following data types have one
byte.

The following storage method is used.

The following example is for when In is a SINT array with three elements and Order is _LOW_HIGH.

The following example is for when In is the same as above and Order is _HIGH_LOW.

When the Data Type of In Is One Byte

Classification Data type

Bit strings BYTE

Integers USINT and SINT

Real numbers None

Times, durations, dates,
and text strings

STRING types with one byte

Others An array for which the total for all elements is 1 byte, an array element that is 1 byte, a
structure for which the total for all members is 1 byte, or a structure member that is 1
byte.

Value of
Order

In (array or not) Storage method in AryOut[]

_LOW_HIGH
Not an array Value of In is stored in AryOut[0].

Array Value of In[i] is stored in AryOut[i].

_HIGH_LOW

Not an array Value of In is stored in AryOut[1].
16#00 is stored in AryOut[0].

Array In[i] (where i is even) is stored in AryOut[i+1].
In[i] (where i is odd) is stored in AryOut[i−1].
If the number of elements in In[] is odd, 16#00 is stored last in AryOut[n−1].

:

In[0]

Out = UINT#12

In[2]

In[1]
AryOut[0] 16#45

16#67

AryOut[11]

16#01

16#23

16#CD

16#EF

16#89

16#AB

16#EE

16#FF

16#CC

16#DD

AryOut[10]

AryOut[9]

AryOut[8]

AryOut[7]

AryOut[6]

AryOut[5]

AryOut[4]

AryOut[3]

AryOut[2]

AryOut[1]

DWORD#16#01234567

DWORD#16#89ABCDEF

DWORD#16#CCDDEEFF

In[0]

Out = UINT#3

In[2]

In[1]

AryOut[0] 16#01

16#02

16#03 AryOut[2]

AryOut[1]

SINT#1

SINT#2

SINT#3

In[0]

Out = UINT#4
In[2]

In[1]

AryOut[0] 16#02

16#01

16#00 AryOut[2]

16#03 AryOut[3]

AryOut[1]

SINT#1

SINT#2

SINT#3

2 Instruction Descriptions

2-456 NJ-series Instructions Reference Manual (W502)

If the data type of In is BOOL (one bit), data is stored in AryOut[] as described below.

The following example is for when In is a BOOL array with 21 elements and Order is _LOW_HIGH.

When In Is BOOL Data

Value of
Order

In (array or not) Storage method in AryOut[]

_LOW_HIGH

Not an array The logical OR of the value of In and 16#00 is stored in AryOut[0].

Array Values of In[0] to In[7] are joined and stored in AryOut[0].
Values of In[8] to In[15] are joined and stored in AryOut[1].
The same process is repeated to store the rest of the data.
If there is not sufficient data in In[] for 8 values, FALSE is added to the
most-significant bit.
The value of Out is always even. If there are not sufficient bit values,
the remaining values will all be FALSE.

_HIGH_LOW

Not an array The logical OR of the value of In and 16#00 is stored in AryOut[1].
16#00 is stored in AryOut[0]

Array Values of In[0] to In[7] are joined and stored in AryOut[1].
Values of In[8] to In[15] are joined and stored in AryOut[0].
The same process is repeated to store the rest of the data.
The value of Out is always even. If there are not sufficient bit values,
the remaining values will all be FALSE.

In[0]

Out = UINT#4

TRUE

In[2]

FALSE

FALSE

In[1]

In[3] TRUE

In[5]

FALSE

FALSE

In[6] FALSE

TRUE

TRUE

FALSE

In[8]

In[10]

In[12]

FALSE

TRUE

FALSE

In[13] FALSE

TRUE

FALSE

FALSE

In[15]

In[17] FALSE

TRUE

FALSE

FALSE

In[19]

AryOut[0] 16#89

16#45

16#04 AryOut[2]

16#00 AryOut[3]

AryOut[1]

In[4]

In[7]

In[9]

In[11]

In[14]

In[16]

In[18]

In[20]

2-457

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

nversio
n

 In
stru

ctio
n

s

2

ToA
ryB

yte

The following example is for when In is the same as above and Order is _HIGH_LOW.

• If In is STRING data, the text string is not converted to numbers. The contents of the variable is taken
as a bit string and converted to a byte array.

• If In is a structure, adjustment areas between members may be inserted into AryOut[].

• If the value of Order is _HIGH_LOW and the total number of bytes in In is an odd number, 16#00 is
added to the end of In to make an even number of bytes before the conversion is started.

• An error occurs in the following cases. ENO will be FALSE, and Out and AryOut[] will not change.

• The value of Order is outside of the valid range.

• The conversion result exceeds the array area of AryOut[].

Precautions for Correct Use

In[0]

Out = UINT#4

TRUE

In[2]

FALSE

FALSE

In[1]

In[3] TRUE

In[5]

FALSE

FALSE

In[4]

In[6] FALSE

In[7] TRUE

In[9]

TRUE

FALSE

In[8]

In[10]

In[12]

FALSE

TRUE

FALSE

In[11]

In[13] FALSE

In[14] TRUE

In[16]

FALSE

FALSE

In[15]

In[17] FALSE

In[18] TRUE

In[20]

FALSE

FALSE

In[19]

AryOut[0] 16#45

16#89

16#00 AryOut[2]

16#04 AryOut[3]

AryOut[1]

2 Instruction Descriptions

2-458 NJ-series Instructions Reference Manual (W502)

AryByteTo

The AryByteTo instruction joins BYTE array elements and stores the result in a variable.

* If you omit the input parameter, the default value is not applied. A building error will occur.

The AryByteTo instruction takes the first Size elements in array to convert In[] and joins them to match
the size of the data type of conversion result OutVal. It then stores the result in OutVal.

Instruction Name FB/FUN Graphic expression ST expression

AryByteTo Conversion from
Byte Array

FUN AryByteTo(In, Size, Order,
OutVal);

Variables

Name Meaning I/O Description Valid range Unit Default

In[] (array) Array to
convert

Input

Array to convert

Depends on data type.

*

Size Number of
elements to
convert

Number of elements in In[]
to convert

1

Order Conver-
sion order

Conversion order _LOW_HIGH or
_HIGH_LOW

_LOW
_HIGH

OutVal Conver-
sion result

In-out Conversion result Depends on data type. --- ---

Out Return
value

Output Always TRUE TRUE only --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In[] (array) OK

Size OK

Order Refer to Function for the enumerators for the enumerated type _eBYTE_ORDER.

OutVal
OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

An enumeration, array, array element, structure, or structure member can also be specified.

Out OK

Function

(@)AryByteTo
EN ENO
In Out
Size
Order
OutVal

2-459

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

nversio
n

 In
stru

ctio
n

s

2

A
ryB

yteTo

Order specifies the order to join the elements of In[]. The data type of Order is enumerated type
_eBYTE_ORDER. The meaning of the enumerators are as follows:

If the data type of OutVal is two bytes or larger, elements from In[] are joined so that the result is just
large enough for the size of the data type of OutVal. The result is stored in OutVal. The following data
types have two bytes or more.

The processing procedure is as follows:

1 In[0] and In[1] are joined according to the value of Order to create one word (two bytes) of data.
If Order is _LOW_HIGH, the higher byte is stored in In[1] and the lower byte is stored in In[0]. If
Order is _HIGH_LOW, the higher byte is stored in In[0] and the lower byte is stored in In[1].

2 In the same way elements that start from In[2] and In[3] are joined to make more words of data.

3 The words of data are joined to match the size of the data type of OutVal. For example, if OutVal

is DWORD data, four individual words of data are joined.

4 The resulting data is stored in OutVal.

The following example is for when OutVal is DWORD data, Size is UINT#4, and Order is _LOW_HIGH.

Enumerators Meaning

_LOW_HIGH Lower byte first, higher byte last

_HIGH_LOW Higher byte first, lower byte last

When the Data Type of OutVal Is Two Bytes or Larger

Classification Data type

Bit strings WORD, DWORD, and LWORD

Integers UINT, UDINT, ULINT, INT, DINT, and LINT

Real numbers REAL and LREAL

Times, durations, dates, and
text strings

TIME, DATE, TOD, DT, and STRING types of two bytes or more

Others An enumeration, an array for which the total for all elements is 2 bytes or more,
an array element that is 2 bytes or more, a structure for which the total for all
members is 2 bytes or more, or a structure member that is 2 bytes or more

AryByteTo(abc[1], UINT#4, _LOW_HIGH, def);

LD ST

def def

abc[1]
UINT#4

_LOW_HIGH

AryByteTo
EN ENO
In
Size
Order
OutVal

Size = UINT#4

OutVal=def DWORD#16#01234567In[0]=abc[1] BYTE#16#67

BYTE#16#45

BYTE#16#23

BYTE#16#01 In[3]=abc[4]

In[2]=abc[3]

In[1]=abc[2]

2 Instruction Descriptions

2-460 NJ-series Instructions Reference Manual (W502)

The following example is for when OutVal is the same as above, Size is UINT#4, and Order is
_HIGH_LOW.

If the data type of OutVal is one byte, one byte of In[] is stored directly in OutVal.

The following data types have one byte.

The following storage method is used.

The following example is for when OutVal is a SINT array with three elements, Size is UINT#3, and
Order is _LOW_HIGH.

The following example is for when OutVal and Size are the same as above and Order is _HIGH_LOW.

When the Data Type of OutVal Is One Byte

Classification Data type

Bit strings BYTE

Integers USINT and SINT

Real numbers None

Times, durations, dates, and
text strings

STRING types with one byte

Others An array for which the total for all elements is 1 byte, an array element that is 1
byte, a structure for which the total for all members is 1 byte, or a structure
member that is 1 byte.

Value of
Order

OutVal
(array or not)

Storage method in OutVal

_LOW_HIGH
Not an array Value of In[0] is stored in OutVal

Array Value of In[i] is stored in OutVal[i]

_HIGH_LOW

Not an array Value of In[1] is stored in OutVal

Array In[i] (where i is even) is stored in OutVal[i+1].
In[i] (where i is odd) is stored in OutVal[i−1].
If the value of Size is odd, data is stored up to OutVal[Size] and 16#00
is stored in OutVal[Size−1].

Size = UINT#4

OutVal DWORD#16#23016745 In[0]

In[3]

In[2]

In[1]

BYTE#16#67

BYTE#16#45

BYTE#16#23

BYTE#16#01

Size = UINT#3

In[0] BYTE#16#01

In[2]

BYTE#16#02

BYTE#16#03

In[1]

OutVal[0] SINT#1

SINT#2

SINT#3OutVal[2]

OutVal[1]

Size = UINT#3

In[0] BYTE#16#01

In[2]

BYTE#16#02

BYTE#16#03

In[1]

OutVal[0] SINT#2

SINT#1

SINT#0 OutVal[2]

SINT#3 OutVal[3]

OutVal[1]

2-461

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

nversio
n

 In
stru

ctio
n

s

2

A
ryB

yteTo

If the data type of OutVal is BOOL (one bit), data is stored in OutVal as described below.

The following example is for when OutVal is a BOOL array with 21 elements, Size is UINT#3, and Order
is _LOW_HIGH.

When OutVal Is BOOL Data

Value of
Order

OutVal
(array or not)

Storage method in OutVal

_LOW_HIGH

Not an array Value of bit 0 of In[0] is stored in OutVal.

Array Value of In[0] is separated and stored in OutVal[0] to OutVal[7]. Value
of In[1] is separated and stored in OutVal[8] to OutVal[15]. The same
process is repeated to store the rest of the data.
Remaining bits are discarded.

_HIGH_LOW

Not an array Value of bit 0 of In[1] is stored in OutVal.

Array Value of In[0] is separated and stored in OutVal[8] to OutVal[15]. Value
of In[1] is separated and stored in OutVal[0] to OutVal[7]. The same
process is repeated to store the rest of the data.
Remaining bits are discarded.

OutVal[0]

Size = UINT#3

TRUE

OutVal[2]

FALSE

FALSE

OutVal[1]

OutVal[3] TRUE

OutVal[5]

FALSE

FALSE

OutVal[4]

OutVal[6] FALSE

OutVal[7] TRUE

OutVal[9]

TRUE

FALSE

OutVal[8]

OutVal[10]

OutVal[12]

FALSE

TRUE

FALSE

OutVal[11]

OutVal[13] FALSE

OutVal[14] TRUE

OutVal[16]

FALSE

FALSE

OutVal[15]

OutVal[17] FALSE

OutVal[18] TRUE

OutVal[20]

FALSE

FALSE

OutVal[19]

In[0]

In[1]

In[2]

BYTE#16#89

BYTE#16#45

BYTE#16#04

2 Instruction Descriptions

2-462 NJ-series Instructions Reference Manual (W502)

The following example is for when OutVal and Size are the same as above and Order is _HIGH_LOW.

• If OutVal is a structure, some of the values of In[] may be inserted in adjustment areas between mem-
bers depending on the composition.

• If the value of Size is 0, the value of Out will be TRUE and OutVal will not change.

• Return value Out is not used when the instruction is used in ST.

• An error occurs in the following cases. ENO will be FALSE, and OutVal will not change.

• The value of Order is outside of the valid range.

• The value of Size exceeds the number of elements in In[].

Precautions for Correct Use

OutVal[0]

Size = UINT#3

TRUE

OutVal[2]

FALSE

FALSE

OutVal[1]

OutVal[3]

TRUE

OutVal[5]

FALSE

FALSE

OutVal[4]

OutVal[6]

FALSE

OutVal[7]

TRUE

OutVal[9]

TRUE

FALSE

OutVal[8]

OutVal[10]

OutVal[12]

FALSE

TRUE

FALSE

OutVal[11]

OutVal[13]

FALSE

OutVal[14]

TRUE

OutVal[16]

FALSE

OutVal[15]

OutVal[17]

OutVal[18]

OutVal[20]

OutVal[19]

In[0]

In[1]

In[2]

Not
changed.

Not
changed.

Not
changed.

Not
changed.

Not
changed.

BYTE#16#89

BYTE#16#45

BYTE#16#04

2-463

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

nversio
n

 In
stru

ctio
n

s

2

S
izeO

fA
ry

SizeOfAry

The SizeOfAry instruction gets the number of elements in an array.

* If you omit the input parameter, the default value is not applied. A building error will occur.

The SizeOfAry instruction gets the number of elements in array In[]. For the input parameter, use an
array name, such as array, and not an array element name, such as array[0].

The following figure shows a programming example.

Instruction Name FB/FUN Graphic expression ST expression

SizeOfAry Get Number of
Array Elements

FUN Out:=SizeOfAry(In);

Variables

Name Meaning I/O Description Valid range Unit Default

In[] (array) Array Input Array Depends on data type. --- *

Out Number of
elements

Output Number of elements Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In[] (array)
OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

Arrays of enumerations or structures can also be specified.

Out OK

Function

(@)SizeOfAry
EN ENO
In Out

def:=SizeOfAry(abc);

LD ST

def

abc ARRAY[0..3] OF INT

abc

SizeOfAry
EN ENO
In

Variable Data type

In[0]=abc[0]
In[1]=abc[1]
In[2]=abc[2]
In[3]=abc[3]

Out=def UINT#4

Number of array elements

2 Instruction Descriptions

2-464 NJ-series Instructions Reference Manual (W502)

In[] can be an array with two or more dimensions. Out will contain the total number of elements for all
dimensions of In[]. For example, if the input parameter that is passed to In[] is ARRAY[0..1,0..2], the
value of Out will be UINT#6.

Additional Information

def:=SizeOfAry(abc);

LD ST

def

abc ARRAY[0..1,0..2] OF BOOL

abc

SizeOfAry
EN ENO
In

Variable Data type

In[0,0]=abc[0,0]
In[0,1]=abc[0,1]
In[0,2]=abc[0,2]
In[1,0]=abc[1,0]
In[1,1]=abc[1,1]
In[1,2]=abc[1,2]

Out=def UINT#6

Number of array elements

S
tack an

d
 Tab

le In
stru

ctio
n

s

2

2-465NJ-series Instructions Reference Manual (W502)

Stack and Table Instructions

Instruction Name Page

StackPush Push onto Stack 2-466

StackFIFO and StackLIFO First In First Out/Last In First Out 2-475

StackIns Insert into Stack 2-478

StackDel Delete from Stack 2-480

RecSearch Record Search 2-482

RecRangeSearch Range Record Search 2-487

RecSort Record Sort 2-492

RecNum Get Number of Records 2-497

RecMax and RecMin Maximum Record Search/
Minimum Record Search

2-499

2 Instruction Descriptions

2-466 NJ-series Instructions Reference Manual (W502)

StackPush

The StackPush instruction stores a value at the top of a stack.

The instruction assumes that there are number of stored elements Num elements stored in stack array
InOut[]. Input value In is written to the next element, InOut[Num]. Then, Num is incremented. For num-
ber of stack elements Size, specify the number of elements in InOut[] to use as a stack.

Instruction Name FB/FUN Graphic expression ST expression

StackPush Push onto Stack FUN StackPush(In, InOut, Size,
Num);

Variables

Name Meaning I/O Description Valid range Unit Default

In Input value

Input

Value, structure, or structure
member to place in the
stack

Depends on data type. ---

Size Number of
stack ele-
ments

Number of stack array
elements

1

InOut[]
(array)

Stack array

In-out

Array that functions as stack

Depends on data type. --- ---Num Number of
stored
elements

Number of elements stored
in stack

Out Return
value

Output Always TRUE TRUE only
--- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In
OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

An enumeration, structure, or structure member can also be specified.

Size OK

InOut[]
(array)

Must be an array with elements that have the same data type as In.

Num OK

Out OK

Function

(@)StackPush
EN ENO
In Out
InOut

Size
Num

2-467

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
tack an

d
 Tab

le In
stru

ctio
n

s

2

S
tackP

ush

The following example is for when Size is UINT#5 and Num is UINT#2.

Use the StackFIFO or StackLIFO instruction (page 2-475) to remove the bottom or top value that was
stored in the stack.

• Use the same data type for In and the elements of InOut[].

• When an element in the array is passed to InOut[], all elements below the passed element are pro-
cessed.

• The value of InOut[] or Num does not change if the value of Size is 0.

• When In is an enumeration, always use a variable for the input parameter to pass to In. A building
error will occur if a constant is passed.

• Return value Out is not used when the instruction is used in ST.

• An error occurs in the following cases. ENO will be FALSE, and InOut[] will not change.

• In and InOut[] contain different data types.

• The value of Size is not 0 and Num is greater than or equal to Size.

• The value of Size exceeds the array area of InOut[].

• In is STRING data and it does not end in a NULL character.

• In and InOut[] are STRING data and the number of bytes in In exceeds the size of InOut[].

Additional Information

Precautions for Correct Use

StackPush(INT#3456, abc[1], UINT#5, def);

LD ST

 INT#3456

 abc[1]
 UINT#5

 def

abc[1]

def

StackPush
EN ENO
In
InOut

Size
Num

Incremented

Stored

1234
2345
 0 :
 0
 0

InOut[0]=abc[1]
InOut[1]=abc[2]
InOut[2]=abc[3]
InOut[3]=abc[4]
InOut[4]=abc[5]

InOut[0]=abc[1]
InOut[1]=abc[2]
InOut[2]=abc[3]
InOut[3]=abc[4]
InOut[4]=abc[5]

Size=UINT#5

Num=def UINT#2

In INT#3456

1234
2345
3456
 0
 0

Num=def UINT#3

2 Instruction Descriptions

2-468 NJ-series Instructions Reference Manual (W502)

The array variable stcA[0..9] is used as a stack. As preparations, three values (UINT#1111,
UINT#2222, and UINT#3333) are stored in the stack.

The StackPush instruction is used to store a new value (UINT#4444) at the top of the stack stcA[3].
That means there will be four values in the stack.

Then, the StackLIFO instruction is used to remove one value at the top of the stack stcA[3]. That means
there will be three values in the stack.

Sample Programming

1111
2222
3333
 0
 0
 0
 0
 0
 0
 0

stcA[0]
stcA[1]
stcA[2]
stcA[3]
stcA[4]
stcA[5]
stcA[6]
stcA[7]
stcA[8]
stcA[9]

StcAInVal UINT#4444

Stored.

StackPush instruction executed.

StcANUM UINT#3

1111
2222
3333
 0
 0
 0
 0
 0
 0
 0

stcA[0]
stcA[1]
stcA[2]
stcA[3]
stcA[4]
stcA[5]
stcA[6]
stcA[7]
stcA[8]
stcA[9]

StcANUM UINT#4

1111
2222
3333
4444
 0
 0
 0
 0
 0
 0

stcA[0]
stcA[1]
stcA[2]
stcA[3]
stcA[4]
stcA[5]
stcA[6]
stcA[7]
stcA[8]
stcA[9]

UINT#4444

Removed.

StackLIFO instruction executed.

StcANUM UINT#4

1111
2222
3333
4444
 0
 0
 0
 0
 0
 0

stcA[0]
stcA[1]
stcA[2]
stcA[3]
stcA[4]
stcA[5]
stcA[6]
stcA[7]
stcA[8]
stcA[9]

StcANUM UINT#3

1111
2222
3333
4444
 0
 0
 0
 0
 0
 0

stcA[0]
stcA[1]
stcA[2]
stcA[3]
stcA[4]
stcA[5]
stcA[6]
stcA[7]
stcA[8]
stcA[9]

2-469

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
tack an

d
 Tab

le In
stru

ctio
n

s

2

S
tackP

ush

Finally, the StackIns instruction is used to insert a value (UINT#5555) between stcA[1] and stcA[2]. That
means there will be four values in the stack.

StackIns instruction executed.

StcANUM UINT#3

1111
2222
3333
4444
 0
 0
 0
 0
 0
 0

stcA[0]
stcA[1]
stcA[2]
stcA[3]
stcA[4]
stcA[5]
stcA[6]
stcA[7]
stcA[8]
stcA[9]

In UINT#5555

Inserted.

StcANUM UINT#4

1111
2222
5555
3333
 0
 0
 0
 0
 0
 0

stcA[0]
stcA[1]
stcA[2]
stcA[3]
stcA[4]
stcA[5]
stcA[6]
stcA[7]
stcA[8]
stcA[9]

2 Instruction Descriptions

2-470 NJ-series Instructions Reference Manual (W502)

LD

InitStc

UINT#1111

StcA[0]
StcASize

StcANum

1 StcANUM:=0;
2 clear(StcA);
3 StcASize:=SizeOfAry(StcA);

InitStc
stcANum
StcA
StcASize
SetParaPush
StcAInVal
StcAPushStat
StackPush_err
StcALIFOStat
StcAOutVal
StackLIFO_err
SetParaIns
StcAInsVal
StcAOffset
StcAInsStat
StackIns_err

False
0
[10(0)]
0
False
0
False
False
False
0
False
False
0
0
False
False

BOOT
UINT
ARRAY[0..9] OF UINT
UINT
BOOL
UINT
BOOL
BOOL
BOOL
UINT
BOOL
BOOL
UINT
UINT
BOOL
BOOL

Variable

Stack initialization condition
Number of stored elements
Stack array
Number of stack elements
Execution condition to set StcAInVal.
Value added by StackPush
StackPush execution condition
StackPush error flag
StackLIFO execution condition
Value removed by StackLIFO
StackLIFO error flag
Execution condition to set StcAInsVal and StcAOffset
Value inserted by StackIns
Offset for StackIns
StackIns execution condition
StackIns error flag

Initialize stack.

Store three values in stack.

InitStc StackPush
EN ENO
In
InOut

Size
Num

UINT#2222

StcA[0]
StcASize

StcANum

StackPush
EN ENO
In
InOut

Size
Num

UINT#3333

StcA[0]
StcASize

StcANum

UINT#4444 StcAInVal

StackPush
EN ENO
In
InOut

Size
Num

SetParaPush MOVE
EN ENO
In Out

Set the value to add with StackPush.

Data type Initial value Comment

Inline ST

2-471

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
tack an

d
 Tab

le In
stru

ctio
n

s

2

S
tackP

ush

StcAPushStat StackPush_err

StackPush_err

StcAinVal

StcA[0]
StcASize

StcANum

Add data with StackPush instruction.

Processing after normal end of StackPush

StcAPushStat

StackPush

1 // Processing after normal end of StackPush
2 ;

EN ENO
In
InOut

Size
Num

StackPush_err

Processing after error end of StackPush

StcAPushStat
1 // Processing after error end of StackPush
2 ;

StcALIFOStat StackLIFO_err

Remove data with StackLIFO instruction.

StackLIFO
EN ENO

InOut

OutVal

Size
Num

StcAOutVal

StcA[0]

StcASize

StcANum

StackLIFO_err

Processing after normal end of StackLIFO

StcALIFOStat
1 // Processing after normal end of StackLIFO
2 ;

StackLIFO_err

Processing after error end of StackLIFO

StcALIFOStat
1 // Processing after error end of StackLIFO
2 ;

UINT#5555 StcAInsVal

SetParaIns MOVE
EN ENO
In Out

UINT#2 StcAOffset

MOVE
EN ENO
In Out

Set the insert value and offset with StackInsh.

Inline ST

Inline ST

Inline ST

Inline ST

2 Instruction Descriptions

2-472 NJ-series Instructions Reference Manual (W502)

StcAInsStat StackIns_err

StackIns_err

Insert data with StackIns instruction.

Processing after normal end of StackIns

StcAInsStat
1 // Processing after normal end of StackIns
2 ;

StackIns_err

Processing after error end of StackIns

StcAInsStat
1 // Processing after error end of StackIns
2 ;

StackIns
EN ENO
In
InOut

Size
Num

Offset

StcA[0]
StcASize

StcANum
StcAOffset

StcAInsVal

Inline ST

Inline ST

2-473

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
tack an

d
 Tab

le In
stru

ctio
n

s

2

S
tackP

ush

IF ((InitStc=TRUE) AND (preInitStc=FALSE)) THEN
 StcANum:=0;
 Clear(StcA);
 StcASize:=SizeOfAry(StcA);
END_IF;

IF ((InitStc=TRUE) AND (preInitStc=FALSE)) THEN
 StackPush(In:=UINT#1111, InOut:=StcA[0], Size:=StcASize, Num:=StcANum);
 StackPush(In:=UINT#2222, InOut:=StcA[0], Size:=StcASize, Num:=StcANum);
 StackPush(In:=UINT#3333, InOut:=StcA[0], Size:=StcASize, Num:=StcANum);
END_IF;

preInitStc:=InitStc;

IF ((StcAPushStat=TRUE) AND (preStcAPushStat=FALSE)) THEN
 StcAInVal:=UINT#4444;
 StackPush(
 In :=StcAinVal,
 InOut:=StcA[0],
 Size :=StcASize,
 Num :=StcANum,
 ENO =>StcAPush_OK);
 IF (StcAPush_OK=TRUE) THEN
 StcAPushNormalEnd:=TRUE;
 ELSE
 StcAPushErrorEnd:=TRUE;
 END_IF;
END_IF;
preStcAPushStat:=StcAPushStat;

ST

// Initialize stack.

// Store three values in stack.

// Add data with StackPush instruction.

// Value to add
// First element in stack array
// Number of stack elements
// Number of stored elements
// Normal end flag

// Processing after normal end

// Processing after error end

InitStc
preInitStc
stcANum
StcA
StcASize
StcAPushStat
preStcAPushStat
StcAInVal
StcAPush_OK
StcAPushNormalEnd
StcAPushErrorEnd
StcALIFOStat
preStcALIFOStat
StcAOutVal
StcALIFO_OK
StcALIFONormalEnd
StcALIFOErrorEnd
StcAInsStat
preStcAInsStat
StcAInsVal
StcAOffset
StcAIns_OK
StcAInsNormalEnd
StcAinsErrorEnd

False
False
0
[10(0)]
0
False
False
0
False
False
False
False
False
0
False
False
False
False
False
0
0
False
False
False

BOOL
BOOL
UINT
ARRAY[0..9] OF UINT
UINT
BOOL
BOOL
UINT
BOOL
BOOL
BOOL
BOOL
BOOL
UINT
BOOL
BOOL
BOOL
BOOL
BOOL
UINT
UINT
BOOL
BOOL
BOOL

Stack initialization condition
Value of InitStc from previous task period
Number of stored elements
Stack array
Number of stack elements
StackPush execution condition
Value of StcAPushStat from previous task period
Value added by StackPush
StackPush normal end flag
Processing after normal end of StackPush
Processing after error end of StackPush
StackLIFO execution condition
Value of StcALIFOStat from previous task period
Value removed by StackLIFO
StackLIFO normal end flag
Processing after normal end of StackLIFO
Processing after error end of StackLIFO
StackIns execution condition
Value of StcAInsStat from previous task period
Value inserted by StackIns
Offset for StackIns
StackIns normal end flag
Processing after normal end of StackIns
Processing after error end of StackIns

Variable Data type Initial value Comment

2 Instruction Descriptions

2-474 NJ-series Instructions Reference Manual (W502)

IF ((StcALIFOStat=TRUE) AND (preStcALIFOStat=FALSE)) THEN
 StackLIFO(
 InOut :=StcA[0],
 OutVal:=StcAOutVal,
 Size :=StcASize,
 Num :=StcANum,
 ENO =>StcALIFO_OK);
 IF (StcALIFO_OK=TRUE) THEN
 StcALIFONormalEnd:=TRUE;
 ELSE
 StcALIFOErrorEnd:=TRUE;
 END_IF;
END_IF;
preStcALIFOStat:=StcALIFOStat;

IF ((StcAInsStat=TRUE) AND (preStcAInsStat=FALSE)) THEN
 StcAInsVal:=UINT#5555;
 StcAOffset:=UINT#2;
 StackIns(
 In :=StcAInsVal,
 InOut:=StcA[0],
 Size :=StcASize,
 Num :=StcANum,
 Offset:=StcAOffset,
 ENO =>StcAIns_OK);
 IF (StcAIns_OK=TRUE) THEN
 StcAInsNormalEnd:=TRUE;
 ELSE
 StcAInsErrorEnd:=TRUE;
 END_IF;
END_IF;
preStcAInsStat:=StcAInsStat;

// Remove data with StackLIFO instruction.

// Insert data with StackIns instruction.

// Value to insert into stack
// First element in stack array
// Number of stack elements
// Number of stored elements
// Offset at which to insert value
// Normal end flag

// Normal end flag

// Processing after error end

// First element in stack array
// Value removed from stack
// Number of stack elements
// Number of stored elements
// Normal end flag

// Processing after normal end

// Processing after error end

2-475

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
tack an

d
 Tab

le In
stru

ctio
n

s

2

S
tackF

IF
O

 and S
tackLIF

O

StackFIFO and StackLIFO

StackFIFO: Removes the bottom value from a stack.

StackLIFO: Removes the top value from a stack.

Instruction Name FB/FUN Graphic expression ST expression

StackFIFO First In First Out FUN StackFIFO(InOut, OutVal,
Size, Num);

StackLIFO Last In First Out FUN StackLIFO(InOut, OutVal,
Size, Num);

Variables

Name Meaning I/O Description Valid range Unit Default

Size Number of
stack ele-
ments

Input Number of stack array
elements

Depends on data type. --- 1

InOut[]
(array)

Stack array

In-out

Array that functions as stack

Depends on data type. --- ---
OutVal Output

value
Value or structure output
from stack

Num Number of
stored
elements

Number of elements stored
in stack

Out Return
value

Output Always TRUE TRUE only
--- ---

(@)StackFIFO
EN ENO
 Out
InOut

OutVal

Size
Num

(@)StackLIFO
EN ENO
 Out
InOut

OutVal

Size
Num

2 Instruction Descriptions

2-476 NJ-series Instructions Reference Manual (W502)

The instruction assumes that there are number of stored elements Num elements stored in stack array
InOut[]. The instruction removes a value from the stack and assigns it to output value OutVal. For num-
ber of stack elements Size, specify the number of elements in InOut[] to use as a stack.

StackFIFO
The StackFIFO removes the bottom value from a stack. Value of InOut[0] is assigned to OutVal. Then,
all Num − 1 elements from InOut[1] are shifted to the next lower element in the stack array. Then 0 is
stored in InOut[Num−1]. Finally, Num is decremented.

The following example is for when Size is UINT#5 and Num is UINT#3.

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

Size OK

InOut[]
(array)

OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

Arrays of enumerations or structures can also be specified.

OutVal Must be the same data type as the elements of InOut[].

Num OK

Out OK

Function

StackFIFO(abc[1], def, UINT#5, ghi);

LD ST

 abc[1]

 def
UINT#5

 ghi

abc[1]

def

ghi

StackFIFO
EN ENO

InOut

OutVal

Size
Num

Num = ghi

OutVal = def

Num = ghi

OutVal = def

Decremented.

Removed.

1234
2345
3456
 0
 0

InOut[0]=abc[1]
InOut[1]=abc[2]
InOut[2]=abc[3]
InOut[3]=abc[4]
InOut[4]=abc[5]

InOut[0]=abc[1]
InOut[1]=abc[2]
InOut[2]=abc[3]
InOut[3]=abc[4]
InOut[4]=abc[5]

Size=UINT#5

UINT#3

2345
3456
3456
 0
 0

UINT#2

INT#1234

2-477

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
tack an

d
 Tab

le In
stru

ctio
n

s

2

S
tackF

IF
O

 and S
tackLIF

O

StackLIFO
The StackLIFO instruction removes the top value from a stack. Value of InOut[Num−1] is assigned to
OutVal. Then, Num is decremented.

The following example is for when Size is UINT#5 and Num is UINT#2.

• Use the same data type for InOut[] and OutVal.

• When an element in the array is passed to InOut[], all elements below the passed element are pro-
cessed.

• The values in InOut[], Num, and OutVal do not change if the value of Size or Num is 0.

• Return value Out is not used when the instruction is used in ST.

• An error occurs in the following cases. ENO will be FALSE, and OutVal will not change.

• InOut[] and OutVal have different data types.

• The values of Num and Size are not 0 and Num is greater than Size.

• The value of Size exceeds the array area of InOut[].

• InOut[] is a STRING array and any of the elements does not end in a NULL character.

• InOut[] is a STRING array and the number of bytes in the elements exceeds the size of OutVal.

Refer to the sample programming that is provided for the StackPush instruction (page 2-466).

Precautions for Correct Use

Sample Programming

StackLIFO(abc[1], def, UINT#5, ghi);

LD ST

abc[1]

def

ghi

StackLIFO
EN ENO

InOut

OutVal

Size
Num

 abc[1]

 def
UINT#5

 ghi

Num = ghi

OutVal = def

Num = ghi

OutVal = def

Decremented.

Removed.

1234
2345
3456
 0
 0

Size=UINT#5

UINT#3

1234
2345
3456
 0
 0

UINT#2

INT#3456

InOut[0]=abc[1]
InOut[1]=abc[2]
InOut[2]=abc[3]
InOut[3]=abc[4]
InOut[4]=abc[5]

InOut[0]=abc[1]
InOut[1]=abc[2]
InOut[2]=abc[3]
InOut[3]=abc[4]
InOut[4]=abc[5]

2 Instruction Descriptions

2-478 NJ-series Instructions Reference Manual (W502)

StackIns

The StackIns instruction inserts a value at a specified position in a stack.

* If you omit the input parameter, the default value is not applied. A building error will occur.

Instruction Name FB/FUN Graphic expression ST expression

StackIns Insert into Stack FUN StackIns(In, InOut, Size,
Num, Offset);

Variables

Name Meaning I/O Description Valid range Unit Default

In Insert value

Input

Value, structure, or structure
member to insert into the
stack

Depends on data type. ---

*

Size Number of
stack ele-
ments

Number of stack array
elements

1

Offset Offset Position in stack at which to
insert In

0

InOut[]
(array)

Stack array

In-out

Array that functions as stack

Depends on data type. --- ---Num Number of
stored
elements

Number of elements stored
in stack

Out Return
value

Output Always TRUE TRUE only
--- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In
OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

An enumeration, structure, or structure member can also be specified.

Size OK

Offset OK

InOut[]
(array)

Must be an array with elements that have the same data type as In.

Num OK

Out OK

(@)StackIns
EN ENO
In Out
InOut

Size
Num

Offset

2-479

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
tack an

d
 Tab

le In
stru

ctio
n

s

2

S
tackIns

The instruction assumes that there are number of stored elements Num elements stored in stack array
InOut[]. Insert value In is inserted at the position specified by the offset Offset (InOut[Offset]). All higher
elements, i.e., InOut[Offset] to InOut[Num−1], are moved to the next higher element in the stack array.
Then, Num is incremented. For number of stack elements Size, specify the number of elements in
InOut[] to use as a stack.

The following example is for when Size is UINT#6, Num is UINT#3 and Offset is UINT#1.

• Use the same data type for In and InOut[].

• When an element in the array is passed to InOut[], all elements below the passed element are pro-
cessed.

• The values in InOut[] and Num do not change if the value of Size is 0.

• When In is an enumeration, always use a variable for the input parameter to pass to In. A building
error will occur if a constant is passed.

• Return value Out is not used when the instruction is used in ST.

• An error occurs in the following cases. ENO will be FALSE, and InOut[] will not change.

• In and InOut[] contain different data types.

• The value of Size is not 0 and Size is not greater than Num and Num is not greater than or equal
to Offset.

• The value of Size exceeds the array area of InOut[].

• In is STRING data and it does not end in a NULL character.

• InOut[] is a STRING array and the number of bytes in the elements exceeds the size of OutVal.

Refer to the sample programming that is provided for the StackPush instruction (page 2-466).

Function

Precautions for Correct Use

Sample Programming

StackIns(INT#2345, abc[1], UINT#6, def, UINT#1);

LD ST

INT#2345

abc[1] abc[1]
UINT#6

def def
UINT#1

StackIns
EN ENO
In
InOut

Size
Num

Offset

Incremented.

Inserted.

1234
3456
4567
 0
 0
 0

InOut[0]=abc[1]
InOut[1]=abc[2]
InOut[2]=abc[3]
InOut[3]=abc[4]
InOut[4]=abc[5]
InOut[5]=abc[6]

InOut[0]=abc[1]
InOut[1]=abc[2]
InOut[2]=abc[3]
InOut[3]=abc[4]
InOut[4]=abc[5]
InOut[5]=abc[6]

Size=UINT#6

Num=def UINT#3

In INT#2345

Num=def UINT#4

1234
2345
3456
4567
 0
 0

Offset=UINT#1

2 Instruction Descriptions

2-480 NJ-series Instructions Reference Manual (W502)

StackDel

The StackDel instruction deletes a value from a specified position in a stack.

The instruction assumes that there are number of stored elements Num elements stored in stack array
InOut[]. The value is deleted from the position specified by the offset Offset (InOut[Offset]). All higher
elements, i.e., InOut[Offset+1] to InOut[Num−1], are moved to the next lower element in the stack array.
Then, Num is decremented. For number of stack elements Size, specify the number of elements in
InOut[] to use as a stack.

Instruction Name FB/FUN Graphic expression ST expression

StackDel Delete from Stack FUN StackDel(InOut, Size, Num,
Offset);

Variables

Name Meaning I/O Description Valid range Unit Default

Size Number of
stack ele-
ments Input

Number of stack array
elements

Depends on data type. ---

1

Offset Offset Offset of value to delete
from stack

0

InOut[]
(array)

Stack array

In-out

Array that functions as stack

Depends on data type. --- ---Num Number of
stored
elements

Number of elements stored
in stack

Out Return
value

Output Always TRUE TRUE only --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

Size OK

Offset OK

InOut[]
(array)

OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

Arrays of enumerations or structures can also be specified.

Num OK

Out OK

Function

(@)StackDel
EN ENO
 Out
InOut

Size
Num

Offset

2-481

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
tack an

d
 Tab

le In
stru

ctio
n

s

2

S
tackD

el

The following example is for when Size is UINT#6, Num is UINT#3 and Offset is UINT#1.

• When an element in the array is passed to InOut[], all elements below the passed element are pro-
cessed.

• The values in InOut[] and Num do not change if the value of Size or Num is 0.

• Return value Out is not used when the instruction is used in ST.

• An error occurs in the following cases. ENO will be FALSE, and InOut[] will not change.

• The values of Num and Size are not 0 and Size is not greater than or equal to Num and Num is
not greater than Offset.

• The value of Size exceeds the array area of InOut[].

Precautions for Correct Use

StackDel(abc[1], UINT#6, def, UINT#1);

LD ST

abc[1] abc[1]
UINT#6

def def
UINT#1

StackDel
EN ENO

InOut

Size
Num

Offset

Num = def

Decremented.

Deleted.

1234
2345
3456
 0
 0
 0

InOut[0]=abc[1]
InOut[1]=abc[2]
InOut[2]=abc[3]
InOut[3]=abc[4]
InOut[4]=abc[5]
InOut[5]=abc[6]

InOut[0]=abc[1]
InOut[1]=abc[2]
InOut[2]=abc[3]
InOut[3]=abc[4]
InOut[4]=abc[5]
InOut[5]=abc[6]

Size=UINT#6

UINT#3 Num=def UINT#2

1234
3456
3456
 0
 0
 0

Offset=UINT#1

2 Instruction Descriptions

2-482 NJ-series Instructions Reference Manual (W502)

RecSearch

The RecSearch instruction searches an array of structures for elements that match the search key with
the specified method.

* If you omit the input parameter, the default value is not applied. A building error will occur.

Instruction Name FB/FUN Graphic expression ST expression

RecSearch Record Search FUN Out:=RecSearch(In, Size,
Member, Key, Mode, InOut-
Pos, Num);

Variables

Name Meaning I/O Description Valid range Unit Default

In[] (array) Array to
search

Input

Array of structures to search ---

*

Size Number of
elements to
search

Number of array elements to
search

Depends on data type.

1

Member Member to
search

Member of In[] structure to
search *

Key Search key Search value

Mode Search
method

Search method _LINEAR,
_BIN_ASC,
_BIN_DESC

_LINEA
R

InOutPos[]
(array)

Element
numbers of
matching
elements

In-out Element numbers of
matching elements

Depends on data type. --- ---

Out Search
result

Output

TRUE: There are elements
that match conditions

FALSE: There are no
elements that match
conditions

Depends on data type. --- ---

Num Number of
matches

Number of matches

(@)RecSearch
EN ENO
In Out
Size Num
Member
Key
Mode
InOutPos

2-483

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
tack an

d
 Tab

le In
stru

ctio
n

s

2

R
ecS

earch

The RecSearch instruction searches Size elements in the array of structures In[]. The search range is
therefore from In[0] to In[Size−1]. The instruction searches member to search Member in the structures
for members that match the search key Key.
One of the members to search in the elements of In[] is passed as an argument to Member.
If any matching elements are found, the value of search result Out changes to TRUE. The element
number of the matching element is assigned to InOutPos[0] and the number of matching elements is
assigned to Num. If there is more than one matching element, the element number of the lowest match-
ing element in In[] is assigned to InOutPos[0]. If there are no matching elements, the value of Out will be
FALSE and InOutPos[0] and Num will be 0.

Always attach the element number to input parameter that is passed to In[], e.g., array[3].

The data type of search method Mode is enumerated type _eSEARCH_MODE. The meanings of the
enumerators are as follows:

For a linear search, the search is performed in order from the first element of In[].

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In[] (array) Specify an array of structures.

Size OK

Member OK OK OK OK OK OK OK OK OK OK OK

Specify the same data type as the search member of In[]

Key Must be the same data type as Member.

Mode Refer to Function for the enumerators of the enumerated type _eSEARCH_MODE.

InOutPos[]
(array)

OK

Out OK

Num OK

Function

Enumerator Meaning

_LINEAR Linear search

_BIN_ASC Ascending binary search

_BIN_DESC Descending binary search

2 Instruction Descriptions

2-484 NJ-series Instructions Reference Manual (W502)

The following example is for when Size is UINT#5, Key is INT#1234 and Mode is _LINEAR.

For an ascending binary search, the array elements in the input parameter that is passed to In[] must be
in ascending order before this instruction is executed. Then a binary search is performed by executing
this instruction.

ghi:=RecSearch(abc[0], UINT#5, abc[0].m,
 INT#1234, _LINEAR, def, jkl);

LD ST

abc[0]

def def

ghi

jkl UINT#5
 abc[0].m
INT#1234
 _LINEAR

RecSearch
EN ENO
In
Size Num
Member
Key
Mode
InOutPos

Out = ghi

InOutPos[0] = def

Num = jkl

Member m

Matches

0000
3456
0000

Size=UINT#5

KeyMode=_LINEAR INT#1234

0000
2345
0000

0000
1234
0000

0000
3456
0000

0000
1234
0000

In[0]=abc[0]

In[1]=abc[1]

In[2]=abc[2]

In[3]=abc[3]

In[4]=abc[4]

Member=abc[0].m

 TRUE

UINT#2

UINT# 2

2-485

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
tack an

d
 Tab

le In
stru

ctio
n

s

2

R
ecS

earch

Using the same example as before, the order of the array elements and the processing results will be
as shown below for an ascending binary search.

For a descending binary search, the array elements in the input parameter that is passed to In[] must be
in descending order before this instruction is executed. Then a binary search is performed by executing
this instruction.

Using the same example as before, the order of the array elements and the processing results will be
as shown below for a descending binary search.

• In[] can be a member of a higher-level structure.

Example: In[0]=str0.str1[0]

• In[] can be an array with two or more dimensions. If In[] is a two-dimensional array, the element num-
ber in the first dimension of the element that matches the search conditions is assigned to InOut-
Pos[0] and the element number in the second dimension is assigned to InOutPos[1].

Additional Information

Key

Member = abc[0].m

Out = ghi

InOutPos[0] = def

Num = jkl

Matches

Member m

0000
1234
0000

INT#1234

0000
1234
0000

0000
2345
0000

0000
3456
0000

0000
3456
0000

 TRUE

UINT#0

UINT#2

Size=UINT#5

In[0]=abc[0]

In[1]=abc[1]

In[2]=abc[2]

In[3]=abc[3]

In[4]=abc[4]

Mode=_BIN_ASC

Key

Out = ghi

InOutPos[0] = def

Num = jkl

Member m

Matches

0000
3456
0000

INT#1234

0000
3456
0000

0000
2345
0000

0000
1234
0000

0000
1234
0000

Member=abc[0].m

 TRUE

UINT#2

UINT#3

Size=UINT#5

In[0]=abc[0]

In[1]=abc[1]

In[2]=abc[2]

In[3]=abc[3]

In[4]=abc[4]

Mode=_BIN_DESC

2 Instruction Descriptions

2-486 NJ-series Instructions Reference Manual (W502)

• If In[] is a three-dimensional array, the element number in the first dimension of the element that
matches the search conditions is assigned to InOutPos[0], the element number in the second dimen-
sion is assigned to InOutPos[1], and the element number in the third dimension is assigned to InOut-
Pos[2].

• When an element in the array is passed to In[], all elements below the passed element are pro-
cessed.

• If Member is a real number, depending on the value of Member, the desired results may not be
achieved due to error.

• If Key is a real number, do not specify nonnumeric data for Key.

• If the value of Size is 0, the value of Out is FALSE and the value of Num is 0. InOutPos[] does not
change.

• The correct result is not obtained if the value of Mode is _BIN_ASC or _BIN_DESC and the elements
of In[] are not in ascending or descending order. Place the elements in ascending or descending
order before executing this instruction.

• An error occurs in the following cases. ENO will be FALSE, and Out, InOutPos[], and Num will not
change.

• The value of Mode is outside of the valid range.

• The value of Size exceeds the array area of In[].

• Member is not a member of In[].

• The array size of InOutPos[] is smaller than the number of dimensions of In[].

• Member is not integer or real number data.

• Key and Member have different data types.

• In[] is not an array of structures.

Precautions for Correct Use

2-487

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
tack an

d
 Tab

le In
stru

ctio
n

s

2

R
ecR

angeS
earch

RecRangeSearch

The RecRangeSearch instruction searches an array of structures for elements that match the search
condition range with the specified method.

* If you omit the input parameter, the default value is not applied. A building error will occur.

Instruction Name FB/FUN Graphic expression ST expression

RecRangeSearch Range Record
Search

FUN Out:=RecRangeSearch(In,
Size, Member, MN, MX,
Condition, Mode, InOutPos,
Num);

Variables

Name Meaning I/O Description Valid range Unit Default

In[] (array) Array to
search

Input

Array of structures to search ---

*

Size Number of
elements to
search

Number of array elements to
search

Depends on data type.

1

Member Member to
search

Member of In[] structure to
search

*

MN Search
condition
lower limit

Search condition lower limit

MX Search
condition
upper limit

Search condition upper limit

Condition Search
condition

Search condition _EQ_BOTH,
_EQ_MIN,
_EQ_MAX,
_NE_BOTH

EQ
BOTH

Mode Search
method

Search method _LINEAR,
_BIN_ASC,
_BIN_DESC

_LINEA
R

InOutPos[]
(array)

Element
numbers of
matching
elements

In-out Element numbers of
matching elements

Depends on data type. --- ---

Out Search
result

Output

TRUE: There are elements
that match conditions

FALSE: There are no
elements that match
conditions

Depends on data type. --- ---

Num Number of
matches

Number of matches

(@)RecRangeSearch
EN ENO
In Out
Size Num
Member
MN
MX
Condition
Mode
InOutPos

2 Instruction Descriptions

2-488 NJ-series Instructions Reference Manual (W502)

The RecRangeSearch instruction searches Size elements in the array of structures In[]. The search
range is therefore from In[0] to In[Size−1]. The instruction searches member to search Member in the
structures for members that match the search condition.

Condition specifies the search condition. Mode specifies the search method. Details are provided
below. One of the members to search in the elements of In[] is passed as an argument to Member.

If any elements that match the search condition are found, the value of search result Out changes to
TRUE. The element number of the matching element is assigned to InOutPos[0] and the number of
matching elements is assigned to Num. If there is more than one matching element, the element num-
ber of the lowest matching element in In[] is assigned to InOutPos[0]. If there are no matching elements,
the value of Out will be FALSE and InOutPos[0] and Num will be 0.

Always attach the element number to input parameter that is passed to In[], e.g., array[3].

The data type of search condition Condition is enumerated type _eSEARCH_CONDITION. The mean-
ings of the enumerators are as follows:

The data type of search method Mode is enumerated type _eSEARCH_MODE. The meaning of the
enumerators are as follows:

For a linear search, the search is performed in order from the first element of In[].

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In[] (array) Specify an array of structures.

Size OK

Member OK OK OK OK OK OK OK OK OK OK

Specify the same data type as the search member of In[].

MN Must be the same data type as Member.

MX Must be the same data type as Member.

Condition Refer to Function for the enumerators for the enumerated type _eSEARCH_CONDITION.

Mode Refer to Function for the enumerators for the enumerated type _eSEARCH_MODE.

InOutPos[]
(array)

OK

Out OK

Num OK

Function

Enumerator Meaning

_EQ_BOTH MN ≤ Member ≤ MX

_EQ_MIN MN ≤ Member < MX

_EQ_MAX MN < Member ≤ MX

_NE_BOTH MN < Member < MX

Enumerator Meaning

_LINEAR Linear search

_BIN_ASC Ascending binary search

_BIN_DESC Descending binary search

2-489

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
tack an

d
 Tab

le In
stru

ctio
n

s

2

R
ecR

angeS
earch

The following example is for when Size is UINT#5, MN is INT#1000, MX is INT#2000, Condition is
_EQ_BOTH and Mode is _LINEAR.

For an ascending binary search, the array elements in the input parameter that is passed to In[] must be
in ascending order before this instruction is executed. Then a binary search is performed by executing
this instruction.

ghi:=RecRangeSearch(abc[0], UINT#5, abc[0].m, INT#1000,
 INT#2000, _EQ_BOTH, _LINEAR, def, jkl);

LD ST

abc[0]

def def

ghi

jkl UINT#5
 abc[0].m
 INT#1000
 INT#2000
_EQ_BOTH
 _LINEAR

RecRangeSearch
EN ENO
In
Size Num
Member
MN
MX
Condition
Mode
InOutPos

MX Member = abc[0].m

Out = ghi

InOutPos[0] = def

Num = jkl

MN

Member m

Matches

0000
3456
0000

Size=UINT#5

Mode=_LINEAR

Condition=_EQ_BOTH

INT#2000

0000
2345
0000

0000
1234
0000

0000
3456
0000

0000
1234
0000

In[0]=abc[0]

In[1]=abc[1]

In[2]=abc[2]

In[3]=abc[3]

In[4]=abc[4]

 TRUE

UINT#2

UINT#2

INT#1000

2 Instruction Descriptions

2-490 NJ-series Instructions Reference Manual (W502)

Using the same example as before, the order of the array elements and the processing results will be
as shown below for an ascending binary search.

For a descending binary search, the array elements in the input parameter that is passed to In[] must be
in descending order before this instruction is executed. Then a binary search is performed by executing
this instruction.

Using the same example as before, the order of the array elements and the processing results will be
as shown below for a descending binary search.

Member = abc[0].m

Out = ghi

InOutPos[0] = def

Num = jkl

MX

MN

Matches

Member m

0000
1234
0000

0000
1234
0000

0000
2345
0000

0000
3456
0000

0000
3456
0000

 TRUE

UINT#0

UINT#2

INT#2000

INT#1000

Size=UINT#5

In[0]=abc[0]

In[1]=abc[1]

In[2]=abc[2]

In[3]=abc[3]

In[4]=abc[4]

Mode=_BIN_ASC

Condition=_EQ_BOTH

Member = abc[0].m

Out = ghi

InOutPos[0] = def

Num = jkl

MX

MN

Member m

Matches

0000
3456
0000

0000
3456
0000

0000
2345
0000

0000
1234
0000

0000
1234
0000

 TRUE

UINT#2

UINT#3

2000

1000

Size=UINT#5

In[0]=abc[0]

In[1]=abc[1]

In[2]=abc[2]

In[3]=abc[3]

In[4]=abc[4]

INT#2000

INT#1000

Mode=_LINEAR

Condition=_EQ_BOTH

2-491

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
tack an

d
 Tab

le In
stru

ctio
n

s

2

R
ecR

angeS
earch

• In[] can be a member of a higher-level structure.

Example: In[0]=str0.str1[0]

• In[] can be an array with two or more dimensions. If In[] is a two-dimensional array, the element num-
ber in the first dimension of the element that matches the search conditions is assigned to InOut-
Pos[0] and the element number in the second dimension is assigned to InOutPos[1].

• If In[] is a three-dimensional array, the element number in the first dimension of the element that
matches the search conditions is assigned to InOutPos[0], the element number in the second dimen-
sion is assigned to InOutPos[1], and the element number in the third dimension is assigned to InOut-
Pos[2].

• Make the data types of Member, MN, and MX the same as the data type of the members that are
searched in In[].

• When an element in the array is passed to In[], all elements below the passed element are pro-
cessed.

• If Member is a real number, depending on the value of Member, the desired results may not be
achieved due to error.

• If MN or MX is a real number, do not specify nonnumeric data for MN or MX.

• If the value of Size is 0, the value of Out is FALSE and the value of Num is 0. InOutPos[] does not
change.

• The correct result is not obtained if the value of Mode is _BIN_ASC or _BIN_DESC and the elements
of In[] are not in ascending or descending order. Place the elements in ascending or descending
order before executing this instruction.

• An error occurs in the following cases. ENO will be FALSE, and Out, InOutPos[], and Num will not
change.

• The data types of the member to search in In[], MN, and MX are different.

• MN is greater than MX.

• The value of Condition is outside of the valid range.

• The value of Mode is outside of the valid range.

• The value of Size exceeds the array area of In[].

• Member is not a member of In[].

• The array size of InOutPos[] is smaller than the number of dimensions of In[].

• Member is not integer or real number data.

• MN, MX, and Member have different data types.

• In[] is not an array of structures.

Additional Information

Precautions for Correct Use

2 Instruction Descriptions

2-492 NJ-series Instructions Reference Manual (W502)

RecSort

The RecSort instruction sorts the elements of an array of structures.

* If you omit the input parameter, the default value is not applied. A building error will occur.

Instruction Name FB/FUN Graphic expression ST expression

RecSort Record Sort FB RecSort_instance(Execute,
InOut, Size, Member, Order,
Done, Busy, Error);

Variables

Name Meaning I/O Description Valid range Unit Default

Size Number of
elements to
sort

Input

Number of array elements to
sort

Depends on data type. ---

1

Member Member to
sort

Member of In[] structure to
sort

*

Order Sort order Sort order _ASC,
_DESC

_ASC

InOut[]
(array)

Sort array In-out Array of structures to sort --- --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

Size OK

Member
OK OK OK OK OK OK OK OK OK OK

Specify the same data type as the sort member of InOut[]

Order Refer to Function for the enumerators of the enumerated type _eSORT_ORDER.

InOut[]
(array)

Specify an array of structures.

RecSort
RecSort_instance

Execute Done
InOut

Size Busy
Member Error
Order

2-493

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
tack an

d
 Tab

le In
stru

ctio
n

s

2

R
ecS

ort

When the value of Execute is TRUE, Size elements of InOut[] (a structure array) is sorted. Specifically,
the elements from InOut[0] to InOut[Size−1] are sorted. Specifically, the elements from InOut[0] to
InOut[Size−1] are sorted. Order specifies the sort order. Details are provided below. One of the mem-
bers to sort in the elements of In[] is passed as an argument to Member.

Always attach the element number to the in-out parameter that is passed to InOut[], e.g., array[3].

The data type of sort order Order is enumerated type _eSORT_ORDER. The meaning of the enumera-
tors are as follows:

The following example is for when Size is UINT#5, Member is 3456 and Order is _Asc.

Function

Enumerator Meaning

_ASC Ascending

_DESC Descending

RecSort_instance(A, abc[0], UINT#5, abc[0].m, _ASC, def, ghi, jkl);

LD ST

 abc[0]
UINT#5

 _ASC

abc[0]

jkl
ghi

def

abc[0].m

A RecSort
RecSort_instance

Execute Done
InOut

Size Busy
Member Error
Order

Member = abc[0].m

Member m

Sorted.

0000
3456
0000

Size=UINT#5

0000
2345
0000

0000
1234
0000

0000
3456
0000

0000
1234
0000

InOut[0]=abc[0]

InOut[1]=abc[1]

InOut[2]=abc[2]

InOut[3]=abc[3]

InOut[4]=abc[4]

Order=_ASC

0000
1234
0000

0000
1234
0000

0000
2345
0000

0000
3456
0000

0000
3456
0000

InOut[0]=abc[0]

InOut[1]=abc[1]

InOut[2]=abc[2]

InOut[3]=abc[3]

InOut[4]=abc[4]

2 Instruction Descriptions

2-494 NJ-series Instructions Reference Manual (W502)

If the power supply is interrupted during execution of this instruction, the contents of InOut may be cor-
rupted. If you back up the contents of InOut[] each time the instruction is completed normally, you can
restore the data if it is corrupted. Refer to Sample Programming.

• Execution of this instruction is continued until processing is completed even if the value of Execute
changes to FALSE or the execution time exceeds the task period. The value of Done changes to
TRUE when processing is completed. Use this to confirm normal completion of processing.

• Refer to Using this Section on page 2-2 for a timing chart for Execute, Done, Busy, and Error.

• If Member is a real number, depending on the value of Member, the desired results may not be
achieved due to error.

• When an element in the array is passed to InOut[], all elements below the passed element are pro-
cessed.

• If the value of Size is 0, the value of Done will be TRUE and InOut[] will not change.

• An error occurs in the following cases. Done and Busy will be FALSE and Error will be TRUE.

• The value of Order is outside of the valid range.

• The value of Size exceeds the array area of InOut[].

• Member is not a member of InOut[].

• Member is not integer or real number data.

• InOut[] is not an array of structures.

In this sample, the RecSort instruction is used to sort an array Abc[] of MyStr structures in ascending
order. The member to sort is Abc[].m. To prevent loosing data even if power is interrupted during pro-
cessing, Abc[] is backed up in a variable named Abc_backup[] before sorting. If a power interruption
occurs, the contents of Abc_backup[] is restored to Abc[] and the sort operation is redone.

Definitions of Global Variables

Additional Information

Precautions for Correct Use

Sample Programming

Abc
Abc_backup

[5(l:=False, m:=0, n:=0.0)]
[5(l:=False, m:=0, n:=0.0)]

ARRAY[0..4] OF MyStr
ARRAY[0..4] OF MyStr

Global Variables

Sort array
Backup of Abc[]

MyStr
 l
 m
 n

STRUCT
BOOL
INT
REAL

Variable

Data Types

Structure
Member
Member
Member

Data type Comment

Variable Data type Initial value Retain Comment

2-495

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
tack an

d
 Tab

le In
stru

ctio
n

s

2

R
ecS

ort

LD

Internal
Variables

Sort array
Backup of Abc[]

Abc
Abc_backup

ARRAY[0..4] OF MyStr
ARRAY[0..4] OF MyStr

RecSort_instance.Done

RecSort_instance.Error

Determine if execution of the RecSort instruction is completed.

Restore Abc_backup[] to Abc[] after power interruption.

Accept trigger.

Make backup and execute RecSort instruction.

OperatingEnd

Operating

OperatingEnd

Trigger

P_First_RunMode Sorting

Abc_backup Abc

RS
 Set Q1
 Reset1

RS_instance

Sorting

Operating

MOVE
EN ENO
In Out

Abc_backupAbc

 Abc[0]
 UINT#5
Abc[0].m
 _ASC

@MOVE
EN ENO
In Out

RecSort
RecSort_instance

Execute Done
InOut

Size Busy
Member Error
Order

Sorting
OperatingEnd
Trigger
Operating
RS_instance
RecSort_instance

False
False
False
False

BOOL
BOOL
BOOL
BOOL
RS
RecSort

Processing (retained)
Processing completed
Execution condition
Processing

Operating RecSort_instance.Done

Processing after normal end.
Inline ST

Inline ST

1 // Processing after normal end.
2 ;

Operating RecSort_instance.Error

Processing after error end

1 // Processing after error end
2 ;

Variable Data type Initial
value Retain Comment

External
Variables Variable Data type Comment

Operating

2 Instruction Descriptions

2-496 NJ-series Instructions Reference Manual (W502)

ST

IF ((P_First_RunMode = TRUE) AND (Sorting = TRUE)) THEN
 Abc:=Abc_backup;
END_IF;

IF ((Trigger=TRUE) AND (LastTrigger=FALSE)) THEN
 OperatingStart:=TRUE;
 Operating :=TRUE;
END_IF;
LastTrigger:=Trigger;

IF (OperatingStart=TRUE) THEN
 Abc_backup:=Abc;
 RecSort_instance(
 Execute:=FALSE,
 InOut :=Abc[0],
 Member:=Abc[0].m);
 OperatingStart:=FALSE;
END_IF;

IF (Operating=TRUE) THEN
 RecSort_instance(
 Execute:=TRUE,
 InOut :=Abc[0],
 Size :=UINT#5,
 Member:=Abc[0].m,
 Order :=_ASC,
 Busy :=>Sorting);

 IF (RecSort_instance.Done=TRUE) THEN

 Operating:=FALSE;
 END_IF;

 IF (RecSort_instance.Error=TRUE) THEN

 Operating:=FALSE;
 END_IF;
END_IF;

// Detect when Trigger changes to TRUE.

// Initialize RecSort instruction.

// Execute RecSort instruction.

// Start condition
// Sort array
// Member to sort

// Processing after normal end.

// Processing after error end.

Abc
Abc_backup

ARRAY[0..4] OF MyStr
ARRAY[0..4] OF MyStr

Sorting
Trigger
LastTrigger
OperatingStart
Operating
RS_instance
RecSort_instance

False
False
False
False
False

BOOL
BOOL
BOOL
BOOL
BOOL
RS
RecSort

Internal
Variables

Sort array
Backup of Abc[]

Processing (retained)
Execution condition
Value of Trigger from previous task period
Processing started
Processing

Variable Data type Initial
value Retain Comment

External
Variables Variable Data type Comment

// Restore Abc_backup[] to Abc[] after power interruption.

2-497

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
tack an

d
 Tab

le In
stru

ctio
n

s

2

R
ecN

um

RecNum

The RecNum instruction finds the number of records in an array of structures to the end data.

* If you omit the input parameter, the default value is not applied. A building error will occur.

The RecNum instruction searches from the start of an array In[] (whose elements are structures). The
instruction searches for elements for which the value of member to process Member matches end data
EndDat. As the result, it assigns the number of elements (records) up to the element just before the ele-
ment with an EndDat match to Out. One of the members to process in the elements of In[] is passed as
an argument to Member.

Always attach the element number to input parameter that is passed to In[], e.g., array[3].

Instruction Name FB/FUN Graphic expression ST expression

RecNum Get Number of
Records

FUN Out:=RecNum(In, Member,
EndDat);

Variables

Name Meaning I/O Description Valid range Unit Default

In[] (array) Array to
process

Input

Array of structures to pro-
cess

--- *Member Member to
process

Member of In[] structure to
process Depends on data type.

EndDat End data End data

Out Number of
records

Output Number of records Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In[] (array) Specify an array of structures.

Member OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

Must be the same data type as the members to process in In[].

EndDat Must be the same data type as Member.

Out OK

Function

(@)RecNum
EN ENO
In Out
Member
EndDat

2 Instruction Descriptions

2-498 NJ-series Instructions Reference Manual (W502)

The following example is for when EndDat is INT#9999.

In[] can be a member of a higher-level structure.

Example: In[0]=str0.str1[0]

• If there are no members in In[] that match EndDat, the total number of elements in In[] is assigned to
Out.

• If Member is a real number, depending on the value of Member, the desired results may not be
achieved due to error.

• If EndDat is a real number, do not specify nonnumeric data for it.

• When an element in the array is passed to In[], all elements below the passed element are pro-
cessed.

• An error occurs in the following cases. ENO will be FALSE, and Out will not change.

• Member is not a member of In[].

• Member or EndDat is STRING data and it does not end in a NULL character.

• Member is not Boolean, integer, bit string, real number, or text string data.

• Member and EndDat have different data types.

• In[] is not an array of structures.

Additional Information

Precautions for Correct Use

def:=RecNum(abc[0], abc[0].m, INT#9999);

LD ST

 abc[0]

 INT#9999

def
abc[0].m

RecNum
EN ENO
In
Member
EndDat

Member = abc[0].m
EndDat

Num = def

Member m

Matches EndDat.

0000
3456
0000

0000
2345
0000

0000
1234
0000

0000
9999
0000

0000
1234
0000

In[0]=abc[0]

In[1]=abc[1]

In[2]=abc[2]

In[3]=abc[3]

In[4]=abc[4]

INT#9999

UINT#3

2-499

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
tack an

d
 Tab

le In
stru

ctio
n

s

2

R
ecM

ax and R
ecM

in

RecMax and RecMin

* If you omit the input parameter, the default value is not applied. A building error will occur.

RecMax: Searches the specified member in the structures of an array of structures for the
maximum value.

RecMin: Searches the specified member in the structures of an array of structures for the
minimum value.

Instruction Name FB/FUN Graphic expression ST expression

RecMax Maximum Record
Search

FUN Out:=RecMax(In, Size,
Member, InOutPos, Num);

RecMin Minimum Record
Search

FUN Out:=RecMin(In, Size,
Member, InOutPos, Num);

Variables

Name Meaning I/O Description Valid range Unit Default

In[] (array) Array to
search

Input

Array of structures to search ---

*

Size Number of
elements to
search

Number of array elements to
search

Depends on data type.

1

Member Member to
search

Member of In[] structure to
search

*

InOutPos[]
(array)

Found ele-
ment
number

In-out Found element number Depends on data type. --- ---

Out Search
result

Output

Search result

Depends on data type. --- ---
Num Number

found
Number found

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In[] (array) Specify an array of structures.

Size OK

Member OK OK OK OK OK OK OK OK OK OK

Specify the same data type as the search member of In[].

(@)RecMax
EN ENO
In Out
Size Num
Member
InOutPos

(@)RecMin
EN ENO
In Out
Size Num
Member
InOutPos

2 Instruction Descriptions

2-500 NJ-series Instructions Reference Manual (W502)

These instructions search Size elements in an array of structures In[]. The search range is therefore
from In[0] to In[Size−1]. The instruction searches member to search Member in the structures.

One of the members to search in the elements of In[] is passed as an argument to Member. The ele-
ment number of the element with the maximum or minimum value is assigned to InOutPos[0] and the
number of elements that were found is assigned to Num. If more than one element was found, the ele-
ment number of the lowest element with the maximum or minimum value in In[] is assigned to InOut-
Pos[0].

Always attach the element number to input parameter that is passed to In[], e.g., array[3].

RecMax
The RecMax instruction searches for the maximum value. The maximum value of the member to
search is assigned to search result Out.

RecMin
The RecMin instruction searches for the minimum value. The minimum value of the member to search
is assigned to search result Out.

The following example shows the RecMax instruction when Size is UINT#5.

InOutPos[]
(array)

OK

Out OK OK OK OK OK OK OK OK OK OK

Num OK

Function

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

ghi:=RecMax(abc[0], UINT#5, abc[0].m, def, jkl);

LD ST

 abc[0]
UINT#5

 def

ghi

abc[0].m
jkl

def

RecMax
EN ENO
In
Size Num
Member
InOutPos

2-501

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
tack an

d
 Tab

le In
stru

ctio
n

s

2

R
ecM

ax and R
ecM

in

• In[] can be a member of a higher-level structure.

Example: In[0]=str0.str1[0]

• In[] can be an array with two or more dimensions. If In[] is a two-dimensional array, the element num-
ber in the first dimension of the element that matches the search conditions is assigned to InOut-
Pos[0] and the element number in the second dimension is assigned to InOutPos[1].

• If In[] is a three-dimensional array, the element number in the first dimension of the element that
matches the search conditions is assigned to InOutPos[0], the element number in the second dimen-
sion is assigned to InOutPos[1], and the element number in the third dimension is assigned to InOut-
Pos[2].

• If you use a different data type for Member and Out, use only the following data types and make sure
the valid range of Out includes the valid range of Member.

• USINT, UINT, UDINT, ULINT, SINT, INT, DINT, LINT, REAL, and LREAL

• If Member is a real number, depending on the value of Member, the desired results may not be
achieved due to error.

• When an element in the array is passed to In[], all elements below the passed element are pro-
cessed.

• If the value of Size is 0, the values of Out and Num are 0. The values in InOutPos[] do not change.

• An error occurs in the following cases. ENO will be FALSE, and Out, InOutPos[], and Num will not
change.

• The value of Size exceeds the array area of In[].

• Member is not a member of In[].

• The array size of InOutPos[] is smaller than the number of dimensions of In[].

• An array without a subscript is passed to In[].

• Member is not integer or real number data.

Additional Information

Precautions for Correct Use

Out = ghi

InOutPos[0] = def

Num = jkl

Member m
0000
1234
0000

Size=UINT#5

0000
2345
0000

0000
3456
0000

0000
1234
0000

0000
3456
0000

In[0]=abc[0]

In[1]=abc[1]

In[2]=abc[2]

In[3]=abc[3]

In[4]=abc[4]

Member=abc[0].m

INT#3456

UINT#2

UINT#2

2 Instruction Descriptions

2-502 NJ-series Instructions Reference Manual (W502)

F
C

S
 In

stru
ctio

n
s

2

2-503NJ-series Instructions Reference Manual (W502)

FCS Instructions

Instruction Name Page

StringSum Checksum Calculation 2-504

StringLRC Calculate Text String LRC 2-506

StringCRCCCITT Calculate Text String CRC-CCITT 2-508

StringCRC16 Calculate Text String CRC-16 2-510

AryLRC_** Calculate Array LRC Group 2-512

AryCRCCCITT Calculate Array CRC-CCITT 2-514

AryCRC16 Calculate Array CRC-16 2-516

2 Instruction Descriptions

2-504 NJ-series Instructions Reference Manual (W502)

StringSum

The StringSum instruction calculates the checksum for a text string.

The StringSum instruction calculates the checksum of text string to process In. Checksum Out will be
the number of bytes specified with byte size Size. Out is given as a hexadecimal text string with a NULL
character stored at the end.

The following example is for when In is ‘1234’ and Size is USINT#2.

If Size was USINT#1 in the above example, Out would be ‘A’.

Instruction Name FB/FUN Graphic expression ST expression

StringSum Checksum Calcula-
tion

FUN Out:=StringSum(In, Size);

Variables

Name Meaning I/O Description Valid range Unit Default

In Text string
to process Input

Text string to process Depends on data type. --- ''

Size Byte size Byte size of checksum 1 or 2 Bytes 1

Out Checksum Output Checksum Number of bytes speci-
fied by Size

Bytes ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK

Size OK

Out OK

Function

(@)StringSum
EN ENO
In Out
Size

abc:=StringSum(’1234’, USINT#2);

LD ST

‘1234’ abc
USINT#2

StringSum
EN ENO
In
Size

‘1234’In

31 3433 ‘CA’

Byte size Size = USINT#2
Total calculated.

Character codes

32 Out = abc

2-505

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

F
C

S
 In

stru
ctio

n
s

2

S
tringS

um

• If the sum of the character codes in In exceeds the number of digits of Size, the upper digits are dis-
carded.

• An error occurs in the following cases. ENO will be FALSE, and Out will not change.

• The value of Size is outside of the valid range.

• In does not end in a NULL character.

• The number of bytes in In is 0 (i.e., the NULL character only).

• The size of the processing result exceeds the size of Out.

Precautions for Correct Use

2 Instruction Descriptions

2-506 NJ-series Instructions Reference Manual (W502)

StringLRC

The StringLRC instruction calculates the LRC value (horizontal parity).

The StringLRC instruction calculates the LRC value (horizontal parity) of text string to process In. The
LRC value is the exclusive logical OR of the character codes for the text string in In. The LRC value
(Out) is given as a hexadecimal text string with a NULL character stored at the end.

The following example is for when In is ‘1234’.

Instruction Name FB/FUN Graphic expression ST expression

StringLRC Calculate Text
String LRC

FUN Out:=StringLRC(In);

Variables

Name Meaning I/O Description Valid range Unit Default

In Text string
to process

Input Text string to process Depends on data type. --- ''

Out LRC value Output LRC value 3 bytes max. (two sin-
gle-byte alphanumeric
characters plus the final
NULL character)

--- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK

Out OK

Function

(@)StringLRC
EN ENO
In Out

abc:=StringLRC(‘1234’);

LD ST

‘1234’
EN ENO
In

StringLRC

abc

Exclusive logical OR
Character codes

Out = abc

‘1234’In

343332 ‘04’31

2-507

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

F
C

S
 In

stru
ctio

n
s

2

S
tringLR

C

An error occurs in the following cases. ENO will be FALSE, and Out will not change.

• In does not end in a NULL character.

• The number of bytes in In is 0 (i.e., the NULL character only).

• The number of bytes for Out is outside of the valid range.

Precautions for Correct Use

2 Instruction Descriptions

2-508 NJ-series Instructions Reference Manual (W502)

StringCRCCCITT

The StringCRCCCITT instruction calculates the CRC-CCITT value using the XMODEM method.

The StringCRCCCITT instruction calculates the CRC-CCITT value of text string to process In using the
XMODEM method. CRC-CCITT value Out is given as a hexadecimal text string with a NULL character
stored at the end.

Set Initial to the initial value for CRC-CCITT value calculation. OutOrder specifies the byte order.
The data type of OutOrder is enumerated type _eBYTE_ORDER. The meanings of the enumerators
are as follows:

Instruction Name FB/FUN Graphic expression ST expression

StringCRCCCITT Calculate Text
String CRC-CCITT

FUN Out:=StringCRCCCITT(In,
Initial, OutOrder);

Variables

Name Meaning I/O Description Valid range Unit Default

In Text string
to process

Input

Text string to process

Depends on data type.

''

Initial Initial value Initial value of CRC-CCITT
value

0

OutOrder Byte order Order to process bytes in In _LOW_HIGH,
_HIGH_LOW

_HIGH
_LOW

Out CRC-
CCITT
value

Output CRC-CCITT value 5 bytes (four single-
byte alphanumeric
characters plus the final
NULL character)

--- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK

Initial OK

OutOrder Refer to Function for the enumerators of the enumerated type _eBYTE_ORDER.

Out OK

Function

Enumerators Meaning

_LOW_HIGH Lower byte first, upper byte last

_HIGH_LOW Upper byte first, lower byte last

(@)StringCRCCCITT
EN ENO
In Out
Initial
OutOrder

2-509

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

F
C

S
 In

stru
ctio

n
s

2

S
tringC

R
C

C
C

IT
T

The following example is for when In is ‘RD’, Initial is WORD#16#0000, and OutOrder is _HIGH_LOW.

An error occurs in the following cases. ENO will be FALSE, and Out will not change.

• The value of OutOrder is outside of the valid range.

• In does not end in a NULL character.

• The number of bytes in In is 0 (i.e., the NULL character only).

• The number of bytes for Out is outside of the valid range.

Precautions for Correct Use

abc:=StringCRCCCITT(’RD’, WORD#16#0000,
 _HIGH_LOW);

LD ST

‘RD’
WORD#16#0000

_HIGH_LOW

abc

StringCRCCCITT
EN ENO
In
Initial
OutOrder

Out = abc

‘RD’In

4452
CRC-CCITT value

Character codes

‘609D’

2 Instruction Descriptions

2-510 NJ-series Instructions Reference Manual (W502)

StringCRC16

The StringCRC16 instruction calculates the CRC-16 value using the MODBUS method.

The StringCRC16 instruction calculates the CRC-16 value of text string to process In using the MOD-
BUS method. CRC-16 value Out is given as a hexadecimal text string with a NULL character stored at
the end.

Set Initial to the initial value for CRC-16 value calculation. OutOrder specifies the byte order.
The data type of OutOrder is enumerated type _eBYTE_ORDER. The meanings of the enumerators
are as follows:

Instruction Name FB/FUN Graphic expression ST expression

StringCRC16 Calculate Text
String CRC-16

FUN Out:=StringCRC16(In, Ini-
tial, OutOrder);

Variables

Name Meaning I/O Description Valid range Unit Default

In Text string
to process

Input

Text string to process

Depends on data type.

''

Initial Initial value Initial value of CRC-16 value 16#FFF
F

OutOrder Byte order Order to process bytes in In _LOW_HIGH,
_HIGH_LOW

_LOW
_HIGH

Out CRC-16
value

Output CRC-16 value 5 bytes (four single-
byte alphanumeric
characters plus the final
NULL character)

--- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK

Initial OK

OutOrder Refer to Function for the enumerators of the enumerated type _eBYTE_ORDER.

Out OK

Function

Enumerators Meaning

_LOW_HIGH Lower byte first, upper byte last

_HIGH_LOW Upper byte first, lower byte last

(@)StringCRC16
EN ENO
In Out
Initial
OutOrder

2-511

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

F
C

S
 In

stru
ctio

n
s

2

S
tringC

R
C

16

The following example is for when In is ‘01’, Initial is WORD#16#FFFF and OutOrder is _LOW_HIGH.

An error occurs in the following cases. ENO will be FALSE, and Out will not change.

• The value of OutOrder is outside of the valid range.

• In does not end in a NULL character.

• The number of bytes in In is 0 (i.e., the NULL character only).

• The number of bytes for Out is outside of the valid range.

Precautions for Correct Use

abc:=StringCRC16(’01’, WORD#16#FFF
 _LOW_HIGH);

LD ST

‘01’
WORD#16#FFFF

_LOW_HIGH

abc

StringCRC16
EN ENO
In
Initial
OutOrder

Out = abc

In

CRC-16 value
Character codes

‘01’

3130 ‘D464’

2 Instruction Descriptions

2-512 NJ-series Instructions Reference Manual (W502)

AryLRC_**

The AryLRC_** instructions calculate the LRC value for an array.

* If you omit the input parameter, the default value is not applied. A building error will occur.

The AryLRC_** instructions calculate the LRC value (exclusive logical OR) of Size array elements of
array to process In[] starting from In[0]. The name of the instruction is determined by the data type of
In[]. For example, if In[] is the WORD data type, the instruction is AryLRC_WORD.

Always attach the element number to in-out parameter that is passed to In[], e.g., array[3].

Instruction Name FB/FUN Graphic expression ST expression

AryLRC_** Calculate Array
LRC Group

FUN Out:=AryLRC_**(In, Size);

"**" must be a bit string data
type.

Variables

Name Meaning I/O Description Valid range Unit Default

In[] (array) Array to
process

Input

Array to process

Depends on data type. ---

*

Size Number of
elements to
process

Number of In[] elements 1

Out LRC value Output LRC value Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In[] (array) OK OK OK OK

Size OK

Out Must be same data type as In[]

Function

(@)AryLRC_**
EN ENO
In Out
Size

"**" must be a bit string data type.

2-513

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

F
C

S
 In

stru
ctio

n
s

2

A
ryLR

C
_**

The following example shows the AryLRC_WORD instruction when Size is UINT#5.

• Use the same data type for In[] and Out.

• If the value of Size is 0, the value of Out is 16#00.

• An error occurs in the following case. ENO will be FALSE, and Out will not change.

• The value of Size exceeds the array area of In[].

• An array without a subscript is passed to In[].

• In[] is not an array of bit strings.

Precautions for Correct Use

def:=AryLRC_WORD(abc[4], UINT#5);

LD ST

abc[4] def
UINT#5

AryLRC_WORD
EN ENO
In
Size

16#1638Out = def

16#1234
16#2345
16#3456
16#4567
16#5678

In[0]=abc[4]
In[1]=abc[5]
In[2]=abc[6]
In[3]=abc[7]
In[4]=abc[8]

Size = UINT#5
Exclusive logical OR

2 Instruction Descriptions

2-514 NJ-series Instructions Reference Manual (W502)

AryCRCCCITT

The AryCRCCCITT instruction calculates the CRC-CCITT value using the XMODEM method.

* If you omit the input parameter, the default value is not applied. A building error will occur.

The AryCRCCCITT instruction calculates the CRC-CCITT value of Size elements of array to process
In[] starting from In[0]. The XMODEM method is used.

Set Initial to the initial value for CRC-CCITT value calculation. OutOrder specifies the byte order.

Instruction Name FB/FUN Graphic expression ST expression

AryCRCCCITT Calculate Array
CRC-CCITT

FUN Out:=AryCRCCCITT(In,
Size, Initial, OutOrder);

Variables

Name Meaning I/O Description Valid range Unit Default

In[] (array) Array to
process

Input

Array to process

Depends on data type.

*

Size Number of
elements to
process

Number of In[] elements 1

Initial Initial value Initial value of CRC-CCITT
value

0

OutOrder Byte order Order to process bytes in In _LOW_HIGH,
_HIGH_LOW

_HIGH
_LOW

Out CRC-
CCITT
value

Output CRC-CCITT value Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In[] (array) OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

Size OK

Initial OK

OutOrder Refer to Function for the enumerators for the enumerated type _eBYTE_ORDER.

Out OK

Function

(@)AryCRCCCITT
EN ENO
In Out
Size
Initial
OutOrder

2-515

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

F
C

S
 In

stru
ctio

n
s

2

A
ryC

R
C

C
C

IT
T

The data type of OutOrder is enumerated type _eBYTE_ORDER. The meaning of the enumerators are
as follows:

Always attach the element number to in-out parameter that is passed to In[], e.g., array[3].

The following example is for when Size is UINT#2, Initial is WORD#16#0000, and OutOrder is
_LOW_HIGH.

• If the value of Size is 0, the value of Out is WORD#16#00.

• An error occurs in the following cases. ENO will be FALSE, and Out will not change.

• The value of OutOrder is outside of the valid range.

• The value of Size exceeds the array area of In[].

• An array without a subscript is passed to In[].

• The elements in In[] are not bit string, integer, real number, time, duration, date, or date and time
data.

Enumerators Meaning

_LOW_HIGH Lower byte first, upper byte last

_HIGH_LOW Upper byte first, lower byte last

Precautions for Correct Use

def:=AryCRCCCITT(abc[4], UINT#2,
 WORD#16#0000,
 _LOW_HIGH);

LD ST

abc[4] def
UINT#2

_LOW_HIGH
WORD#16#0000

AryCRCCCITT
EN ENO
In
Size
Initial
OutOrder

16#9D6016#5244 Out = def
16#52
16#44

In[0]=abc[4]
In[1]=abc[5]Size = UINT#2

CRC-CCITT value

2 Instruction Descriptions

2-516 NJ-series Instructions Reference Manual (W502)

AryCRC16

The AryCRC16 instruction calculates the CRC-16 value using the MODBUS method.

* If you omit the input parameter, the default value is not applied. A building error will occur.

The AryCRC16 instruction calculates the CRC-16 value of Size array elements of array to process In[]
starting from In[0]. The MODBUS method is used.

Set Initial to the initial value for CRC-16 value calculation. OutOrder specifies the byte order.

Instruction Name FB/FUN Graphic expression ST expression

AryCRC16 Calculate Array
CRC-16

FUN Out:=AryCRC16(In, Size,
Initial, OutOrder);

Variables

Name Meaning I/O Description Valid range Unit Default

In[] (array) Array to
process

Input

Array to process

Depends on data type.

*

Size Number of
elements to
process

Number of In[] elements 1

Initial Initial value Initial value of CRC-16 value 16#FFF
F

OutOrder Byte order Order to process bytes in In _LOW_HIGH,
_HIGH_LOW

_LOW
_HIGH

Out CRC-16
value

Output CRC-16 value Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In[] (array) OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

Size OK

Initial OK

OutOrder Refer to Function for the enumerators for the enumerated type _eBYTE_ORDER.

Out OK

Function

(@)AryCRC16
EN ENO
In Out
Size
Initial
OutOrder

2-517

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

F
C

S
 In

stru
ctio

n
s

2

A
ryC

R
C

16

The data type of OutOrder is enumerated type _eBYTE_ORDER. The meaning of the enumerators are
as follows:

The following example is for when Size is UINT#2, Initial is WORD#16#FFFF and OutOrder is
_LOW_HIGH.

• If the value of Size is 0, the value of Out is WORD#16#0.

• An error occurs in the following cases. ENO will be FALSE, and Out will not change.

• The value of OutOrder is outside of the valid range.

• The value of Size exceeds the array area of In[].

• An array without a subscript is passed to In[].

• The elements in In[] are not bit string, integer, real number, time, duration, date, or date and time
data.

Enumerator Meaning

_LOW_HIGH Lower byte first, upper byte last

_HIGH_LOW Upper byte first, lower byte last

Precautions for Correct Use

def:=AryCRC16(abc[4], UINT#2,
 WORD#16#FFFF,
 _LOW_HIGH);

LD ST

abc[4] def
UINT#2

_LOW_HIGH
WORD#16#FFFF

AryCRC16
EN ENO
In
Size
Initial
OutOrder

Out = defSize = UINT#2
CRC-16 value

16#D46416#30
16#31

In[0]=abc[4]
In[1]=abc[5]

2 Instruction Descriptions

2-518 NJ-series Instructions Reference Manual (W502)

Text S
trin

g
 In

stru
ctio

n
s

2

2-519NJ-series Instructions Reference Manual (W502)

Text String Instructions

Instruction Name Page

CONCAT Concatenate String 2-520

LEFT and RIGHT Get String Left/Get String Right 2-522

MID Get String Any 2-524

FIND Find String 2-526

LEN String Length 2-528

REPLACE Replace String 2-529

DELETE Delete String 2-531

INSERT Insert String 2-533

GetByteLen Get Byte Length 2-535

ClearString Clear String 2-537

ToUCase and ToLCase Convert to Uppercase/
Convert to Lowercase

2-538

TrimL and TrimR Trim String Left/Trim String Right 2-540

2 Instruction Descriptions

2-520 NJ-series Instructions Reference Manual (W502)

CONCAT

The CONCAT instruction joins two to five text strings.

* If you omit the input parameter that connects to InN, the default value is not applied, and a building error will occur. For
example, if N is 3 and the input parameters that connect to In1 and In2 are omitted, the default values are applied, but if the
input parameter that connects to In3 is omitted, a building error will occur.

The CONCAT instruction joins 2 to 5 text strings in strings to join In1 to InN in that order. It adds a NULL
character to the end.

The following example is for when In1 is ‘AB’, In2 is ‘C’ and In3 is ‘DEF’. The value of variable abc will
be ‘ABCDEF’.

Instruction Name FB/FUN Graphic expression ST expression

CONCAT Concatenate String FUN Out:=CONCAT(In1,···, InN);

Variables

Name Meaning I/O Description Valid range Unit Default

In1 to InN Strings to
join

Input Text strings to join, where N
is 2 to 5

Depends on data type. --- ''*

Out Result of
joining

Output Text string that resulted from
joining

Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In1 to InN OK

Out OK

Function

(@)CONCAT
EN ENO
In1 Out
 :
InN

abc:=CONCAT(’AB’, ‘C’, ‘DEF’);

LD ST

abc ‘AB’
 ‘C’
‘DEF’

CONCAT
EN ENO
In1
In2
In3

2-521

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

Text S
trin

g
 In

stru
ctio

n
s

2

C
O

N
C

AT

An error occurs in the following cases. ENO will be FALSE, and Out will not change.

• One of In1 to InN does not end in a NULL character.

• The length of the joined character strings exceeds the size of Out.

Precautions for Correct Use

‘ABCDEF’Out=abc‘C’In2

‘AB’In1

‘DEF’In3

Joined.

2 Instruction Descriptions

2-522 NJ-series Instructions Reference Manual (W502)

LEFT and RIGHT
These instructions extract a text string with the specified number of characters.

These instructions extract a text string with the number of characters specified by number of characters
L from the source string In. A NULL character is placed at the end of extraction result Out.

LEFT
Extracts characters from the left (beginning) of In.

LEFT: Extracts characters from the left (beginning) of the text string.

RIGHT: Extracts characters from the right (end) of the text string.

Instruction Name FB/FUN Graphic expression ST expression

LEFT Get String Left FUN Out:=LEFT(In, L);

RIGHT Get String Right FUN Out:=RIGHT(In, L);

Variables

Name Meaning I/O Description Valid range Unit Default

In Source
string

Input

Text string from which to
extract characters

Depends on data type.

''

L Number of
characters

Number of characters to
extract

0 to 1985 1

Out Extraction
result

Output Extracted text string Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK

L OK

Out OK

Function

(@)LEFT
EN ENO
In Out
L

(@)RIGHT
EN ENO
In Out
L

2-523

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

Text S
trin

g
 In

stru
ctio

n
s

2

LE
F

T
 and R

IG
H

T

The following example is for when In is ‘ABCDEF’ and L is UINT#3. The value of variable abc will be
‘ABC’.

RIGHT
Extracts characters from the right (end) of In.

The following example is for when In is ‘ABCDEF’ and L is UINT#3. The value of variable abc will be
‘DEF’.

• If the value of L is larger than the number of characters in In or it is within the valid range, an error
does not occur and all of the characters in In are copied to Out.

• If the value of L is 0, an error does not occur and only the NULL character is assigned to Out.

• Multi-byte characters are counted as one character each.

• An error occurs in the following cases. ENO will be FALSE, and Out will not change.

• In does not end in a NULL character.

• In results in a character code error.

• The execution result exceeds the size of Out.

Precautions for Correct Use

abc:=LEFT(‘ABCDEF’, UINT#3);

LD ST

abc ‘ABCDEF’
 UINT#3

LEFT
EN ENO
In
L

Out=abc

‘ABCDEF’In

Three characters extracted from the left.

‘ABC’

abc:=RIGHT(‘ABCDEF’, UINT#3);

LD ST

abc ‘ABCDEF’
 UINT#3

RIGHT
EN ENO
In
L

‘DEF’Out=abc

‘ABCDEF’In

Three characters extracted from the right.

2 Instruction Descriptions

2-524 NJ-series Instructions Reference Manual (W502)

MID

The MID instruction extracts a text string with the specified number of characters from the specified
character position.

The MID instruction extracts a text string with the number of characters specified by number of charac-
ters L from the source string In. The first character to extract is specified by first character P. A NULL
character is placed at the end of extraction result Out.

Instruction Name FB/FUN Graphic expression ST expression

MID Get String Any FUN Out:=MID(In, L, P);

Variables

Name Meaning I/O Description Valid range Unit Default

In Source
string

Input

Text string from which to
extract characters

Depends on data type.

''

L Number of
characters

Number of characters to
extract

0 to 1985

1
P First char-

acter
First character to extract 1 to 1985

Out Extraction
result

Output Extracted text string Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK

L OK

P OK

Out OK

Function

(@)MID
EN ENO
In Out
L
P

2-525

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

Text S
trin

g
 In

stru
ctio

n
s

2

M
ID

The following example is for when In is ‘ABCDEF’, L is UINT#3, and P is UINT#2. The value of variable
abc will be ‘BCD’.

• If the value of L is 0, an error does not occur and only the NULL character is assigned to Out.

• Multi-byte characters are counted as one character each.

• An error occurs in the following cases. ENO will be FALSE, and Out will not change.

• In does not end in a NULL character.

• In results in a character code error.

• In does not have enough characters for the number of characters specified by L from the position
specified by P.

• The value of P is 0.

• The execution result exceeds the size of Out.

Precautions for Correct Use

abc:=MID(‘ABCDEF’, UINT#3, UINT#2);

LD ST

abc ‘ABCDEF’
 UINT#3
 UINT#2

MID
EN ENO
In
L
P

‘BCD’Out=abc

‘ABCDEF’In

Three characters are extracted starting from second character.

2 Instruction Descriptions

2-526 NJ-series Instructions Reference Manual (W502)

FIND

The FIND instruction searches a specified text string for the position of a specified text string.

The FIND instruction searches for search key In2 in string to search In1. The position of In2 from the
start of In1 is assigned to search result Out. If In2 is not found in In1, Out is 0.

The following example is for when In1 is ‘ABCDEF’ and In2 is ‘CD’. The value of variable abc will be
UINT#3.

Instruction Name FB/FUN Graphic expression ST expression

FIND Find String FUN Out:=FIND(In1, In2);

Variables

Name Meaning I/O Description Valid range Unit Default

In1 String to
search Input

Text string to search

Depends on data type. --- ''

In2 Search key Text string to search for

Out Search
result

Output Search result 0 to 1985 --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In1 OK

In2 OK

Out OK

Function

(@)FIND
EN ENO
In1 Ou
In2

abc:=FIND(‘ABCDEF’, ‘CD’);

LD ST

abc ‘ABCDEF’
 ‘CD’

FIND
EN ENO
In1
In2

UINT#3Out=abc

‘ABCDEF’In1

‘CD’In2

Searches for position of In2 in In1.

2-527

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

Text S
trin

g
 In

stru
ctio

n
s

2

F
IN

D

• Make sure the number of characters in In2 is less than the number of characters in In1. Otherwise,
the value of Out will be 0.

• If In2 exists more than once in In1, the position of the first In2 from the beginning of In1 is assigned to
Out.

• If the value of In1 and In2 is only the NULL character, the value of Out is 1.

• Multi-byte characters are counted as one character each.

• An error occurs in the following cases. ENO will be FALSE, and Out will not change.

• In1 or In2 does not end in a NULL character.

• In1 or In2 results in a character code error.

Precautions for Correct Use

2 Instruction Descriptions

2-528 NJ-series Instructions Reference Manual (W502)

LEN

The LEN instruction finds the number of characters in a text string.

The LEN instruction finds the number of characters in length string In. A NULL character at the end of
In is not counted.

The following example is for when In is ‘ABCDEF’. The value of variable abc will be UINT#6.

• Multi-byte characters are counted as one character each.

• An error occurs in the following cases. ENO will be FALSE, and Out will not change.

• In does not end in a NULL character.

• In results in a character code error.

Instruction Name FB/FUN Graphic expression ST expression

LEN String Length FUN Out:=LEN(In);

Variables

Name Meaning I/O Description Valid range Unit Default

In Length
string

Input Text string to find length Depends on data type. --- ''

Out Find result Output Length detection result 0 to 1985 --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK

Out OK

Function

Precautions for Correct Use

(@)LEN
EN ENO
In Out

abc:=LEN(‘ABCDEF’);

LD ST

abc ‘ABCDEF’

LEN
EN ENO
In

UINT#6Out=abc‘ABCDEF’In
Number of characters

2-529

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

Text S
trin

g
 In

stru
ctio

n
s

2

R
E

P
LA

C
E

REPLACE

The REPLACE instruction replaces part of a text string with another text string.

The REPLACE instruction replaces part of string for replacement In1 with string to insert In2. First the
number of characters specified by L from the position specified by P are deleted from In1. In2 is then
inserted for the deleted characters. A NULL character is placed at the end of replacement result Out.

Instruction Name FB/FUN Graphic expression ST expression

REPLACE Replace String FUN Out:=REPLACE(In1, In2, L,
P);

Variables

Name Meaning I/O Description Valid range Unit Default

In1 String for
replace-
ment

Input

Text string for replacement

Depends on data type.

''

In2 Insert
string

Text string to insert

L Number of
characters

Number of characters to
delete

0 to 1985

1P Replace-
ment start
position

Replacement start position 1 to 1985

Out Replace-
ment result

Output Text string after replacement Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In1 OK

In2 OK

L OK

P OK

Out OK

Function

(@)REPLACE
EN ENO
In1 Ou
In2
L
P

2 Instruction Descriptions

2-530 NJ-series Instructions Reference Manual (W502)

The following example is for when In1 is ‘ABCDEF’, In2 is ‘GHI’, P is UINT#2, and L is UINT#4. The
value of variable abc will be ‘AGHIF’.

• If L is 0, an error will not occur and all of the characters in In1 are inserted to Out.

• If the value of In2 is 0, L characters are deleted from P in In1.

• Multi-byte characters are counted as one character each.

• An error occurs in the following cases. ENO will be FALSE, and Out will not change.

• In1 or In2 does not end in a NULL character.

• In1 results in a character code error.

• In1 does not have enough characters for the number of characters specified by L from the position
specified by P.

• The value of P is 0.

• The length of the replacement result exceeds the size of Out.

Precautions for Correct Use

abc:=REPLACE(‘ABCDEF’, ‘GHI’, UINT#4, UINT#2);

LD ST

abc ‘ABCDEF’
 ‘GHI’
 UINT#4
 UINT#2

REPLACE
EN ENO
In1
In2
L
P

Out=abcIn

Repl

Deleted

Insert

‘AGHIF’‘ABCDEF’

‘GHI’

2-531

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

Text S
trin

g
 In

stru
ctio

n
s

2

D
E

LE
T

E

DELETE

The DELETE instruction deletes all or part of a text string.

The DELETE string deletes the number of characters specified by L from the position specified by P
from In. A NULL character is placed at the end of deletion result Out.

Instruction Name FB/FUN Graphic expression ST expression

DELETE Delete String FUN Out:=DELETE(In, L, P);

Variables

Name Meaning I/O Description Valid range Unit Default

In String for
deletion

Input

Text string for deletion Depends on data type.

''

L Number of
characters

Number of characters to
delete

0 to 1985

1
P Deletion start

position
Deletion start position 1 to 1985

Out Deletion
result

Output Text string after deletion Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK

L OK

P OK

Out OK

Function

(@)DELETE
EN ENO
In Out
L
P

2 Instruction Descriptions

2-532 NJ-series Instructions Reference Manual (W502)

The following example is for when In is 'ABCDEF', L is UINT#4, and P is UINT#2. The value of variable
abc will be 'AF'.

• If L is 0, an error will not occur and all of the characters in In are inserted to Out.

• Multi-byte characters are counted as one character each.

• An error occurs in the following cases. ENO will be FALSE, and Out will not change.

• In does not end in a NULL character.

• In results in a character code error.

• In does not have enough characters for the number of characters specified by L from the position
specified by P.

• The value of P is 0.

• The execution result exceeds the size of Out.

Precautions for Correct Use

abc:=DELETE(‘ABCDEF’, UINT#4, UINT#2);

LD ST

abc ‘ABCDEF’
 UINT#4
 UINT#2

DELETE
EN ENO
In
L
P

‘AF’Out=abc‘ABCDEF’In

Deleted

2-533

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

Text S
trin

g
 In

stru
ctio

n
s

2

IN
S

E
R

T

INSERT

The INSERT instruction inserts a text string into another text string.

The INSERT instruction inserts insertion string In2 into original string In1 at insertion start position P. A
NULL character is placed at the end of insertion result Out.

Instruction Name FB/FUN Graphic expression ST expression

INSERT Insert String FUN Out:=INSERT(In1, In2, P);

Variables

Name Meaning I/O Description Valid range Unit Default

In1 Original
string

Input

Text string into which to
insert string

Depends on data type.

''

In2 Insert
string

Text string to insert

P Insertion
start posi-
tion

Insertion start position 0 to 1985 0

Out Insertion
result

Output Text string after insertion Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In1 OK

In2 OK

P OK

Out OK

Function

(@)INSERT
EN ENO
In1 Ou
In2
P

2 Instruction Descriptions

2-534 NJ-series Instructions Reference Manual (W502)

The following example is for when In1 is 'ABCD', In2 is 'GHI', and P is UINT#2. The value of variable
abc will be 'ABGHICD'.

If P is 0, In1 is inserted at the end of In2.

• Multi-byte characters are counted as one character each.

• An error occurs in the following cases. ENO will be FALSE, and Out will not change.

• In1 or In2 does not end in a NULL character.

• In1 results in a character code error.

• The value of P is greater than the number of characters in In1.

• The length of the insertion result exceeds the size of Out.

Additional Information

Precautions for Correct Use

abc:=INSERT(‘ABCD’, ‘GHI’, UINT#2);

LD ST

abc ‘ABCD’
 ‘GHI’
UINT#2

INSERT
EN ENO
In1
In2
P

‘ABGHICD’Out=abc‘ABCD’In1

‘GHI’In2

Insert

2-535

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

Text S
trin

g
 In

stru
ctio

n
s

2

G
etB

yteLen

GetByteLen

The GetByteLen instruction counts the number of bytes in a text string.

The GetByteLen instruction counts the number of bytes in count string In. A NULL character at the end
of the text string is not counted.

The following example is for when In is ‘ABCDEF’. The value of variable abc will be 6.

Instruction Name FB/FUN Graphic expression ST expression

GetByteLen Get Byte Length FUN Out:=GetByteLen(In);

Variables

Name Meaning I/O Description Valid range Unit Default

In Count
string

Input Text string to count number
of bytes

Depends on data type. --- ''

Out Number of
bytes

Output Number of bytes 0 to 1985 Bytes ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK

Out OK

Function

(@)GetByteLen
EN ENO
In Out

abc:=GetByteLen(‘ABCDEF’);

LD ST

abc‘ABCDEF’

GetByteLen
EN ENO
In

6Out=abc‘ABCDEF’In
Number of bytes

2 Instruction Descriptions

2-536 NJ-series Instructions Reference Manual (W502)

If In contains only ASCII characters, the result will be the same as the result of the LEN instruction.

An error occurs in the following case. ENO will be FALSE, and Out will not change.

• In does not end in a NULL character.

Additional Information

Precautions for Correct Use

2-537

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

Text S
trin

g
 In

stru
ctio

n
s

2

C
learS

tring

ClearString

The ClearString instruction clears a text string.

The ClearString instruction clears clear string InOut. NULL characters are stored in the entire range of
InOut.

The following figure shows a programming example. The content of STRING variable will be all NULL
characters.

Return value Out is not used when the instruction is used in ST.

Instruction Name FB/FUN Graphic expression ST expression

ClearString Clear String FUN ClearString(InOut);

Variables

Name Meaning I/O Description Valid range Unit Default

InOut Clear string In-out Text string to clear Depends on data type. --- ---

Out Return
value

Output Always TRUE TRUE only --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

InOut OK

Out OK

Function

Precautions for Correct Use

(@)ClearString
EN ENO
InOut

 Out

ClearString(abc);

LD ST

abc abc

ClearString
EN ENO
InOut

2 Instruction Descriptions

2-538 NJ-series Instructions Reference Manual (W502)

ToUCase and ToLCase

ToUCase
The ToUCase instruction converts all single-byte letters in data to convert In to uppercase.

ToLCase
The ToLCase instruction converts all single-byte letters in data to convert In to lowercase.

Both instructions output a NULL character at the end of the text string. Only single-byte characters are
changed.

ToUCase: Converts all single-byte letters in a text string to uppercase.

ToLCase: Converts all single-byte letters in a text string to lowercase.

Instruction Name FB/FUN Graphic expression ST expression

ToUCase Convert to Upper-
case

FUN Out:=ToUCase(In);

ToLCase Convert to Lower-
case

FUN Out:=ToLCase(In);

Variables

Name Meaning I/O Description Valid range Unit Default

In Data to
convert

Input Text string to convert Depends on data type. --- ''

Out Conver-
sion result

Output Converted text string Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK

Out OK

Function

(@)ToUCase
EN ENO
In Out

(@)ToLCase
EN ENO
In Out

2-539

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

Text S
trin

g
 In

stru
ctio

n
s

2

ToU
C

ase and ToLC
ase

The following example for the ToUCase instruction is for when In is ‘xyz’. The value of variable abc will
be ‘XYZ’.

• Two-byte letters are not converted.

• An error occurs in the following cases. ENO will be FALSE, and Out will not change.

• In does not end in a NULL character.

• In results in a character code error.

• The conversion result exceeds the size of Out.

Precautions for Correct Use

abc:=ToUCase(‘xyz’);

LD ST

‘xyz’ abc

ToUCase
EN ENO
In

2 Instruction Descriptions

2-540 NJ-series Instructions Reference Manual (W502)

TrimL and TrimR

TrimL
The TrimL instruction deletes blank characters from the beginning of string to trim In. If there are no
blank characters at the beginning of the text string, nothing is done.

TrimR
The TrimR instruction deletes blank characters from the end of string to trim In. If there are no blank
characters at the end of the text string, nothing is done.

Both instructions output a NULL character at the end of the text string. Both ASCII spaces (16#20) and
two-byte Japanese spaces (16#E38080) are treated as blank characters.

TrimL: Removes blank space from the beginning of a text string.

TrimR: Removes blank space from the end of a text string.

Instruction Name FB/FUN Graphic expression ST expression

TrimL Trim String Left FUN Out:=TrimL(In);

TrimR Trim String Right FUN Out:=TrimR(In);

Variables

Name Meaning I/O Description Valid range Unit Default

In String to
trim

Input Text string to trim Depends on data type. --- ''

Out Trimming
result

Output Text string after trimming Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK

Out OK

Function

(@)TrimL
EN ENO
In Out

(@)TrimR
EN ENO
In Out

2-541

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

Text S
trin

g
 In

stru
ctio

n
s

2

Trim
L and Trim

R

The following example for the TrimL instruction is for when In is ‘ AB C’. The value of variable abc will
be ‘ AB C’.

An error occurs in the following cases. ENO will be FALSE, and Out will not change.

• In does not end in a NULL character.

• In results in a character code error.

• The conversion result exceeds the size of Out.

Precautions for Correct Use

abc:=TrimL(‘ AB C’);

LD ST

‘ AB C’ abc

TrimL
EN ENO
In

2 Instruction Descriptions

2-542 NJ-series Instructions Reference Manual (W502)

T
im

e an
d

 T
im

e o
f D

ay In
stru

ctio
n

s

2

2-543NJ-series Instructions Reference Manual (W502)

Time and Time of Day Instructions

Instruction Name Page Instruction Name Page
ADD_TIME Add Time 2-544 DateToSec Convert Date to Seconds 2-576
ADD_TOD_TIME Add Time to Time of Day 2-546 TodToSec Convert Time of Day to Sec-

onds
2-577

ADD_DT_TIME Add Time to Date and Time 2-548 SecToDt Convert Seconds to Date and
Time

2-578

SUB_TIME Subtract Time 2-550 SecToDate Convert Seconds to Date 2-580
SUB_TOD_TIME Subtract Time from Time of

Day
2-552 SecToTod Convert Seconds to Time of

Day
2-582

SUB_TOD_TOD Subtract Time of Day 2-554 TimeToNanoSec Convert Time to Nanosec-
onds

2-583

SUB_DATE_DATE Subtract Date 2-555 TimeToSec Convert Time to Seconds 2-584
SUB_DT_DT Subtract Date and Time 2-556 NanoSecToTime Convert Nanoseconds to

Time
2-585

SUB_DT_TIME Subtract Time from Date and
Time

2-558 SecToTime Convert Seconds to Time 2-586

MULTIME Multiply Time 2-560 ChkLeapYear Check for Leap Year 2-588
DIVTIME Divide Time 2-562 GetDaysOfMonth Get Days in Month 2-589
CONCAT_DATE_TOD Concatenate Date and Time

of Day
2-564 DaysToMonth Convert Days to Month 2-591

DT_TO_TOD Extract Time of Day from
Date and Time

2-566 GetDayOfWeek Get Day of Week 2-593

DT_TO_DATE Extract Date from Date and
Time

2-568 GetWeekOfYear Get Week Number 2-595

SetTime Set Time 2-570 DtToDateStruct Break Down Date and Time 2-597
GetTime Get Time of Day 2-572 DateStructToDt Join Time 2-599
DtToSec Convert Date and Time to

Seconds
2-574

2 Instruction Descriptions

2-544 NJ-series Instructions Reference Manual (W502)

ADD_TIME

The ADD_TIME instruction adds two times.

The ADD_TIME instruction adds two times, In1 and In2. The result of addition in Out is also a time.

The following example is for when In1 is T#1d2h3m4s and In2 is T#5d6h7m8s.

Instruction Name FB/FUN Graphic expression ST expression

ADD_TIME Add Time FUN Out:=ADD_TIME(In1, In2);

Variables

Name Meaning I/O Description Valid range Unit Default

In1 Add time 1
Input

Add time 1
Depends on data type. ns T#0s

In2 Add time 2 Add time 2

Out Total time Output Total time Depends on data type. ns ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In1 OK

In2 OK

Out OK

Function

(@)ADD_TIME

EN ENO
In1 Out
In2

abc:=ADD_TIME(T#1d2h3m4s, T#5d6h7m8s);

LD ST

abc

ADD_TIME

EN ENO
In1
In2

T#1d2h3m4s
T#5d6h7m8s

+

 T#1d2h3m4s

 T#5d6h7m8s

T#6d8h10m12s

In1

In2

Out=abc

2-545

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

T
im

e an
d

 T
im

e o
f D

ay In
stru

ctio
n

s

2

A
D

D
_T

IM
E

An error will not occur even if the addition result exceeds the valid range of Out.

• T#106751d_23h_47m_16s_854.775807ms + T#0.000001ms
→ T#-106751d_23h_47m_16s_854.775808ms

• T#-106751d_23h_47m_16s_854.775808ms + T#-0.000001ms
→ T#106751d_23h_47m_16s_854.775807ms

Precautions for Correct Use

2 Instruction Descriptions

2-546 NJ-series Instructions Reference Manual (W502)

ADD_TOD_TIME

The ADD_TOD_TIME instruction adds a time to a time of day.

The ADD_TOD_TIME instruction adds a time, In2, to a time of day In1. The result of addition in Out is
also a time of day.

The following example is for when In1 is TOD#23:59:59.999999999 and In2 is
T#1d0h0m0.000000001s.

Instruction Name FB/FUN Graphic expression ST expression

ADD_TOD_TIME Add Time to Time
of Day

FUN Out:=ADD_TOD_TIME(In1,
In2);

Variables

Name Meaning I/O Description Valid range Unit Default

In1 Add time of
day Input

Add time of day

Depends on data type.

Hour, min-
utes, seconds

TOD#0:0
:0

In2 Add time Add time ns T#0s

Out Resulting
time of day

Output Resulting time of day Depends on data type. Hour, min-
utes, seconds

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In1 OK

In2 OK

Out OK

Function

(@)ADD_TOD_TIME

EN ENO
In1 Out
In2

abc:=ADD_TOD_TIME(TOD#23:59:59.999999999,
 T#1d0h0m0.000000001s);

LD ST

abcTOD#23:59:59.999999999
T#1d0h0m0.000000001s

ADD_TOD_TIME

EN ENO
In1
In2

+

TOD#23:59:59.999999999

T#1d0h0m0.000000001s

TOD#0:0:0.000000000

In1

In2

Out=abc

2-547

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

T
im

e an
d

 T
im

e o
f D

ay In
stru

ctio
n

s

2

A
D

D
_TO

D
_T

IM
E

An error will not occur even if the addition result exceeds the valid range of Out.

• TOD#23:59:59.999999999 + T#0.000001ms → TOD#0:0:0.000000000

• TOD#0:0:0.000000000 + T#-0.000001ms → TOD#23:59:59.999999999

Precautions for Correct Use

2 Instruction Descriptions

2-548 NJ-series Instructions Reference Manual (W502)

ADD_DT_TIME

The ADD_DT_TIME instruction adds a time to a date and time.

Instruction Name FB/FUN Graphic expression ST expression

ADD_DT_TIME Add Time to Date
and Time

FUN Out:=ADD_DT_TIME(In1,
In2);

Variables

Name Meaning I/O Description Valid range Unit Default

In1 Add date
and time

Input

Add date and time

Depends on data type.

Year, month,
day, hour,
minutes, sec-
onds

DT#197
0-1-1-
0:0:0

In2 Add time Add time ns T#0s

Out Addition
result date
and time

Output Addition result date and time Depends on data type. Year, month,
day, hour,
minutes, sec-
onds

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In1 OK

In2 OK

Out OK

(@)ADD_DT_TIME

EN ENO
In1 Out
In2

2-549

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

T
im

e an
d

 T
im

e o
f D

ay In
stru

ctio
n

s

2

A
D

D
_D

T
_T

IM
E

The ADD_DT_TIME instruction adds a time, In2, to a date and time In1. The result of addition in Out is
also a date and time. Leap years are also accounted for. The following example is for when In1 is
DT#1970-1-1-0:0:0 and In2 is T#1d.

An error will not occur even if the addition result exceeds the valid range of Out.

• DT#2554-7-21-23:34:33.709551615 + T#0.000001ms → DT#1970-1-1-0:0:0

• DT#1970-1-1-0:0:0 + T#-0.000001ms → DT#2554-7-21-23:34:33.709551615

Function

Related System-defined Variables

Name Meaning Data type Description

_CurrentTime System Time of Day DT The time of day from the system clock. The num-
ber of seconds from 00:00:00 on January 1,1970.

Precautions for Correct Use

abc:=ADD_DT_TIME(DT#1970-1-1-0:0:0, T#1d);

LD ST

abc DT#1970-1-1-0:0:0
 T#1d

ADD_DT_TIME

EN ENO
In1
In2

In1

In2

Out=abc

DT#1970-1-1-0:0:0

T#1d

DT#1970-1-2-0:0:0

+

2 Instruction Descriptions

2-550 NJ-series Instructions Reference Manual (W502)

SUB_TIME

The SUB_TIME instruction subtracts one time from another.

The SUB_TIME instruction subtracts a time In2 from another time In1. The result of subtraction in Out is
also a time.

The following example is for when In1 and In2 are T#1d.

Instruction Name FB/FUN Graphic expression ST expression

SUB_TIME Subtract Time FUN Out:=SUB_TIME(In1, In2);

Variables

Name Meaning I/O Description Valid range Unit Default

In1 Original
time

Input

Original time

Depends on data type. ns T#0s
In2 Time to

subtract
Time to subtract

Out Resulting
time

Output Resulting time Depends on data type. ns ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In1 OK

In2 OK

Out OK

Function

(@)SUB_TIME

EN ENO
In1 Out
In2

abc:=SUB_TIME(T#1d, T#1d);

LD ST

abc T#1d
 T#1d

SUB_TIME

EN ENO
In1
In2

−

In1

In2

Out=abc

T#1d

T#1d

T#0s

2-551

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

T
im

e an
d

 T
im

e o
f D

ay In
stru

ctio
n

s

2

S
U

B
_T

IM
E

An error will not occur even if the subtraction result exceeds the valid range of Out.

• T#106751d_23h_47m_16s_854.775807ms − T#-0.000001ms
→ T#-106751d_23h_47m_16s_854.775808ms

• T#-106751d_23h_47m_16s_854.775808ms − T#0.000001ms
→ T#106751d_23h_47m_16s_854.775807ms

Precautions for Correct Use

2 Instruction Descriptions

2-552 NJ-series Instructions Reference Manual (W502)

SUB_TOD_TIME

The SUB_TOD_TIME instruction subtracts a time from a time of day.

The SUB_TOD_TIME instruction subtracts a time In2 from a time of day In1. The result of subtraction in
Out is also a time of day.

The following example is for when In1 is TOD#23:59:59 and In2 is T#1s.

Instruction Name FB/FUN Graphic expression ST expression

SUB_TOD_TIME Subtract Time from
Time of Day

FUN Out:=SUB_TOD_TIME(In1,
In2);

Variables

Name Meaning I/O Description Valid range Unit Default

In1 Time of day

Input

Time of day

Depends on data type.

Hour, min-
utes, seconds

TOD#0:0
:0

In2 Time to
subtract

Time to subtract ns T#0s

Out Resulting
time of day

Output Resulting time of day Depends on data type. Hour, min-
utes, seconds

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In1 OK

In2 OK

Out OK

Function

(@)SUB_TOD_TIME

EN ENO
In1 Out
In2

abc:=SUB_TOD_TIME(TOD#23:59:59, T#1s);

LD ST

abc TOD#23:59:59
 T#1s

SUB_TOD_TIME

EN ENO
In1
In2

−

In1

In2

Out=abc

TOD#23:59:59

T#1s

TOD#23:59:58

2-553

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

T
im

e an
d

 T
im

e o
f D

ay In
stru

ctio
n

s

2

S
U

B
_T

O
D

_T
IM

E

An error will not occur even if the subtraction result exceeds the valid range of Out.

• TOD#23:59:59.999999999 − T#-0.000001ms → TOD#0:0:0

• TOD#0:0:0 − T#0.000001ms → TOD#23:59:59.999999999

Precautions for Correct Use

2 Instruction Descriptions

2-554 NJ-series Instructions Reference Manual (W502)

SUB_TOD_TOD

The SUB_TOD_TOD instruction subtracts a time of day from another time of day.

The SUB_TOD_TOD instruction subtracts time of day In2 from time of day In1. The result of subtraction
in Out is a time.

The following example is for when In1 is TOD#23:59:59.999999999 and In2 is
TOD#23:59:50.000000000.

Instruction Name FB/FUN Graphic expression ST expression

SUB_TOD_TOD Subtract Time of
Day

FUN Out:=SUB_TOD_TOD(In1,
In2);

Variables

Name Meaning I/O Description Valid range Unit Default

In1 Time of day
1

Input

Time of day 1

Depends on data type.
Hour, min-
utes, seconds

TOD#0:0
:0In2 Time of day

2
Time of day 2

Out Resulting
time

Output Resulting time Depends on data type. ns ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In1 OK

In2 OK

Out OK

Function

(@)SUB_TOD_TOD

EN ENO
In1 Out
In2

abc:=SUB_TOD_TOD(TOD#23:59:59.999999999,
 TOD#23:59:50.000000000);

LD ST

abcTOD#23:59:59.999999999
TOD#23:59:50.000000000

SUB_TOD_TOD

EN ENO
In1
In2

−

TOD#23:59:59.999999999

TOD#23:59:50.000000000

T#0d0h0m9.999999999s

In1

In2

Out=abc

2-555

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

T
im

e an
d

 T
im

e o
f D

ay In
stru

ctio
n

s

2

S
U

B
_D

AT
E

_D
AT

E

SUB_DATE_DATE

The SUB_DATE_DATE instruction subtracts another date from another date.

The SUB_DATE_DATE instruction subtracts date In2 from date In1. The result of subtraction in Out is a
time.

The following example is for when In1 is D#1970-1-7 and In2 is D#1970-1-2.

Instruction Name FB/FUN Graphic expression ST expression

SUB_DATE_DATE Subtract Date FUN Out:=SUB_DATE_DATE(In1,
In2);

Variables

Name Meaning I/O Description Valid range Unit Default

In1 Date 1
Input

Date 1
Depends on data type.

Year, month,
day

D#1970-
1-1In2 Date 2 Date 2

Out Resulting
time

Output Resulting time Depends on data type. ns ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In1 OK

In2 OK

Out OK

Function

(@)SUB_DATE_DATE

EN ENO
In1 Out
In2

abc:=SUB_DATE_DATE(D#1970-1-7, D#1970-1-2);

LD ST

abcD#1970-1-7
D#1970-1-2

SUB_DATE_DATE

EN ENO
In1
In2

−

D#1970-1-7

D#1970-1-2

T#5d0h0m0.000000000s

In1

In2

Out=abc

2 Instruction Descriptions

2-556 NJ-series Instructions Reference Manual (W502)

SUB_DT_DT

The SUB_DT_DT instruction subtracts another date and time from another date and time.

The SUB_DT_DT instruction subtracts date and time In2 from date and time In1. The result of subtrac-
tion in Out is a time.

The following example is for when In1 is DT#1970-1-7-0:0:0 and In2 is DT#1970-1-2-0:0:0.

Instruction Name FB/FUN Graphic expression ST expression

SUB_DT_DT Subtract Date and
Time

FUN Out:=SUB_DT_DT(In1,
In2);

Variables

Name Meaning I/O Description Valid range Unit Default

In1 Date and
time 1

Input

Date and time 1

Depends on data type.

Year, month,
day, hour,
minutes, sec-
onds

DT#197
0-1-1-
0:0:0In2 Date and

time 2
Date and time 2

Out Resulting
time

Output Resulting time Depends on data type. ns ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In1 OK

In2 OK

Out OK

Function

(@)SUB_DT_DT

EN ENO
In1 Out
In2

abc:=SUB_DT_DT(DT#1970-1-7-0:0:0,
 DT#1970-1-2-0:0:0);

LD ST

abcDT#1970-1-7-0:0:0
DT#1970-1-2-0:0:0

SUB_DT_DT

EN ENO
In1
In2

−

In1

In2

Out=abc

DT#1970-1-7-0:0:0

DT#1970-1-2-0:0:0

T#5d

2-557

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

T
im

e an
d

 T
im

e o
f D

ay In
stru

ctio
n

s

2

S
U

B
_D

T
_D

T

If the processing result exceeds the valid range of Out, Out will contain an illegal value.

Related System-defined Variables

Name Meaning Data type Description

_CurrentTime System Time of Day DT The time of day from the system clock. The num-
ber of seconds from 00:00:00 on January 1,1970.

Precautions for Correct Use

2 Instruction Descriptions

2-558 NJ-series Instructions Reference Manual (W502)

SUB_DT_TIME

The SUB_DT_TIME instruction subtracts a time from a date and time.

Instruction Name FB/FUN Graphic expression ST expression

SUB_DT_TIME Subtract Time from
Date and Time

FUN Out:=SUB_DT_TIME(In1,
In2);

Variables

Name Meaning I/O Description Valid range Unit Default

In1 Date and
time

Input

Date and time

Depends on data type.

Year, month,
day, hour,
minutes, sec-
onds

DT#197
0-1-1-
0:0:0

In2 Time to
subtract

Time to subtract ns T#0s

Out Resulting
date and
time

Output Resulting date and time Depends on data type. Year, month,
day, hour,
minutes, sec-
onds

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In1 OK

In2 OK

Out OK

(@)SUB_DT_TIME

EN ENO
In1 Out
In2

2-559

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

T
im

e an
d

 T
im

e o
f D

ay In
stru

ctio
n

s

2

S
U

B
_D

T
_T

IM
E

The SUB_DT_TIME instruction subtracts a time In2 from a date and time In1. The result of subtraction
in Out is a date and time. Leap years are also accounted for.

The following example is for when In1 is DT#1970-1-1-0:0:0 and In2 is T#1d.

An error will not occur even if the subtraction result exceeds the valid range of Out.

• DT#2554-7-21-23:34:33.709551615 − T#-0.000001ms → DT#1970-1-1-0:0:0

• DT#1970-1-1-0:0:0 − T#0.000001ms → DT#2554-7-21-23:34:33.709551615

Function

Related System-defined Variables

Name Meaning Data type Description

_CurrentTime System Time of Day DT The time of day from the system clock. The num-
ber of seconds from 00:00:00 on January 1,1970.

Precautions for Correct Use

abc:=SUB_DT_TIME(DT#1970-1-7-0:0:0, T#1d);

LD ST

abcDT#1970-1-7-0:0:0
T#1d

SUB_DT_TIME

EN ENO
In1
In2

−

In1

In2

Out=abc

DT#1970-1-7-0:0:0

T#1d

DT#1970-1-6-0:0:0

2 Instruction Descriptions

2-560 NJ-series Instructions Reference Manual (W502)

MULTIME

The MULTIME instruction multiplies a time by a specified number.

* If you omit the input parameter, the default value is not applied. A building error will occur.

The MULTIME instruction multiplies a time In1 by multiplier In2. The result of multiplication in Out is also
a time.

The following example is for when In1 is T#1d2h3m30s and In2 is INT#2.

Instruction Name FB/FUN Graphic expression ST expression

MULTIME Multiply Time FUN Out:=MULTIME(In1, In2);

Variables

Name Meaning I/O Description Valid range Unit Default

In1 Original
time Input

Original time

Depends on data type.

ns T#0s

In2 Multiplier Multiplier --- *

Out Resulting
time

Output Resulting time Depends on data type. ns ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In1 OK

In2 OK OK OK OK OK OK OK OK OK OK

Out OK

Function

(@)MULTIME

EN ENO
In1 Out
In2

abc:=MULTIME(T#1d2h3m30s, INT#2);

LD ST

abcT#1d2h3m30s
INT#2

MULTIME

EN ENO
In1
In2

In1

In2

Out=abc

T#1d2h3m30s

 INT#2

T#2d4h7m

×

2-561

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

T
im

e an
d

 T
im

e o
f D

ay In
stru

ctio
n

s

2

M
U

LT
IM

E

• If In2 is a real number, the multiplication result is rounded to the nearest nanosecond. The following
table shows how values are rounded.

• If the value of In2 is 0, positive infinity, negative infinity, or nonnumeric data, the value of Out is as
shown below.

• An error will not occur even if the multiplication result exceeds the valid range of Out.

• T#53375d_23h_53m_38s_427.387904ms * USINT#2
→ T#-106751d_23h_47m_16s_854.775808ms

• T#-53375d_23h_53m_38s_427.387905ms * USINT#2
→ T#106751d_23h_47m_16s_854.775806ms

Precautions for Correct Use

Value below
nanosec-

onds
Treatment Examples

Less than 0.5 The value is truncated. 1.49 → 1

0.5 If the ones digit is an even number, the value is trun-
cated. If it is an odd number, the value is rounded up.

1.50 → 2
2.50 → 2

Greater than
0.5

The value is rounded up. 1.51 → 2

Value of In2 Value of Out

0 T#0s

+∞ T#-106751d23h47m16.854775808s

−∞ T#-106751d23h47m16.854775808s

Nonnumeric
data

T#-106751d23h47m16.854775808s

2 Instruction Descriptions

2-562 NJ-series Instructions Reference Manual (W502)

DIVTIME

The DIVTIME instruction divides a time by a specified number.

* If you omit the input parameter, the default value is not applied. A building error will occur.

The DIVTIME instruction divides a time In1 by a number In2. The result of division in Out is also a time.

The following example is for when In1 is T#1d and In2 is INT#2.

Instruction Name FB/FUN Graphic expression ST expression

DIVTIME Divide Time FUN Out:=DIVTIME(In1, In2);

Variables

Name Meaning I/O Description Valid range Unit Default

In1 Original
time

Input

Original time

Depends on data type.

ns T#0s

In2 Number to
divide by

Number to divide by --- *

Out Resulting
time

Output Resulting time Depends on data type. ns ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In1 OK

In2 OK OK OK OK OK OK OK OK OK OK

Out OK

Function

(@)DIVTIME

EN ENO
In1 Out
In2

abc:=DIVTIME(T#1d, INT#2);

LD ST

abcT#1d
INT#2

DIVTIME

EN ENO
In1
In2

In1

In2

Out=abc

T#1d

INT#2

T#12h

/

2-563

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

T
im

e an
d

 T
im

e o
f D

ay In
stru

ctio
n

s

2

D
IV

T
IM

E

• If the value of In2 is 0, positive infinity, negative infinity, or nonnumeric data, the value of Out is as
shown below.

• If In2 is a real number, there may be error of up to several nanoseconds.

• If In2 is a real number, the division result is rounded to the nearest nanosecond. The following table
shows how values are rounded.

• An error occurs in the following case. ENO will be FALSE, and Out will not change.

• In2 is an integer with a value of 0.

Precautions for Correct Use

Value of In2 Value of Out

0 T#-106751d23h47m16.854775808s

+∞ T#0s

−∞ T#0s

Nonnumeric data Nonnumeric data

Value below
nanoseconds

Description Example

Less than 0.5 The fractional part is truncated. 1.49 → 1

0.5 If the ones digit is an even number, the value is trun-
cated. If it is an odd number, the value is rounded up.

1.50 → 2
2.50 → 2

Greater than 0.5 The fractional part is rounded up. 1.51 → 2

2 Instruction Descriptions

2-564 NJ-series Instructions Reference Manual (W502)

CONCAT_DATE_TOD

The CONCAT_DATE_TOD instruction combines a date and a time of day.

Instruction Name FB/FUN Graphic expression ST expression

CONCAT_DATE
_TOD

Concatenate Date
and Time of Day

FUN Out:=CONCAT_DATE_TOD
(In1, In2);

Variables

Name Meaning I/O Description Valid range Unit Default

In1 Date

Input

Date

Depends on data type.

Year, month,
day

D#1970-
1-1

In2 Time of day Time of day Hour, min-
utes, seconds

TOD#0:0
:0

Out Combined
date and
time

Output Combined date and time Depends on data type. Year, month,
day, hour,
minutes, sec-
onds

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In1 OK

In2 OK

Out OK

(@)CONCAT_DATE_TOD

EN ENO
In1 Out
In2

2-565

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

T
im

e an
d

 T
im

e o
f D

ay In
stru

ctio
n

s

2

C
O

N
C

AT
_D

AT
E

_TO
D

The CONCAT_DATE_TOD instruction combines a date In1 and a time of day In2. The result of combin-
ing in Out is also a date and time.

The following example is for when In1 is D#1970-1-7 and In2 is TOD#23:59:59.999999999.

An error occurs in the following case. ENO will be FALSE, and Out will not change.

• The results of combining exceeds the valid range of Out (e.g., the value of In1 is D#2554-7-21 and
the value of In2 is larger than TOD#23:34:33.709551615).

Function

Related System-defined Variables

Name Meaning Data type Description

_CurrentTime System Time of Day DT The time of day from the system clock. The num-
ber of seconds from 00:00:00 on January 1,1970.

Precautions for Correct Use

abc:=CONCAT_DATE_TOD(D#1970-1-7,
 TOD#23:59:59.999999999);

LD ST

abcD#1970-1-7
TOD#23:59:59.999999999

CONCAT_DATE_TOD

EN ENO
In1
In2

+

D#1970-1-7

TOD#23:59:59.999999999

DT#1970-1-7-23:59:59.999999999

In1

In2

Out=abc

2 Instruction Descriptions

2-566 NJ-series Instructions Reference Manual (W502)

DT_TO_TOD

The DT_TO_TOD instruction extracts the time of day from a date and time.

The DT_TO_TOD instruction extracts the time of day from date and time In.

The following example is for when In is DT#1970-1-7-23:59:59.999999999.

Instruction Name FB/FUN Graphic expression ST expression

DT_TO_TOD Extract Time of Day
from Date and Time

FUN Out:=DT_TO_TOD(In);

Variables

Name Meaning I/O Description Valid range Unit Default

In Date and
time

Input Date and time Depends on data type. Year, month,
day, hour,
minutes, sec-
onds

DT#1970-
1-1-0:0:0

Out Time of day Output Time of day Depends on data type. Hour, min-
utes, seconds

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK

Out OK

Function

(@)DT_TO_TOD

EN ENO
In Out

abc:=DT_TO_TOD(DT#1970-1-7-23:59:59.999999999);

LD ST

abcDT#1970-1-7-23:59:59.999999999

DT_TO_TOD

EN ENO
In

DT#1970-1-7-23:59:59.999999999

TOD#23:59:59.999999999

In

Out=abc

2-567

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

T
im

e an
d

 T
im

e o
f D

ay In
stru

ctio
n

s

2

D
T

_TO
_TO

D

Related System-defined Variables

Name Meaning Data type Description

_CurrentTime System Time of Day DT The time of day from the system clock. The num-
ber of seconds from 00:00:00 on January 1,1970.

2 Instruction Descriptions

2-568 NJ-series Instructions Reference Manual (W502)

DT_TO_DATE

The DT_TO_DATE instruction extracts the date from a date and time.

The DT_TO_DATE instruction extracts the date from date and time In.

The following example is for when In is DT#1970-1-7-23:59:59.999999999.

Instruction Name FB/FUN Graphic expression ST expression

DT_TO_DATE Extract Date from
Date and Time

FUN Out:=DT_TO_DATE(In);

Variables

Name Meaning I/O Description Valid range Unit Default

In Date and
time

Input Date and time Depends on data type. Year, month,
day, hour,
minutes, sec-
onds

DT#197
0-1-1-
0:0:0

Out Date Output Date Depends on data type. Year, month,
day

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK

Out OK

Function

(@)DT_TO_DATE

EN ENO
In Out

abc:=DT_TO_DATE(DT#1970-1-7-23:59:59.999999999);

LD ST

abcDT#1970-1-7-23:59:59.999999999

DT_TO_DATE

EN ENO
In

DT#1970-1-7-23:59:59.999999999

D#1970-1-7

In

Out=abc

2-569

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

T
im

e an
d

 T
im

e o
f D

ay In
stru

ctio
n

s

2

D
T

_TO
_D

AT
E

Related System-defined Variables

Name Meaning Data type Description

_CurrentTime System Time of Day DT The time of day from the system clock. The num-
ber of seconds from 00:00:00 on January 1,1970.

2 Instruction Descriptions

2-570 NJ-series Instructions Reference Manual (W502)

SetTime

The SetTime instruction sets the system time.

The SetTime instruction sets the system time to date and time In.

The following programming example is for when In is DT#1970-1-7:23:59:59.999999999.

Instruction Name FB/FUN Graphic expression ST expression

SetTime Set Time FUN SetTime(In);

Variables

Name Meaning I/O Description Valid range Unit Default

In Time data Input Current time to set system
time

Depends on data type. Year, month,
day, hour,
minutes, sec-
onds

DT#197
0-1-1-
0:0:0

Out Return
value

Output Always TRUE TRUE only --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK

Out OK

Function

(@)SetTime

EN ENO
In Out

SetTime(DT#1970-1-7-23:59:59.999999999);

LD ST

DT#1970-1-7-23:59:59.999999999

SetTime

EN ENO
In

2-571

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

T
im

e an
d

 T
im

e o
f D

ay In
stru

ctio
n

s

2

S
etT

im
e

The following methods can also be used to set the system time.

• Sysmac Studio

• NTP function

• For In, specify the time for the set time zone (do not specify Greenwich mean time (GMT)).

• You cannot set a time in In that is lower than 1970-1-1-0:0:0.000000000 GMT.

• A time lag will occur when updating the internal time. If the time is read immediately after executing
this instruction, the old time may be read.

• Return value Out is not used when the instruction is used in ST.

• An error occurs in the following cases. ENO will be FALSE, and Out will not change.

• The value of In is outside of the valid range.

• The value of In is below 1970-1-1-0:0:0.000000000 GMT.

Related System-defined Variables

Name Meaning Data type Description

_CurrentTime System Time of Day DT The time of day from the system clock. The num-
ber of seconds from 00:00:00 on January 1,1970.

Additional Information

Precautions for Correct Use

2 Instruction Descriptions

2-572 NJ-series Instructions Reference Manual (W502)

GetTime

The GetTime instruction reads the current time.

The GetTime instruction reads the current time. The current time of day is the time for the set time zone
(not Greenwich mean time (GMT)).

The following figure shows a programming example. The current time is assigned to variable abc.

Instruction Name FB/FUN Graphic expression ST expression

GetTime Get Time of Day FUN Out:=GetTime();

Variables

Name Meaning I/O Description Valid range Unit Default

Out Current
time

Output Current time Depends on data type. Year, month,
day, hour,
minutes, sec-
onds

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

Out OK

Function

(@)GetTime

EN ENO
 Out

abc:=GetTime();

LD ST

GetTime

abc
EN ENO

2-573

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

T
im

e an
d

 T
im

e o
f D

ay In
stru

ctio
n

s

2

G
etT

im
e

• Use the DtToSec instruction (page 2-574) to convert the current time of day to the system time of day
(number of seconds from 00:00:00 on January 1,1970).

• Use the DtToDateStruct instruction (page 2-597) to convert the current time of day to a date (year,
month, day, minutes, and seconds).

• Use the GetDayOfWeek instruction (page 2-593) to read the day of the week.

Related System-defined Variables

Name Meaning Data type Description

_CurrentTime System Time of Day DT The time of day from the system clock. The num-
ber of seconds from 00:00:00 on January 1,1970.

Additional Information

2 Instruction Descriptions

2-574 NJ-series Instructions Reference Manual (W502)

DtToSec

The DtToSec instruction converts a date and time to the number of seconds from 00:00:00 on January
1, 1970.

The DtToSec instruction converts the date and time in In to the number of seconds from 00:00:00 on
January 1, 1970. The converted value is in seconds. The value is truncated below the seconds.

The following example is for when In is DT#1970-1-2-0:0:0.999999999.

[

Instruction Name FB/FUN Graphic expression ST expression

DtToSec Convert Date and
Time to Seconds

FUN Out:=DtToSec(In);

Variables

Name Meaning I/O Description Valid range Unit Default

In Date and
time

Input Date and time Depends on data type. Year, month,
day, hour,
minutes, sec-
onds

DT#197
0-1-1-
0:0:0

Out Seconds Output Number of seconds from
00:00:00 on January 1, 1970

0 to 18446744073 Seconds ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK

Out OK

Function

(@)DtToSec

EN ENO
In Out

abc:=DtToSec(DT#1970-1-2-0:0:0.999999999);

DT#1970-1-2-0:0:0.999999999

LD ST

abc

DtToSec

EN ENO
In

−

DT#1970-1-2-0:0:0.999999999

DT#1970-1-1-0:0:0.000000000

 LINT#86400

In

Out=abc s

2-575

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

T
im

e an
d

 T
im

e o
f D

ay In
stru

ctio
n

s

2

D
tToS

ec

Use the SecToDt instruction (page 2-578) to convert the number of seconds from 00:00:00 on January
1,1970 to a date and time.

Related System-defined Variables

Name Meaning Data type Description

_CurrentTime System Time of Day DT The time of day from the system clock. The num-
ber of seconds from 00:00:00 on January 1,1970.

Additional Information

2 Instruction Descriptions

2-576 NJ-series Instructions Reference Manual (W502)

DateToSec

The DateToSec instruction converts a date to the number of seconds from 00:00:00 on January 1,
1970.

The DateToSec instruction converts 00:00:00 on date In to the number of seconds from 00:00:00 on
January 1, 1970. The converted value is in seconds.

The following example is for when In is D#1970-1-2.

[

Use the SecToDate instruction (page 2-580) to convert the number of seconds from 00:00:00 on Janu-
ary 1,1970 to a date.

Instruction Name FB/FUN Graphic expression ST expression

DateToSec Convert Date to
Seconds

FUN Out:=DateToSec(In);

Variables

Name Meaning I/O Description Valid range Unit Default

In Date Input Date Depends on data type. Year, month,
day

DT#197
0-1-1

Out Seconds Output Number of seconds from
00:00:00 on January 1, 1970

0 to 18446659200 Seconds ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK

Out OK

Function

Additional Information

(@)DateToSec

EN ENO
In Out

abc:=DateToSec(D#1970-1-2);

D#1970-1-2

LD ST

abc

DateToSec

EN ENO
In

−

D#1970-1-2

DT#1970-1-1-0:0:0.000000000

 LINT#86400 s

In

Out=abc

2-577

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

T
im

e an
d

 T
im

e o
f D

ay In
stru

ctio
n

s

2

TodToS
ec

TodToSec

The TodToSec instruction converts a time of day to the number of seconds from 00:00:00.

The TodToSec instruction converts the time of day in In to the number of seconds from 00:00:00. The
converted value is in seconds. The value is truncated below the seconds.

The following example is for when In is TOD#12:0:0.999999999.

[

Use the SecToTod instruction (page 2-582) to convert the number of seconds from 00:00:00 on January
1,1970 to a time of day.

Instruction Name FB/FUN Graphic expression ST expression

TodToSec Convert Time of
Day to Seconds

FUN Out:=TodToSec(In);

Variables

Name Meaning I/O Description Valid range Unit Default

In Time of day Input Time of day Depends on data type. Hour, min-
utes, seconds

TOD#0:0
:0

Out Seconds Output Number of seconds from
00:00:00

0 to 86399 Seconds ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK

Out OK

Function

Additional Information

(@)TodToSec

EN ENO
In Out

abc:=TodToSec(TOD#12:0:0.999999999);

TOD#12:0:0.999999999

LD ST

abc

TodToSec
EN ENO
In

−

TOD#12:0.0.999999999

TOD#0:0:0.000000000

 LINT#43200 s

In

Out=abc

2 Instruction Descriptions

2-578 NJ-series Instructions Reference Manual (W502)

SecToDt

The SecToDt instruction converts the number of seconds from 00:00:00 on January 1, 1970 to a date
and time.

The SecToDt instruction converts the number of seconds from 00:00:00 on January 1, 1970 in In to a
date and time.

The following example is for when In is LINT#86400.

[

Instruction Name FB/FUN Graphic expression ST expression

SecToDt Convert Seconds to
Date and Time

FUN Out:=SecToDt(In);

Variables

Name Meaning I/O Description Valid range Unit Default

In Seconds Input Number of seconds from
00:00:00 on January 1, 1970

0 to 18446744073 Seconds 0

Out Date and
time

Output Date and time Depends on data type. Year, month,
day, hour,
minutes, sec-
onds

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK

Out OK

Function

(@)SecToDt

EN ENO
In Out

abc:=SecToDt(LINT#86400);

LINT#86400

LD ST

abc

SecToDt

EN ENO
In

+

DT#1970-1-1-0:0:0.000000000

 LINT#86400

DT#1970-1-2-0:0:0.000000000

sIn

Out=abc

2-579

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

T
im

e an
d

 T
im

e o
f D

ay In
stru

ctio
n

s

2

S
ecToD

t

Use the DtToSec instruction (page 2-574) to convert the current time of day to the number of seconds
from 00:00:00 on January 1,1970.

An error occurs in the following case. ENO will be FALSE, and Out will not change.

• The value of In is outside of the valid range.

Related System-defined Variables

Name Meaning Data type Description

_CurrentTime System Time of Day DT The time of day from the system clock. The num-
ber of seconds from 00:00:00 on January 1,1970.

Additional Information

Precautions for Correct Use

2 Instruction Descriptions

2-580 NJ-series Instructions Reference Manual (W502)

SecToDate

The SecToDate instruction converts the number of seconds from 00:00:00 to a date.

The SecToDate instruction converts the number of seconds from 00:00:00 in In to a date. The value is
truncated below date.

The following example is for when In is LINT#86400.

[

Use the DateToSec instruction (page 2-576) to convert a date to the number of seconds from 00:00:00
on January 1,1970.

Instruction Name FB/FUN Graphic expression ST expression

SecToDate Convert Seconds to
Date

FUN Out:=SecToDate(In);

Variables

Name Meaning I/O Description Valid range Unit Default

In Seconds Input Number of seconds from
00:00:00

0 to 18446744073 Seconds 0

Out Date Output Date Depends on data type. Year, month,
day

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK

Out OK

Function

Additional Information

(@)SecToDate

EN ENO
In Out

abc:=SecToDate(LINT#86400);

LINT#86400

LD ST

abc

SecToDate

EN ENO
In

+

D#1970-1-1

 LINT#86400

D#1970-1-2

sIn

Out=abc

2-581

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

T
im

e an
d

 T
im

e o
f D

ay In
stru

ctio
n

s

2

S
ecToD

ate

An error occurs in the following case. ENO will be FALSE, and Out will not change.

• The value of In is outside of the valid range.

Precautions for Correct Use

2 Instruction Descriptions

2-582 NJ-series Instructions Reference Manual (W502)

SecToTod

The SecToTod instruction converts the number of seconds from 00:00:00 to a time of day.

* Negative numbers are excluded.

The SecToTod instruction converts the number of seconds from 00:00:00 in In to a time of day. If the
value of In is 24 hours or longer, In is divided by 24 and the remainder is converted to the time of day.

The following example is for when In is LINT#86410.

[

Use the TodToSec instruction (page 2-577) to convert a time of day to the number of seconds from
00:00:00 on January 1,1970.

Instruction Name FB/FUN Graphic expression ST expression

SecToTod Convert Seconds to
Time of Day

FUN Out:=SecToTod(In);

Variables

Name Meaning I/O Description Valid range Unit Default

In Seconds Input Number of seconds from
00:00:00

Depends on data type.* Seconds 0

Out Time of day Output Time of day Depends on data type. Hour, min-
utes, seconds

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK

Out OK

Function

Additional Information

(@)SecToTod

EN ENO
In Out

abc:=SecToTod(LINT#86410);

LINT#86410

LD ST

abc

SecToTod

EN ENO
In

Out=abc
In

Remainder of division by 24

TOD#0:0:10.000000000
LINT#86410

TOD#00:00:00

s

2-583

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

T
im

e an
d

 T
im

e o
f D

ay In
stru

ctio
n

s

2

T
im

eToN
anoS

ec

TimeToNanoSec

The TimeToNanoSec instruction converts a time to nanoseconds.

* −9223372036854775808 to 9223372036854775807

The TimeToNanoSec instruction converts the time in In to nanoseconds.

The following example is for when In is T#1d1h1m1.999999999s.

[

Use the NanoSecToTime instruction (page 2-585) to convert nanoseconds to a time.

Instruction Name FB/FUN Graphic expression ST expression

TimeToNanoSec Convert Time to
Nanoseconds

FUN Out:=TimeToNanoSec(In);

Variables

Name Meaning I/O Description Valid range Unit Default

In Time Input Time Depends on data type. ns T#0s

Out Nanosec-
onds

Output Nanoseconds * ns ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK

Out OK

Function

Additional Information

(@)TimeToNanoSec

EN ENO
In Out

abc:=TimeToNanoSec(T#1d1h1m1.999999999s);

T#1d1h1m1.999999999s

LD ST

abc

TimeToNanoSec

EN ENO
In

LINT#90061000000000 nsT#1d1h1m1.999999999s Out=abcIn

Nanoseconds

2 Instruction Descriptions

2-584 NJ-series Instructions Reference Manual (W502)

TimeToSec

The TimeToSec instruction converts a time to seconds.

The TimeToSec instruction converts the time in In to seconds. The value is truncated below the sec-
onds.

The following example is for when In is T#1d1h1m1.999999999s.

[

Use the SecToTime instruction (page 2-586) to convert seconds to a time.

In is in nanoseconds. Out is in seconds.

Instruction Name FB/FUN Graphic expression ST expression

TimeToSec Convert Time to
Seconds

FUN Out:=TimeToSec(In);

Variables

Name Meaning I/O Description Valid range Unit Default

In Time Input Time Depends on data type. ns T#0s

Out Seconds Output Seconds −9223372036 to
9223372036

Seconds ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK

Out OK

Function

Additional Information

Precautions for Correct Use

(@)TimeToSec

EN ENO
In Out

abc:=TimeToSec(T#1d1h1m1.999999999s);

T#1d1h1m1.999999999s

LD ST

abc

TimeToSec

EN ENO
In

Out=abcIn
Seconds

LINT#90061 sT#1d1h1m1.999999999s

2-585

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

T
im

e an
d

 T
im

e o
f D

ay In
stru

ctio
n

s

2

N
anoS

ecToT
im

e

NanoSecToTime

The NanoSecToTime instruction converts nanoseconds to a time.

* −9223372036854775808 to 9223372036854775807

The NanoSecToTime instruction converts the number of nanoseconds in In to a time.

The following example is for when In is LINT#90061000000000.

[

Use the TimeToNanoSec instruction (page 2-583) to convert a time to nanoseconds.

Instruction Name FB/FUN Graphic expression ST expression

NanoSecToTime Convert Nanosec-
onds to Time

FUN Out:=NanoSecToTime(In);

Variables

Name Meaning I/O Description Valid range Unit Default

In Nanosec-
onds

Input Nanoseconds * ns 0

Out Time Output Time Depends on data type. ns ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK

Out OK

Function

Additional Information

(@)NanoSecToTime

EN ENO
In Out

abc:=NanoSecToTime(LINT#90061000000000);

LINT#90061000000000

LD ST

abc

NanoSecToTime

EN ENO
In

LINT#90061000000000 ns T#1d1h1m1sOut=abcIn
Time

2 Instruction Descriptions

2-586 NJ-series Instructions Reference Manual (W502)

SecToTime

The SecToTime instruction converts seconds to a time.

The SecToTime instruction converts the number of seconds in In to a time.

The following example is for when In is LINT#90061.

[

Use the TimeToSec instruction (page 2-584) to convert a time to seconds.

Instruction Name FB/FUN Graphic expression ST expression

SecToTime Convert Seconds to
Time

FUN Out:=SecToTime(In);

Variables

Name Meaning I/O Description Valid range Unit Default

In Seconds Input Seconds −9223372036 to
9223372036

Seconds 0

Out Time Output Time Depends on data type. ns ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK

Out OK

Function

Additional Information

(@)SecToTime

EN ENO
In Out

abc:=SecToTime(LINT#90061);

LINT#90061

LD ST

abc

SecToTime

EN ENO
In

Out=abcIn
Time

LINT#90061 s T#1d1h1m1s

2-587

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

T
im

e an
d

 T
im

e o
f D

ay In
stru

ctio
n

s

2

S
ecToT

im
e

• In is in seconds. Out is in nanoseconds.

• An error occurs in the following case. ENO will be FALSE, and Out will not change.

• The value of In is outside of the valid range.

Precautions for Correct Use

2 Instruction Descriptions

2-588 NJ-series Instructions Reference Manual (W502)

ChkLeapYear

The ChkLeapYear instruction is used to check for a leap year.

The ChkLeapYear instruction is used to check to see if year In is a leap year. If it is a leap year, the
value of result Out is TRUE. If it is not a leap year, Out is FALSE.

The following example is for when In is UINT#2012.

[

If the value of In exceeds the valid range, an error will not occur and the value of Out will be an illegal
value.

Instruction Name FB/FUN Graphic expression ST expression

ChkLeapYear Check for Leap
Year

FUN Out:=ChkLeapYear(In);

Variables

Name Meaning I/O Description Valid range Unit Default

In Year Input Year 1970 to 2554 Year 1970

Out Result Output TRUE: Leap year

FALSE: Not leap year

Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK

Out OK

Function

Precautions for Correct Use

(@)ChkLeapYear

EN ENO
In Out

abc:=ChkLeapYear(UINT#2012);

UINT#2012

LD ST

abc

ChkLeapYear

EN ENO
In Out

Year Out=abcIn
Check for Leap Year

UINT#2012 TRUE

2-589

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

T
im

e an
d

 T
im

e o
f D

ay In
stru

ctio
n

s

2

G
etD

aysO
fM

onth

GetDaysOfMonth

The GetDaysOfMonth instruction gets the number of days in the specified month.

The GetDaysOfMonth instruction gets the number of days in month Month of year Year.

The following example is for when Year is UINT#2012 and Month is USINT#2.

[

• If the value of Year exceeds the valid range, an error will not occur and the value of Out will be an ille-
gal value.

• An error occurs in the following case. ENO will be FALSE, and Out will not change.

• The value of Month is outside of the valid range.

Instruction Name FB/FUN Graphic expression ST expression

GetDaysOfMonth Get Days in Month FUN Out:=GetDaysOfMonth(Year,
Month);

Variables

Name Meaning I/O Description Valid range Unit Default

Year Year
Input

Year 1970 to 2554 Year 1970

Month Month Month 1 to 12 Month 1

Out Days Output Days 28 to 31 Days ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

Year OK

Month OK

Out OK

Function

Precautions for Correct Use

(@)GetDaysOfMonth

EN ENO
Year Out
Month

abc:=GetDaysOfMonth(UINT#2012, USINT#2);

UINT#2012
 USINT#2

LD ST

abc

GetDaysOfMonth

EN ENO
Year
Month

Year

Month
DaysOut=abc

Year

Month
DaysUINT#2012

USINT#29
USINT#2

2 Instruction Descriptions

2-590 NJ-series Instructions Reference Manual (W502)

This sample gets the number of days in the current month.

Sample Programming

Always TRUE Flag

Variable Data type Initial value
Date and time
Days in current month

Comment

LD

abc
def

(Year:=0, Month:=0, Day:=0, Hour:=0, Min:=0, Sec:=0, NSec:=0)
0

_sDT
USINT

abc

defabc.Year
abc.Month

_CurrentTime

GetDaysOfMonth

EN ENO
Year
Month

DtToDateStructP_On

EN ENO
In
 DateStruct

_CurrentTime DATE_AND_TIME

Constant

System Time of Day

Variable Data type Comment

Internal
Variables

External
Variables

Variable Data type Initial value

Date and time
Days in current month

Comment

ST

DtToDateStruct(_CurrentTime, abc);
def:=GetDaysOfMonth(abc.Year, abc.Month);

abc
def

(Year:=0, Month:=0, Day:=0, Hour:=0, Min:=0, Sec:=0, NSec:=0)
0

_sDT
USINT

_CurrentTime DATE_AND_TIME

ConstantVariable Data type Comment

System Time of Day

Internal
Variables

External
Variables

2-591

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

T
im

e an
d

 T
im

e o
f D

ay In
stru

ctio
n

s

2

D
aysToM

onth

DaysToMonth

The DaysToMonth instruction calculates the month based on the number of days from January 1.

The DaysToMonth instruction calculates the month based on the number of days in Days from January
1 in year Year.

The following example is for when Year is UINT#2012 and Days is UINT#32.

[

Instruction Name FB/FUN Graphic expression ST expression

DaysToMonth Convert Days to
Month

FUN Out:=DaysToMonth(Year,
Days);

Variables

Name Meaning I/O Description Valid range Unit Default

Year Year

Input

Year 1970 to 2554 Year 1970

Days Days Number of days from Janu-
ary 1

1 to 365
1 to 366 for a leap year

Days 1

Out Month Output Month 1 to 12 Month ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

Year OK

Days OK

Out OK

Function

(@)DaysToMonth

EN ENO
Year Out
Days

abc:=DaysToMonth(UINT#2012, UINT#32);

UINT#2012
 UINT#32

LD ST

abc

DaysToMonth

EN ENO
Year
Days

Out=abc
Year

Days
Month

Days
Month

YearUINT#2012
USINT#2

UINT#32

2 Instruction Descriptions

2-592 NJ-series Instructions Reference Manual (W502)

• If the value of Year exceeds the valid range, an error will not occur and the value of Out will be an ille-
gal value.

• An error occurs in the following case. ENO will be FALSE, and Out will not change.

• The value of Days is outside of the valid range.

Precautions for Correct Use

2-593

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

T
im

e an
d

 T
im

e o
f D

ay In
stru

ctio
n

s

2

G
etD

ayO
fW

eek

GetDayOfWeek

The GetDayOfWeek instruction gets the day of the week for the specified year, month, and day of
month.

* If you omit the input parameter, the default value is not applied. A building error will occur.

The GetDayOfWeek instruction gets the day of the week for the year, month, and day of month speci-
fied in In.

The data type of Out is enumerated type _eDAYOFWEEK. The meanings of the enumerators are as fol-
lows:

Instruction Name FB/FUN Graphic expression ST expression

GetDayOfWeek Get Day of Week FUN Out:=GetDayOfWeek(In);

Variables

Name Meaning I/O Description Valid range Unit Default

In Year,
month, day

Input Year, month, day Depends on data type. Year, month,
day

*

Out Day of the
week

Output Day of the week _MON, _TUE, _WED,
_THU, _FRI, _SAT,
_SUN

Day of the
week

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK OK

Out Refer to Function for the enumerators for the enumerated type _eDAYOFWEEK.

Function

Enumerator Meaning

_MON Monday

_TUE Tuesday

_WED Wednesday

_THU Thursday

_FRI Friday

_SAT Saturday

_SUN Sunday

(@)GetDayOfWeek

EN ENO
In Out

2 Instruction Descriptions

2-594 NJ-series Instructions Reference Manual (W502)

The following example is for when In is D#2011-1-1.

Related System-defined Variables

Name Meaning Data type Description

_CurrentTime System Time of Day DT The time of day from the system clock. The num-
ber of seconds from 00:00:00 on January 1,1970.

abc:=GetDayOfWeek(D#2011-1-1);

D#2011-1-1

LD ST

abc

GetDayOfWeek

EN ENO
In

D#2011-1-1 _SATOut=abcIn
Day of the week

Day of the week

2-595

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

T
im

e an
d

 T
im

e o
f D

ay In
stru

ctio
n

s

2

G
etW

eekO
fYear

GetWeekOfYear

The GetWeekOfYear instruction gets the week number for the specified year, month, and day of month.

* If you omit the input parameter, the default value is not applied. A building error will occur.

The GetWeekOfYear instruction gets the week number for the year, month, and day of month specified
in In. Weeks are counted from Monday to Sunday. The count is incremented when changing from Sun-
day to Monday.

January 1 is always in week 1. For example, if January 1 is a Thursday, January 1 to January 4 (Sun-
day) is week 1 and January 5 (Monday) to January 11 (Sunday) is week 2.

The following example is for when In is D#2011-2-1.

Instruction Name FB/FUN Graphic expression ST expression

GetWeekOfYear Get Week Number FUN Out:=GetWeekOfYear(In);

Variables

Name Meaning I/O Description Valid range Unit Default

In Year,
month, day

Input Year, month, day Depends on data type. Year, month,
day

*

Out Week Output Week number 1 to 54 Week ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK OK

Out OK

Function

(@)GetWeekOfYear

EN ENO
In Out

abc:=GetWeekOfYear(D#2011-2-1);

D#2011-2-1

LD ST

abc

GetWeekOfYear

EN ENO
In

D#2011-2-1 USINT#6Out=abcIn
Week number

Week

2 Instruction Descriptions

2-596 NJ-series Instructions Reference Manual (W502)

Related System-defined Variables

Name Meaning Data type Description

_CurrentTime System Time of Day DT The time of day from the system clock. The num-
ber of seconds from 00:00:00 on January 1,1970.

2-597

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

T
im

e an
d

 T
im

e o
f D

ay In
stru

ctio
n

s

2

D
tToD

ateS
truct

DtToDateStruct

The DtToDateStruct instruction converts a date and time to the year, month, day, hour, minutes, sec-
onds, and nanoseconds.

The DtToDateStruct instruction converts the date and time in In to the year, month, day, hour, minutes,
seconds, and nanoseconds. The data in the broken down date and time in Out is the structure _sDT.
The meanings of the members are as follows:

Instruction Name FB/FUN Graphic expression ST expression

DtToDateStruct Break Down Date
and Time

FUN Out:=DtToDateStruct(In,
DateStruct);

Variables

Name Meaning I/O Description Valid range Unit Default

In Date and
time

Input Date and time Depends on data type. Year, month,
day, hour,
minutes, sec-
onds

DT#197
0-1-1-
0:0:0

Out Return
value

Output

Always TRUE TRUE only

--- ---DateStruct Date and
time

Date and time as a year,
month, day, hour, minutes,
seconds, and nanoseconds

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK

Out OK

DateStruct Refer to Function for details on the structure _sDT.

Function

Name Meaning Content Data type Valid range Unit Default

Out Date and time Date and time as a year,
month, day, hour, minutes,
seconds, and nanoseconds

_sDT --- --- ---

Year Year Year UINT 1970 to 2554 Year

Month Month Month USINT 1 to 12 Month

Day Day Day USINT 1 to 31 Day

Hour Hour Hour USINT 0 to 23 Hour

Min Minutes Minutes USINT 0 to 59 Minutes

Sec Seconds Seconds USINT 0 to 59 Seconds

Nsec Nanoseconds Nanoseconds ULINT 0 to 999999999 Nanoseconds

(@)DtToDateStruct

EN ENO
In Out
 DateStruct

2 Instruction Descriptions

2-598 NJ-series Instructions Reference Manual (W502)

The following example is for when In is DT#1970-1-2-12:34:56.999999999.

• Use the DateStructToDt instruction (page 2-599) to join a year, month, day, hour, minutes, seconds,
and nanoseconds into a date and time.

• The following example shows how to find the current time of day.

Return value Out is not used when the instruction is used in ST.

Related System-defined Variables

Name Meaning Data type Description

_CurrentTime System Time of Day DT The time of day from the system clock. The num-
ber of seconds from 00:00:00 on January 1,1970.

Additional Information

Precautions for Correct Use

abc:=DtToDateStruct(DT#1970-1-2-12:34:56.999999999);

DT#1970-1-2-12:34:56.999999999

LD ST

abc

DtToDateStruct

EN ENO
In

In
Broken down

Month

Day

Hour

Minutes

Seconds

Nanoseconds

YearDT#1970-1-2-12:34:56.999999999 UINT#1970.YearOut=abc

USINT#1.Month

USINT#2.Day

USINT#12.Hour

USINT#34.Min

USINT#56.Sec

ULINT#999999999.Nsec

DtToDateStruct(_CurrentTime, abc);

_CurrentTime

● LD ● ST

abc

DtToDateStruct

EN ENO
In
 DateStruct

2-599

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

T
im

e an
d

 T
im

e o
f D

ay In
stru

ctio
n

s

2

D
ateS

tructToD
t

DateStructToDt

The DateStructToDt instruction joins a year, month, day, hour, minutes, seconds, and nanoseconds into
a date and time.

The DateStructToDt instruction joins the year, month, day, hour, minutes, seconds, and nanoseconds in
In into a date and time. The data type of In is structure _sDT. The meanings of the members are as fol-
lows:

Instruction Name FB/FUN Graphic expression ST expression

DateStructToDt Join Time FUN Out:=DateStructToDt(In);

Variables

Name Meaning I/O Description Valid range Unit Default

In Date and
time

Input Date and time as a year,
month, day, hour, minutes,
seconds, and nanoseconds

--- --- ---

Out Date and
time

Output Date and time Depends on data type. Year, month,
day, hour,
minutes, sec-
onds

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In Refer to Function for details on the structure _sDT.

Out OK

Function

Name Meaning Content Data type Valid range Unit Default

In Date and time Date and time as a year,
month, day, hour, minutes,
seconds, and nanoseconds

_sDT --- --- ---

Year Year Year UINT 1970 to 2554 Year 1970

Month Month Month USINT 1 to 12 Month 1

Day Day Day USINT 1 to 31 Day

Hour Hour Hour USINT 0 to 23 Hour

0
Min Minutes Minutes USINT 0 to 59 Minutes

Sec Seconds Seconds USINT 0 to 59 Seconds

Nsec Nanoseconds Nanoseconds ULINT 0 to 999999999 Nanoseconds

(@)DateStructToDt

EN ENO
In Out

2 Instruction Descriptions

2-600 NJ-series Instructions Reference Manual (W502)

The following example is for the following values for the members of In: Year is UINT#1970, Month is
USINT#1, Day is USINT#2, Hour is USINT#12, Min is USINT#34, Sec is USINT#56, and Nsec is
ULINT#999999999.

Use the DtToDateStruct instruction (page 2-597) to break down a date and time into a year, month, day,
hour, minutes, seconds, and nanoseconds.

An error occurs in the following cases. ENO will be FALSE, and Out will not change.

• The value of a member of In is outside of the valid range.

• The processing result exceeds the valid range of Out.

Related System-defined Variables

Name Meaning Data type Description

_CurrentTime System Time of Day DT The time of day from the system clock. The num-
ber of seconds from 00:00:00 on January 1,1970.

Additional Information

Precautions for Correct Use

def:=DateStructToDt(abc);

LD ST

defabc

DateStructToDt

EN ENO
In

In=abc

Out=def
Joined

Month

Day

Hour

Minutes

Seconds

Nanoseconds

Year

DT#1970-1-2-12:34:56.999999999

.Year

.Month

.Day

.Hour

.Min

.Sec

.Nsec

UINT#1970

USINT#1

USINT#2

USINT#12

USINT#34

USINT#56

ULINT#999999999

S
ystem

 C
o

n
tro

l In
stru

ctio
n

s

2

2-601NJ-series Instructions Reference Manual (W502)

System Control Instructions

Instruction Name Page

TraceSamp Data Trace Sampling 2-602

TraceTrig Data Trace Trigger 2-605

GetTraceStatus Read Data Trace Status 2-607

SetAlarm Create User-defined Error 2-610

ResetAlarm Reset User-defined Error 2-615

GetAlarm Get User-defined Error Status 2-617

ResetPLCError Reset PLC Controller Error 2-619

GetPLCError Get PLC Controller Error Status 2-622

ResetCJBError Reset CJ Bus Controller Error 2-624

GetCJBError Get I/O Bus Error Status 2-626

GetEIPError Get EtherNet/IP Error Status 2-628

ResetMCError Reset Motion Control Error 2-630

GetMCError Get Motion Control Error Status 2-634

ResetECError Reset EtherCAT Controller Error 2-636

GetECError Get EtherCAT Error Status 2-637

SetInfo Create User-defined Information 2-639

ResetUnit Restart Unit 2-641

GetNTPStatus Read NTP Status 2-645

2 Instruction Descriptions

2-602 NJ-series Instructions Reference Manual (W502)

TraceSamp

The TraceSamp instruction performs sampling for a data trace.

The TraceSamp instruction performs sampling for a data trace. The sampling settings are specified
from the Sysmac Studio. The present values for all variables that are set to be sampled are read and
stored with trace number TraceNo and sampling point number Point in trace memory. This instruction is
executed only during execution of data tracing and only when the sampling timing is set to sampling
instructions from the Sysmac Studio.

The following figure shows a programming example. Trace number 1 and sampling point number 2 are
attached, and the present values of all variables to be sampled are stored in trace memory.

Instruction Name FB/FUN Graphic expression ST expression

TraceSamp Data Trace Sam-
pling

FUN TraceSamp(TraceNo, Point);

Variables

Name Meaning I/O Description Valid range Unit Default

TraceNo Trace num-
ber

Input

Trace number 0 to 3

--- 0Point Sampling
point num-
ber

Sampling point number Depends on data type.

Out Return
value

Output Always TRUE TRUE only --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

TraceNo OK

Point OK

Out OK

Function

(@)TraceSamp

EN ENO
TraceNo Out
Point

TraceSamp(USINT#1, USINT#2);

LD ST

USINT#1
USINT#2

TraceSamp

EN ENO
TraceNo
Point

2-603

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
ystem

 C
o

n
tro

l In
stru

ctio
n

s

2

TraceS
am

p

* _sTRACE_STA[]

• Refer to the NJ-series CPU Unit Software User’s Manual (Cat. No. W501) for details on data tracing.

• Tracing is used to sample the values of specified variables under specified conditions. The conditions
are specified from the Sysmac Studio.

• This instruction can be located in more than one place in the user program. Programming can be
written to sample according to specific conditions.

• Point can be suitably set so that you can see which sampled values on the Trace Window in the Sys-
mac Studio were returned by which TraceSamp instruction. Point will default to 0 if it is omitted.

• Return value Out is not used when the instruction is used in ST.

• In the following cases, nothing is done and the instruction ends normally.

• Data tracing is stopped.

• The sampling timing is not set to sampling instructions in the trace settings.

• The value of TraceNo is not the trace number set from the Sysmac Studio.

Related System-defined Variables

Name Meaning Data type Description

_PLC_TraceSta[0..3] Trace Information * Trace information

Refer to the NJ-series CPU Unit Software
User's Manual (Cat. No. W501) for details.

Additional Information

Precautions for Correct Use

2 Instruction Descriptions

2-604 NJ-series Instructions Reference Manual (W502)

Here, sampling is performed at the end of each process A to D. The values of the variables are stored at
each point.

Sample Programming

Process D

Process C

Process B

Process A

USINT#0
USINT#11

USINT#12

USINT#13

USINT#14

LD

USINT#1

USINT#2

USINT#3

TraceSamp

EN ENO
TraceNo
Point

TraceSamp

EN ENO
TraceNo
Point

TraceSamp

EN ENO
TraceNo
Point

TraceSamp

EN ENO
TraceNo
Point

Process D

Process C

Process B

Process A

ST

TraceSamp(USINT#0, USINT#11);

TraceSamp(USINT#1, USINT#12);

TraceSamp(USINT#2, USINT#13);

TraceSamp(USINT#3, USINT#14);

2-605

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
ystem

 C
o

n
tro

l In
stru

ctio
n

s

2

TraceTrig

TraceTrig

The TraceTrig instruction generates a trigger for data tracing.

The TraceTrig instruction generates a trigger for data tracing. It does not matter whether the trigger con-
ditions that were set from the Sysmac Studio have been met. Sampling starts if data tracing is in
progress for trace number TraceNo when the instruction is executed.

The following figure shows a programming example. Here, a data trace trigger is generated for trace
number 1.

Instruction Name FB/FUN Graphic expression ST expression

TraceTrig Data Trace Trigger FUN TraceTrig(TraceNo);

Variables

Name Meaning I/O Description Valid range Unit Default

TraceNo Trace num-
ber

Input Trace number 0 to 3 --- 0

Out Return
value

Output Always TRUE TRUE only --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

TraceNo OK

Out OK

Function

(@)TraceTrig

EN ENO
TraceNo Out

TraceTrig(USINT#1);

LD

USINT#1

ST

TraceTrig

EN ENO
TraceNo

2 Instruction Descriptions

2-606 NJ-series Instructions Reference Manual (W502)

* _sTRACE_STA[]

• Refer to the NJ-series CPU Unit Software User’s Manual (Cat. No. W501) for details on data tracing.

• This instruction can be located in more than one place in the user program. Programming can be
written to generate a trigger according to specific conditions.

• Programming can be written to generate triggers in ways that are not possible for normal trigger con-
ditions settings, such as programming to generate a trigger based on a comparison of two variables.

• Return value Out is not used when the instruction is used in ST.

• In the following cases, nothing is done and the instruction ends normally.

• Data tracing is stopped.

• The trigger condition has already been met.

• The value of TraceNo is not the trace number set from the Sysmac Studio.

• A continuous trace is specified as the trace type for the trace number that is specified with
TraceNo.

Here, a data trace trigger is generated to store the values of variables when the current speed exceeds
the maximum speed. The TraceTrig instruction is executed when the value of Current_speed exceeds
the value of Max_speed.

Related System-defined Variables

Name Meaning Data type Description

_PLC_TraceSta[0..3] Trace Information * Trace information

Refer to the NJ-series CPU Unit Software
User's Manual (Cat. No. W501) for details.

Additional Information

Precautions for Correct Use

Sample Programming

Variable Data type Initial value

LD

Current_speed
Max_speed

0
20

INT
INT

Current speed
Maximum speed

GT

Current_speed
 Max_speed

EN
In1
In2

USINT#1

TraceTrig

EN ENO
TraceNo

Comment

Variable Data type Initial value

ST

IF (Current_speed > Max_speed) THEN
 TraceTrig(USINT#1);
END_IF;

Current_speed
Max_speed

0
20

INT
INT

Current speed
Maximum speed

Comment

2-607

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
ystem

 C
o

n
tro

l In
stru

ctio
n

s

2

G
etTraceS

tatus

GetTraceStatus

The GetTraceStatus instruction reads the execution status of a data trace.

Instruction Name FB/FUN Graphic expression ST expression

GetTraceStatus Read Data Trace
Status

FUN GetTraceStatus(TraceNo,
IsStart, IsComplete,
ParamErr, IsTrigger);

Variables

Name Meaning I/O Description Valid range Unit Default

TraceNo Trace num-
ber

Input Trace number 0 to 3 --- 0

Out Return
value

Output

Always TRUE TRUE only

--- ---

IsStart Executing
flag

TRUE: Data trace in
progress.

FALSE: Data trace not in
progress.

Depends on data type.

IsComplete Completed
flag

TRUE: Data trace was com-
pleted.

FALSE: Data trace in
progress or not executed.

ParamErr Parameter
error flag

TRUE: Data trace setting
error.

FALSE: No data trace set-
ting error.

IsTrigger Trigger flag TRUE: Data trace trigger
condition met.

FALSE: Data trace trigger
condition not met.

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

TraceNo OK

Out OK

IsStart OK

IsComplete OK

ParamErr OK

IsTrigger OK

(@)GetTraceStatus
EN ENO
TraceNo Out
 IsStart
 IsComplete
 ParamErr
 IsTrigger

2 Instruction Descriptions

2-608 NJ-series Instructions Reference Manual (W502)

The GetTraceStatus instruction reads the execution status of the data trace that is specified with trace
number TraceNo. The status that is read is output to execution flag IsStart, completed flag IsComplete,
parameter error flag ParamErr, and trigger flag IsTrigger.

The value of ParamErr changes to TRUE when one of the following errors is found in the trace settings.

• A variable that is specified in the trigger or sampling settings does not exist.

• Sampling is set to be performed on a specified task period, but the specified task does not exist.

The following figure shows a programming example. The GetTraceStatus instruction reads the execu-
tion status of the data trace with trace number 1.

* _sTRACE_STA[]

Refer to the NJ-series CPU Unit Software User's Manual (Cat. No. W501) for details on data tracing.

• Return value Out is not used when the instruction is used in ST.

• This instruction reads the contents of the _PLC_TraceSta[] system-defined variable. You cannot
access this variable directly. Always use this instruction to read the contents of the variable.

• If TraceNo is not in the valid range, the values of IsStart, IsComplete, ParamErr, and IsTrigger are
FALSE.

Function

Related System-defined Variables

Name Meaning Data type Description

_PLC_TraceSta[0..3] Trace Information * Contains trace Information.

Refer to the NJ-series CPU Unit Software
User's Manual (Cat. No. W501) for details.

Additional Information

Precautions for Correct Use

GetTraceStatus(USINT#1, abc, def, ghi, jkl);

LD ST

abc
def
ghi
jkl

USINT#1

GetTraceStatus
EN ENO
TraceNo
 IsStart
 IsComplete
 ParamErr
 IsTrigger

2-609

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
ystem

 C
o

n
tro

l In
stru

ctio
n

s

2

G
etTraceS

tatus

In this sample, the GetTraceStatus instruction reads the execution status of the data trace with trace
number 3. If the data trace is in progress, the TraceTrig instruction is executed to trigger data tracing.

Sample Programming

LD

StaFlag
A
B

False
False
False

BOOL
BOOL
BOOL

P_On

StaFlag

StaFlag A B

USINT#3

USINT#3

GetTraceStatus
EN ENO
TraceNo
 IsStart
 IsComplete
 ParamErr
 IsTrigger

TraceTrig

EN ENO
TraceNo

Variable Data type Initial value

Trace execution status

Comment

Variable Data type Initial value

ST

GetTraceStatus(TraceNo:=USINT#3, IsStart=>StaFlag);

IF ((StaFlag=TRUE) AND (A=TRUE) AND (B=TRUE)) THEN
 TraceTrig(TraceNo:=USINT#3);
END_IF;

StaFlag
A
B

False
False
False

BOOL
BOOL
BOOL

Trace execution status

Comment

2 Instruction Descriptions

2-610 NJ-series Instructions Reference Manual (W502)

SetAlarm

The SetAlarm instruction creates a user-defined error.

* If you omit the input parameter, the default value is not applied. A building error will occur.

Instruction Name FB/FUN Graphic expression ST expression

SetAlarm Create User-
defined Error

FUN SetAlarm(Code, Info1,
Info2);

Variables

Name Meaning I/O Description Valid range Unit Default

Code Event code

Input

Event code of user-defined
error to generate

1 to 40000

1

Info1 Attached
information
1 Values recorded in event log

when the user-defined error
is generated

Depends on data type. *
Info2 Attached

information
2

Out Return
value

Output Always TRUE TRUE only --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

Code OK

Info1 OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

Info2 OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

Out OK

(@)SetAlarm
EN ENO
Code Out
Info1
Info2

2-611

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
ystem

 C
o

n
tro

l In
stru

ctio
n

s

2

S
etA

larm

The SetAlarm instruction generates the user-defined error that corresponds to event code Code. Event
codes are defined in the event setting table on the Sysmac Studio. The time of occurrence, event name,
event group, event code Code, event level, additional information Info1, additional information Info2, and
detailed information are stored in the user event log area that corresponds to the level of the event
code. The value for the time of occurrence is automatically obtained. The event name, event group, and
detailed information that are set from the Sysmac Studio are recorded. The event level that corresponds
to the event code is recorded. The event levels are given below. The smaller the event code is, the
higher the event level is.

The following figure shows a programming example. A user-defined error with event code 101 is gener-
ated. The values of variables abc and def are stored as attached information.

You can specify either global variables or local variables for Info1 and Info2.

• Up to 32 user-defined errors can be generated in each of the eight event levels (for up to 256 user-
defined errors total).

Function

Event code Classification: User fault level

1 to 5000 1

5001 to 10000 2

10001 to 15000 3

15001 to 20000 4

20001 to 25000 5

25001 to 30000 6

30001 to 35000 7

35001 to 40000 8

Related System-defined Variables

Name Meaning Data type Description

_AlarmFlag Error Status of User-
defined Errors

WORD These flags indicate when user-defined errors are
detected.

Bit 0 to bit 7 indicate the status of user-defined
error levels 1 to 8.

Refer to the NJ-series CPU Unit Software User's
Manual (Cat. No. W501) for details.

Additional Information

Precautions for Correct Use

SetAlarm(UINT#101, abc, def);

LD

UINT#101
abc
def

ST

SetAlarm
EN ENO
Code
Info1
Info2

2 Instruction Descriptions

2-612 NJ-series Instructions Reference Manual (W502)

• If a user-defined error for the same event code already exists, the new error is not recorded in the
event log.

• Always use variables for the input parameters that pass Info1 and Info2. If you use a constant, a
building error will occur.

• An error does not occur even if the value of Code is not set as a event code on the Sysmac Studio. If
the event code is not registered, the event group and detailed information are not recorded in the
user-defined event log. The value of Code is recorded for the event name.

• Return value Out is not used when the instruction is used in ST.

• An error occurs in the following cases. ENO will be FALSE.

• The value of Code is outside of the valid range.

• An attempt was made to generate more than the maximum number of user-defined errors.

In this sample, the value of variable A changes between TRUE and FALSE every five seconds. The
value of A is monitored. If it does not change for more than five seconds, a user-defined error with event
code 102 is generated. UINT#123 and UINT#456 are given as the attached information.

Sample Programming

2-613

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
ystem

 C
o

n
tro

l In
stru

ctio
n

s

2

S
etA

larm

When variable F changes to TRUE, the user-defined error is cleared.

Check the value of variable A.

Create user-defined error.

Reset user-defined error.

Variable Data type Initial value

LD

A

T#5s

B

B

C

UINT#102
 Abc
 Def

F B

A
B
C
F
Abc
Def
TON_instance0
TON_instance1

False
False
False
False
123
456

BOOL
BOOL
BOOL
BOOL
UINT
UINT
TON
TON

TON
In Q
PT ET

TON_0

A

T#5s

CTON
In Q
PT ET

TON_1

@SetAlarm
EN ENO
Code
Info1
Info2

C

UINT#102WORD#16#0000
 _AlarmFlag

NE
EN
In1
In2

@ResetAlarm
EN ENO
Code

_AlarmFlag WORD

ConstantVariable Data type Comment

Internal
Variables

External
Variables

Error Status of User-defined Errors

2 Instruction Descriptions

2-614 NJ-series Instructions Reference Manual (W502)

Variable Data type Initial value

ST

IF (A=TRUE) THEN
 TON_instance0(In:=TRUE, PT:=T#5s, Q=>B);
ELSE
 TON_instance0(In:=FALSE, Q=>B);
END_IF;

IF (A=FALSE) THEN
 TON_instance1(In:=TRUE, PT:=T#5s, Q=>C);
ELSE
 TON_instance1(In:=FALSE, Q=>C);
END_IF;

IF (B=TRUE) OR (C=TRUE) THEN
 SetAlarm(
 Code:=UINT102,
 Info1 :=Abc,
 info2 :=Def);
END_IF;

IF (F=TRUE) & (B=FALSE) & (C=FALSE) & (_AlarmFlag<>WORD#16#0000) THEN
 ResetAlarm(Code:=UINT#102);
END_IF;

// Check the value of variable A.

// Create user-defined error.

// Reset user-defined error.

A
B
C
F
Abc
Def
TON_instance0
TON_instance1

False
False
False
False
123
456

BOOL
BOOL
BOOL
BOOL
UINT
UINT
TON
TON

_AlarmFlag WORD

ConstantVariable Data type CommentExternal
Variables

Error Status of User-defined Errors

Internal
Variables

2-615

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
ystem

 C
o

n
tro

l In
stru

ctio
n

s

2

R
esetA

larm

ResetAlarm

The ResetAlarm instruction resets a user-defined error.

The ResetAlarm instruction resets the user-defined error specified by event code Code. An event is
then recorded in the user-defined event log to show that a specific user-defined error was reset. The
event code for this event is 65533 and the level is user information.

If the value of Code is 0, all current user-defined errors are reset. An event is then recorded in the user-
defined event log to show that all user-defined errors were reset. The event code for this event is 65534
and the level is user information.

The following figure shows a programming example. A user-defined error for event code 101 is reset.

Instruction Name FB/FUN Graphic expression ST expression

ResetAlarm Reset User-defined
Error

FUN ResetAlarm(Code);

Variables

Name Meaning I/O Description Valid range Unit Default

Code Event code Input Event code of user-defined
error to reset

16#0:Reset all application
errors.

Depends on data type. --- 1

Out Return
value

Output Always TRUE TRUE only --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

Code OK

Out OK

Function

(@)ResetAlarm
EN ENO
Code Out

ResetAlarm(UINT#101);

LD

UINT#101

ST

ResetAlarm
EN ENO
Code

2 Instruction Descriptions

2-616 NJ-series Instructions Reference Manual (W502)

• An error does not occur if the user-defined error specified by Code has not occurred.

• Return value Out is not used when the instruction is used in ST.

• An error occurs in the following case. ENO will be FALSE.

• The value of Code is outside of the valid range.

Refer to the sample programming that is provided for the SetAlarm instruction (page 2-610).

Related System-defined Variables

Name Meaning Data type Description

_AlarmFlag Error Status of User-
defined Errors

WORD These flags indicate when user-defined errors
are detected.

Bit 0 to bit 7 indicate the status of user-defined
error levels 1 to 8.

Refer to the NJ-series CPU Unit Software
User's Manual (Cat. No. W501) for details.

Precautions for Correct Use

Sample Programming

2-617

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
ystem

 C
o

n
tro

l In
stru

ctio
n

s

2

G
etA

larm

GetAlarm

The GetAlarm instruction gets the highest event level (of user-defined error levels 1 to 8) and the high-
est level event code of the current user-defined errors.

The GetAlarm instruction gets the highest event level and the highest level event code of the current
user-defined errors and outputs them to Level and Code. If there are currently no user-defined errors,
the value of error flag Out is FALSE. If there is more than one use-defined error at the highest event
level, the value of Code is the event code for the user-defined error that occurred first.

Instruction Name FB/FUN Graphic expression ST expression

GetAlarm Get User-defined
Error Status

FUN Out:=GetAlarm(Level,
Code);

Variables

Name Meaning I/O Description Valid range Unit Default

Out Error flag

Output

TRUE: User-defined error
exists.

FALSE:No user-defined
error

Depends on data type.

--- ---

Level Highest
event level

Highest event level of all cur-
rent user-defined errors

0: No user-defined error
1 to 8: Event level

0 to 8

Code Highest
level event
code

Highest level event code of
all current user-defined
errors

0: No user-defined error
1 to 40000: Event level

0 to 40000

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

Out OK

Level OK

Code OK

Function

(@)GetAlarm
EN Out
 Level
 Code

2 Instruction Descriptions

2-618 NJ-series Instructions Reference Manual (W502)

The following figure shows a programming example.

If this instruction is used in a ladder diagram, the value of Out changes to FALSE if an error occurs in
the previous instruction on the rung.

Related System-defined Variables

Name Meaning Data type Description

_AlarmFlag Error Status of User-
defined Errors

WORD These flags indicate when user-defined errors
are detected.

Bit 0 to bit 7 indicate the status of user-defined
error levels 1 to 8.

Refer to the NJ-series CPU Unit Software
User's Manual (Cat. No. W501) for details.

Precautions for Correct Use

abc:=GetAlarm(def, ghi);

LD ST

GetAlarm

def
ghi

abc

EN
 Level
 Code

2-619

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
ystem

 C
o

n
tro

l In
stru

ctio
n

s

2

R
esetP

LC
E

rror

ResetPLCError

The ResetPLCError instruction resets errors in the PLC Function Module.

Only common variables are used.

The ResetPLCError instruction resets errors in the PLC Function Module.

The following figure shows a programming example.

The error may not be reset immediately after you execute this instruction. Use the GetPLCError instruc-
tion to confirm that the errors were reset.

The ResetPLCError instruction is executed when the value of Trigger changes to TRUE. Normal end
processing is performed if execution of the ResetPLCError instruction ends normally (i.e., if the value of
Done is TRUE). Error end processing is performed if execution ends in an error (i.e., if the value of Error
is TRUE).

Instruction Name FB/FUN Graphic expression ST expression

ResetPLCError Reset PLC Control-
ler Error

FB ResetPLCError(Execute,
Done, Busy, Error, ErrorID);

Variables

Function

Related System-defined Variables

Name Meaning Data type Description

_PLC_ErrSta Error Status of PLC
Function Module

WORD Contains the error status of the PLC Func-
tion Module,

Refer to the NJ-series CPU Unit Software
User's Manual (Cat. No. W501) for details.

Precautions for Correct Use

Sample Programming

ResetPLCError

ResetPLCError_instance

Execute Done
 Busy
 Error
 ErrorID

ResetPLCError_instance(A, abc, def, ghi, jkl);

LD ST

ResetPLCError

ResetPLCError_instance
A

def
ghi
jkl

abc

Execute Done
 Busy
 Error
 ErrorID

2 Instruction Descriptions

2-620 NJ-series Instructions Reference Manual (W502)

Variable Data type Initial value

LD

OperatingEnd
Trigger
Operating
RS_instance
ResetPLCError_instance

False
False
False

BOOL
BOOL
BOOL
RS
ResetPLCError

ResetPLCError_instance.Done

ResetPLCError_instance.Done

ResetPLCError_instance.Error

Determine if execution of the ResetPLCError has ended.

Processing completed
Execution condition
Processing

Accept trigger.

Execute ResetPLCError instruction.

OperatingEnd

Operating

OperatingEnd

ResetPLCError_instance.Error

Trigger RS
 Set Q1
 Reset1

RS_instance

OperatingOperating

Operating

Operating

ResetPLCError

ResetPLCError_instance

Execute Done
 Busy
 Error
 ErrorID

Processing after normal end
Inline ST

Inline ST

1 // Processing after normal end
2 ;

Processing after error end

1 // Processing after error end
2 ;

Comment

2-621

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
ystem

 C
o

n
tro

l In
stru

ctio
n

s

2

R
esetP

LC
E

rror

Variable Data type Initial value

ST

IF ((Trigger=TRUE) AND (LastTrigger=FALSE)) THEN
 OperatingStart:=TRUE;
 Operating:=TRUE;
END_IF;
LastTrigger:=Trigger;

IF (OperatingStart=TRUE) THEN
 ResetPLCError_instance(Execute:=FALSE);
 OperatingStart:=FALSE;
END_IF;

IF (Operating=TRUE) THEN
 ResetPLCError_instance(Execute:=TRUE);

 IF (ResetPLCError_instance.Done=TRUE) THEN

 Operating:=FALSE;
 END_IF;

 IF (ResetPLCError_instance.Error=TRUE) THEN

 Operating:=FALSE;
 END_IF;
END_IF;

Trigger
LastTrigger
OperatingStart
Operating
ResetPLCError_instance

False
False
False
False

BOOL
BOOL
BOOL
BOOL
ResetPLCError

// Detect when Trigger changes to TRUE.

// Initialize ResetPLCError_instance.

// Execute ResetPLCError instruction.

// Processing after normal end

// Processing after error end

Execution condition
Value of Trigger from previous task period
Processing started
Processing

Comment

2 Instruction Descriptions

2-622 NJ-series Instructions Reference Manual (W502)

GetPLCError

The GetPLCError instruction gets the highest level status (partial fault or minor fault) and highest level
event code of the current Controller errors in the PLC Function Module.

The GetPLCError instruction gets the highest level status and the highest level event code of the cur-
rent Controller errors in the PLC Function Module and outputs them to Level and Code.
If there are currently no Controller errors, the value of error flag Out is FALSE.
If there is more than one Controller error at the highest event level, the value of Code is the event code
for the Controller error that occurred first.

Instruction Name FB/FUN Graphic expression ST expression

GetPLCError Get PLC Controller
Error Status

FUN Out:=GetPLCError(Level,
Code);

Variables

Name Meaning I/O Description Valid range Unit Default

Out Error flag

Output

TRUE: Controller error
exists.

FALSE:No Controller error

Depends on data type.

Level Highest
event level

Highest level status of all
current Controller errors in
the PLC Function Module

0: No Controller error
2: Partial fault level
3: Minor fault level

0, 2, or 3

Code Highest
level event
code

Highest level event code of
all current Controller errors
in the PLC Function Module

16#0000_0000: No Control-
ler error
16#0007_0000 to
16#FFFF_FFFF: Event code

16#00000000

16#00070000 to
16#FFFFFFFF

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

Out OK

Level OK

Code OK

Function

(@)GetPLCError
EN Out
 Level
 Code

2-623

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
ystem

 C
o

n
tro

l In
stru

ctio
n

s

2

G
etP

LC
E

rror

The following figure shows a programming example.

Related System-defined Variables

Name Meaning Data type Description

_PLC_ErrSta Error Status of PLC
Function Module

WORD Contains the error status of the PLC Func-
tion Module.

Refer to the NJ-series CPU Unit Software
User's Manual (Cat. No. W501) for details.

abc:=GetPLCError(def, ghi);

LD ST

def
ghi

abcGetPLCError
EN
 Level
 Code

2 Instruction Descriptions

2-624 NJ-series Instructions Reference Manual (W502)

ResetCJBError

The ResetCJBError instruction resets a Controller error in the I/O bus.

The ResetCJBError instruction resets a Controller error in the I/O bus. If the Unit specified by unit num-
ber UnitNo is a CJ-series Special Unit, the Unit is restarted.

The data type of UnitNo is enumerated type _eUnitNo. The meanings of the enumerators are as fol-
lows:

Instruction Name FB/FUN Graphic expression ST expression

ResetCJBError Reset I/O Bus Error FB ResetCJBError_instance(
Execute, UnitNo, Done,
Busy, Error, ErrorID);

Variables

Name Meaning I/O Description Valid range Unit Default

UnitNo Unit num-
ber

Input Unit number for which to
reset errors

_CBU_No00 to
_CBU_No15,
_SIO_No00 to
_SIO_No95

_UNIT_ALL

--- _UNIT
_ALL

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

UnitNo Refer to Function for the enumerators of the enumerated type _eUnitNo.

Function

Enumerators Meaning

_CBU_No00 to _CBU_No15 Unit number of CPU Bus Unit, 00 to 15

_SIO_No00 to _SIO_No95 Unit number of Special I/O Unit, 00 to 95

_UNIT_ALL All Units

ResetCJBError

ResetCJBError_instance

EN Done
UnitNo Busy
 Error
 ErrorID

2-625

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
ystem

 C
o

n
tro

l In
stru

ctio
n

s

2

R
esetC

JB
E

rror

The following example is for when UnitNo is _CBU_No00. The Controller error on the I/O bus is reset
and the CPU Bus Unit with unit number 0 is restarted.

• The error may not be reset immediately after you execute this instruction. Use the GetCJBError
instruction to confirm that the errors were reset.

• An error occurs in the following cases. ENO will be FALSE.

• The value of UnitNo is outside of the valid range.

• The Unit specified by UnitNo does not exist.

Related System-defined Variables

Name Meaning Data type Description

_CJB_ErrSta I/O Bus Error Status WORD Contains the error status of the I/O bus.

Refer to the NJ-series CPU Unit Software
User's Manual (Cat. No. W501) for details.

Precautions for Correct Use

ResetCJBError_instance(A, _CBU_No00,
 abc, def, ghi, jkl);

LD ST

_CBU_No00

A ResetCJBError

ResetCJBError_instance

def
ghi
jkl

abc

EN Done
UnitNo Busy
 Error
 ErrorID

2 Instruction Descriptions

2-626 NJ-series Instructions Reference Manual (W502)

GetCJBError

The GetCJBError instruction gets the highest level status (partial fault or minor fault) and highest level
event code of the current Controller errors in the I/O bus.

The GetCJBError instruction gets the highest level status and the highest level event code of the current
Controller errors in the I/O bus and outputs them to Level and Code. If there are currently no Controller
errors, the value of error flag Out is FALSE. If there is more than one Controller error at the highest
event level, the value of Code is the event code for the Controller error that occurred first.

Instruction Name FB/FUN Graphic expression ST expression

GetCJBError Get I/O Bus Error
Status

FUN Out:=GetCJBError(Level,
Code);

Variables

Name Meaning I/O Description Valid range Unit Default

Out Error flag

Output

TRUE: Controller error
exists.

FALSE:No Controller error

Depends on data type.

--- ---

Level Highest
event level

Highest level status of all
current Controller errors in
the I/O bus

0: No Controller error
2: Partial fault level
3: Minor fault level

0, 2, or 3

Code Highest
level event
code

Highest level event code of
all current Controller errors
in the I/O bus

16#0000_0000: No Control-
ler error
16#0007_0000 to
16#FFFF_FFFF: Event code

16#00000000

16#00070000 to
16#FFFFFFFF

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

Out OK

Level OK

Code OK

Function

(@)GetCJBError
EN Out
 Level
 Code

2-627

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
ystem

 C
o

n
tro

l In
stru

ctio
n

s

2

G
etC

JB
E

rror

The following figure shows a programming example.

Related System-defined Variables

Name Meaning Data type Description

_CJB_ErrSta I/O Bus Error Status WORD Contains the error status of the I/O bus.

Refer to the NJ-series CPU Unit Software
User's Manual (Cat. No. W501) for details.

abc:=GetCJBError(def, ghi);

LD ST

def
ghi

abcGetCJBError
EN
 Level
 Code

2 Instruction Descriptions

2-628 NJ-series Instructions Reference Manual (W502)

GetEIPError

The GetEIPError instruction gets the highest level status (partial fault or minor fault) and highest level
event code of the current Controller errors in the EtherNet/IP Function Module.

The GetEIPError instruction gets the highest level status and the highest level event code of the current
Controller errors in the EtherNet/IP Function Module and outputs them to Level and Code. If there are
currently no Controller errors, the value of error flag Out is FALSE. If there is more than one Controller
error at the highest event level, the value of Code is the event code for the Controller error that occurred
first.

Instruction Name FB/FUN Graphic expression ST expression

GetEIPError Get EtherNet/IP
Error Status

FUN Out:=GetEIPError(Level,
Code);

Variables

Name Meaning I/O Description Valid range Unit Default

Out Error flag

Output

TRUE: Controller error
exists.

FALSE:No Controller error

Depends on data type.

--- ---

Level Highest
event level

Highest level status of all
current Controller errors in
the EtherNet/IP Function
Module

0: No Controller error
2: Partial fault level
3: Minor fault level

0, 2, or 3

Code Highest
level event
code

Highest level event code of
all current Controller errors
in the EtherNet/IP Function
Module

16#0000_0000: No Control-
ler error
16#0007_0000 to
16#FFFF_FFFF: Event code

16#00000000

16#00070000 to
16#FFFFFFFF

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

Out OK

Level OK

Code OK

Function

(@)GetEIPError
EN Out
 Level
 Code

2-629

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
ystem

 C
o

n
tro

l In
stru

ctio
n

s

2

G
etE

IP
E

rror

The following figure shows a programming example.

Related System-defined Variables

Name Meaning Data type Description

_EIP_ErrSta Error Status of Ether-
Net/IP Function Mod-
ule

WORD Contains the error status of the EtherNet/IP
Function Module.

Refer to the NJ-series CPU Unit Software
User's Manual (Cat. No. W501) for details.

abc:=GetEIPError(def, ghi);

LD ST

def
ghi

abcGetEIPError
EN
 Level
 Code

2 Instruction Descriptions

2-630 NJ-series Instructions Reference Manual (W502)

ResetMCError

The ResetMCError instruction resets Controller errors in the Motion Control Function Module.

The ResetMCError instruction resets a Controller error in the Motion Control Function Module.
If the errors are not reset, the value of Failure changes to TRUE.

The following figure shows a programming example.

Instruction Name FB/FUN Graphic expression ST expression

ResetMCError Reset Motion Con-
trol Error

FB ResetMCError_instance(
Execute, Done, Busy,
Failure Error, ErrorID);

Variables

Name Meaning I/O Description Valid range Unit Default

Failure Failure end Output TRUE: The errors were not
reset.

FALSE:The errors were
reset normally.

Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

Failure OK

Function

ResetMCError

ResetMCError_instance

Execute Done
 Busy
 Failure
 Error
 ErrorID

ResetMCError_instance(A, abc, def,
 ghi, jkl, mno);

LD ST

A ResetMCError

ResetMCError_instance

def
ghi
jkl
mno

abc

Execute Done
 Busy
 Failure
 Error
 ErrorID

2-631

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
ystem

 C
o

n
tro

l In
stru

ctio
n

s

2

R
esetM

C
E

rror

• The error may not be reset immediately after you execute this instruction. Use the GetMCError
instruction to confirm that the errors were reset.

• If you attempt to execute this instruction during an MC Test Run, the value of BUSY remains TRUE
and the instruction is not executed.

This sample detects Controller errors in the EtherCAT Master Function Module and Motion Control
Function Module. If errors are detected, they are reset. The processing procedure is as follows:

1 The GetECError instruction is executed to detect any Controller errors in the EtherCAT Master
Function Module.

2 If errors are detected, they are reset with the ResetECError instruction.

3 The GetMCError instruction is executed to detect any Controller errors in the Motion Control

Function Module.

4 If errors are detected, they are reset with the ResetMCError instruction.

Related System-defined Variables

Name Meaning Data type Description

_MC_ErrSta Motion Control Error
Status

WORD Contains the error status of the Motion Con-
trol Function Module.

Refer to the NJ-series CPU Unit Software
User's Manual (Cat. No. W501) for details.

Precautions for Correct Use

Sample Programming

2 Instruction Descriptions

2-632 NJ-series Instructions Reference Manual (W502)

Variable Data type Initial
value Comment

LD

Request
EC_Operating
MC_Operating
Normal_End
ResetECError_instance
ResetMCError_instance

False
False
False
False

BOOL
BOOL
BOOL
BOOL
ResetECError
ResetMCError

Request

Execute GetECError instruction.

Execute ResetECError instruction if error occurs in EtherCAT Master Function Module.

Error detection reset request
Resetting error in EtherCAT Master Function Module
Resetting error in Motion Control Function Module
Normal end

EC_Operating

EC_Operating

EC_Operating

GetECError
EN
 Level
 Code

ResetECError

ResetECError_instance

Execute Done
 Busy
 Error
 ErrorID

Request

Execute GetMCError instruction after resetting error in EtherCAT Master Function Module or if there is no error.

Execute ResetMCError instruction if error occurs in Motion Control Function Module.

Processing after normal end

MC_Operating

MC_Operating

ResetECError_instance.Done
GetMCError

EN
 Level
 Code

ResetMCError

ResetMCError_instance

Execute Done
 Busy
 Failure
 Error
 ErrorID

Request

Normal_End

EC_Operating MC_Operating

MC_Operating

ResetMCError_instance.Done

ResetECError_instance.Done

2-633

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
ystem

 C
o

n
tro

l In
stru

ctio
n

s

2

R
esetM

C
E

rror

ST

IF (Request=TRUE) THEN
 EC_Error:=GetECError();
 MC_Error:=GetMCError();

 IF (EC_Error=TRUE) THEN
 CASE EC_Stage OF
 0 :
 ResetECError_instance(Execute:=FALSE);
 EC_Stage:=INT#1;
 1 :
 ResetECError_instance(Execute:=TRUE);
 IF (ResetECError_instance.Done=TRUE) THEN
 EC_Stage:=INT#99;
 END_IF;
 IF (ResetECError_instance.Error=TRUE) THEN
 EC_Stage:=INT#98;
 END_IF;
 99 :
 EC_Stage:=INT#0;
 98 :
 EC_Stage:=INT#0;
 END_CASE;
 END_IF;

 IF (MC_Error=TRUE) THEN
 CASE MC_Stage OF
 0 :
 ResetMCError_instance(Execute:=FALSE);
 MC_Stage:=INT#1;
 1 :
 IF (EC_Error=FALSE) THEN
 ResetMCError_instance(Execute:=TRUE);
 IF (ResetMCError_instance.Done=TRUE) THEN
 MC_Stage:=INT#99;
 END_IF;
 IF ((ResetMCError_instance.Error=TRUE) OR (ResetMCError_instance.Failure=TRUE)) THEN
 MC_Stage:=INT#98;
 END_IF;
 END_IF;
 99 :
 MC_Stage:=INT#0;
 98 :
 MC_Stage:=INT#0;
 END_CASE;
 END_IF;
END_IF;

// Detect Controller errors in EtherCAT Master Function Module.
// Detect Controller errors in Motion Control Function Module.

// Controller error in EtherCAT Master Function Module.

// Determine error resetting requests.

// Initialize

// Initialize

// Resetting Controller error in EtherCAT Master Function Module.

// Normal end

// Processing after normal end

// Processing after error end.

// Error end

// Controller error in Motion Control Function Module.

// Resetting Controller error in Motion Control Function Module.
// Recover operation for all slaves.

// Normal end

// Processing after normal end

// Processing after error end.

// Error end

Request
EC_Error
EC_Stage
MC_Error
MC_Stage
ResetECError_instance
ResetMCError_instance

False
False
0
False
0

BOOL
BOOL
INT
BOOL
INT
ResetECError
ResetMCError

Error detection reset request
Error in EtherCAT Master Function Module
Resetting error in EtherCAT Master Function Module
Error in Motion Control Function Module
Error reset in Motion Control Function Module

Variable Data type Initial
value Comment

2 Instruction Descriptions

2-634 NJ-series Instructions Reference Manual (W502)

GetMCError

The GetMCError instruction gets the highest level status (partial fault or minor fault) and highest level
event code of the current Controller errors in the Motion Control Function Module.

The GetMCError instruction gets the highest level status and the highest level event code of the current
Controller errors in the Motion Control Function Module and outputs them to Level and Code. If there
are currently no Controller errors, the value of error flag Out is FALSE. If there is more than one Control-
ler error at the highest event level, the value of Code is the event code for the Controller error that
occurred first.

Instruction Name FB/FUN Graphic expression ST expression

GetMCError Get Motion Control
Error Status

FUN Out:=GetMCError(Level,
Code);

Variables

Name Meaning I/O Description Valid range Unit Default

Out Error flag

Output

TRUE: Controller error
exists.

FALSE:No Controller error

Depends on data type.

--- ---

Level Highest
event level

Highest level status of all
current Controller errors in
the Motion Control Function
Module

0: No Controller error
2: Partial fault level
3: Minor fault level

0, 2, or 3

Code Highest
level event
code

Highest level event code of
all current Controller errors
in the Motion Control Func-
tion Module

16#0000_0000: No Control-
ler error
16#0007_0000 to
16#FFFF_FFFF: Event code

16#00000000

16#00070000 to
16#FFFFFFFF

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

Out OK

Level OK

Code OK

Function

(@)GetMCError
EN Out
 Level
 Code

2-635

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
ystem

 C
o

n
tro

l In
stru

ctio
n

s

2

G
etM

C
E

rror

The following figure shows a programming example.

Refer to the sample programming that is provided for the ResetMCError instruction (page 2-630).

Related System-defined Variables

Name Meaning Data type Description

_MC_ErrSta Error Status of Motion
Control Function Mod-
ule

WORD Contains the error status of the Motion Con-
trol Function Module.

Refer to the NJ-series CPU Unit Software
User's Manual (Cat. No. W501) for details.

Sample Programming

abc:=GetMCError(def, ghi);

LD ST

def
ghi

abcGetMCError
EN
 Level
 Code

2 Instruction Descriptions

2-636 NJ-series Instructions Reference Manual (W502)

ResetECError

The ResetECError instruction resets a Controller error in the EtherCAT Master Function Module.

Only common variables are used.

The ResetECError instruction resets Controller errors in the EtherCAT Master Function Module.

The following figure shows a programming example.

• The error may not be reset immediately after you execute this instruction. Use the GetECError
instruction to confirm that the errors were reset.

• An error occurs in the following case. Error will change to TRUE.

• This instruction is executed again while processing to clear a Controller error from the EtherCAT
Master Function Module is in progress.

Refer to the sample programming that is provided for the ResetMCError instruction (page 2-630).

Instruction Name FB/FUN Graphic expression ST expression

ResetECError Reset EtherCAT
Controller Error

FB ResetECError_instance(
Execute, Done, Busy, Error,
ErrorID);

Variables

Function

Related System-defined Variables

Name Meaning Data type Description

_EC_ErrSta Built-in EtherCAT Error WORD Contains a summary of the errors in the
EtherCAT Master Function Module.

Refer to the NJ-series CPU Unit Built-in
EtherCAT Port User’s Manual (Cat. No.
W505) for details.

Precautions for Correct Use

Sample Programming

ResetECError

ResetECError_instance

Execute Done
 Busy
 Error
 ErrorID

ResetECError_instance(A, abc, def, ghi, jkl);

LD ST

A

def
ghi
jkl

abcResetECError

ResetECError_instance

Execute Done
 Busy
 Error
 ErrorID

2-637

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
ystem

 C
o

n
tro

l In
stru

ctio
n

s

2

G
etE

C
E

rror

GetECError

The GetECError instruction gets the highest level status (partial fault or minor fault) and highest level
event code of the current communications port errors or master errors in the EtherCAT Master Function
Module.

Instruction Name FB/FUN Graphic expression ST expression

GetECError Get EtherCAT Error
Status

FUN Out:=GetECError(Level,
Code);

Variables

Name Meaning I/O Description Valid range Unit Default

Out Error flag

Output

TRUE: Communications
port error or master
error exists.

FALSE:No communications
port error or master
error.

Depends on data type.

--- ---

Level Highest
event level

Highest level status of all
current communications port
errors and master errors in
the EtherCAT Function Mod-
ule

0: No error
2: Partial fault level
3: Minor fault level

0, 2, or 3

Code Highest
level event
code

Highest level event code of
all current communications
port errors and master
errors in the EtherCAT
Function Module

16#0000_0000: No error
16#0007_0000 to
16#FFFF_FFFF: Event code

16#00000000

16#00070000 to
16#FFFFFFFF

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

Out OK

Level OK

Code OK

(@)GetECError
EN Out
 Level
 Code

2 Instruction Descriptions

2-638 NJ-series Instructions Reference Manual (W502)

The GetECError instruction gets the highest level status and highest level event code of the current
communications port errors or master errors in the EtherCAT Master Function Module and outputs
them to Level and Code. If there are currently no communications port errors or master errors, the value
of error flag Out is FALSE. If there is more than one Controller error at the highest event level, the value
of Code is the event code for the Controller error that occurred first.

The following figure shows a programming example.

*1 The GetECError instruction gets the errors that are shown by _EC_PortErr (Communications Port Error) and
_EC_MstrErr (Master Error).

*2 Refer to the NJ-series CPU Unit Built-in EtherCAT Port User’s Manual (Cat. No. W505) for details.

Refer to the sample programming that is provided for the ResetMCError instruction (page 2-630).

Function

Related System-defined Variables

Name Meaning Data type Description
_EC_ErrSta Built-in EtherCAT Error WORD Contains a summary of the errors in the

EtherCAT Master Function Module.*2

_EC_PortErr*1 Communications Port
Error

WORD Contains a summary of the EtherCAT mas-
ter communications port errors.*2

_EC_MstrErr*1 Master Error WORD Contains a summary of the EtherCAT mas-
ter errors and the slave errors detected by
the EtherCAT master.*2

_EC_SlavErr Slave Error WORD Contains a summary of the overall EtherCAT
slave error status.*2

Sample Programming

abc:=GetECError(def, ghi);

LD ST

def
ghi

abcGetECError
EN
 Level
 Code

2-639

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
ystem

 C
o

n
tro

l In
stru

ctio
n

s

2

S
etInfo

SetInfo

The SetInfo instruction creates user-defined information.

* If you omit the input parameter, the default value is not applied. A building error will occur.

Instruction Name FB/FUN Graphic expression ST expression

SetInfo Create User-
defined Information

FUN SetInfo(Code, Info1, Info2);

Variables

Name Meaning I/O Description Valid range Unit Default

Code Event code

Input

Event code of user-defined
information to generate

40001 to 60000

40001

Info1 Attached
information
1 Values recorded in event log

when the user-defined infor-
mation is generated

Depends on data type. *
Info2 Attached

information
2

Out Return
value

Output Always TRUE TRUE only --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

Code OK

Info1 OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

Info2 OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

Out OK

(@)SetInfo
EN ENO
Code Out
Info1
Info2

2 Instruction Descriptions

2-640 NJ-series Instructions Reference Manual (W502)

The SetInfo instruction generates the user-defined information specified by event code Code. The time
of occurrence, event code Code, event level, attached information Info1, and attached information Info2
are stored in the user event log area that corresponds to the level of the event code.

The following figure shows a programming example. User-defined information for event code 40001 is
generated. The values of variables abc and def are stored as attached information.

• Always use variables for the input parameters that are passed to Info1 and Info2. If the attached infor-
mation is not used, specify a dummy variable.

• Return value Out is not used when the instruction is used in ST.

• An error occurs in the following case. ENO will be FALSE.

• The value of Code is outside of the valid range.

Function

Precautions for Correct Use

SetInfo(UINT#40001, abc, def);

LD

UINT#40001
abc
def

ST

SetInfo
EN ENO
Code
Info1
Info2

2-641

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
ystem

 C
o

n
tro

l In
stru

ctio
n

s

2

R
esetU

nit

ResetUnit

The ResetUnit instruction restarts a CPU Bus Unit or Special I/O Unit.

The ResetUnit instruction restarts the CPU Bus Unit or Special I/O Unit with unit number UnitNo.

The data type of UnitNo is enumerated type _eUnitNo. The meanings of the enumerators are as fol-
lows:

The following example is for when UnitNo is _CBU_No00. CPU Bus Unit with unit number 0 is
restarted.

Instruction Name FB/FUN Graphic expression ST expression

ResetUnit Restart Unit FB ResetUnit_instance(Exe-
cute, UnitNo, Done, Busy,
Error, ErrorID);

Variables

Name Meaning I/O Description Valid range Unit Default

UnitNo Unit num-
ber

Input Unit number of Unit to
restart

_CBU_No00 to
_CBU_No15,
_SIO_No00 to
_SIO_No95

--- _CBU
_No00

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

UnitNo Refer to Function for the enumerators of enumeration type _eUnitNo.

Function

Enumerators Meaning

_CBU_No00 to _CBU_No15 Unit number of CPU Bus Unit, 00 to 15

_SIO_No00 to _SIO_No95 Unit number of Special I/O Unit, 00 to 95

ResetUnit
Execute Done
UnitNo Busy
 Error
 ErrorID

ResetUnit_instance

ResetUnit_instance(A, _CBU_No00, abc, def, ghi, jkl);

LD ST

ResetUnit
Execute Done
UnitNo Busy
 Error
 ErrorID

ResetUnit_instance
A

_CBU_No00 def
ghi
jkl

abc

2 Instruction Descriptions

2-642 NJ-series Instructions Reference Manual (W502)

• This instruction will not end in an error even if restart processing is in progress for the Unit specified
by UnitNo. The value of Busy remains at TRUE and the value of Done changes to TRUE when restart
processing is finished. Restart requests are not queued.

• The Unit is restarted if the value of Execute is TRUE when operation starts.

• An error occurs in the following cases. Error will change to TRUE.

• The value of UnitNo is outside of the valid range.

• The Unit specified with UnitNo does not exist.

• Restart processing failed.

When the value of Trigger changes to TRUE, the baud rate of serial port 1 on the Serial Communica-
tions Unit with a unit number of 0 is set to 38,400 bps and the Unit is restarted.

Definitions of Global Variables

Precautions for Correct Use

Sample Programming

USINT 0

Global Variables

SCU_P1_BaudrateCfg Baud rateIOBus://rack#0/slot#0
/P1_BaudrateCfg

Name Data type Initial value CommentAT specification Retain

2-643

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
ystem

 C
o

n
tro

l In
stru

ctio
n

s

2

R
esetU

nit

Variable Data type Initial value

ResetUnit_instance.Done

ResetUnit_instance.Done

ResetUnit_instance.Error

Determine if execution of the ResetUnit has ended.

Processing completed
Execution condition
Processing

Accept trigger.

Set baud rate in device variable.

Execute ResetUnit instruction.

OperatingEnd

Operating

OperatingEnd

USINT#8 SCU_P1_BaudrateCfg

ResetUnit_instance.Error

ResetUnit_instance.BusyTrigger RS
 Set Q1
 Reset1

RS_instance

Operating

Operating

Operating

Processing after normal end
Inline ST

Inline ST

1 // Processing after normal end
2 ;

Processing after error end

1 // Processing after error end
2 ;

_CBU_No00

Operating

MOVE
EN ENO
In Out

ResetUnit
Execute Done
UnitNo Busy
 Error
 ErrorID

ResetUnit_instance

Comment
LD

OperatingEnd
Trigger
Operating
RS_instance
ResetUnit_instance

False
False
False

BOOL
BOOL
BOOL
RS
ResetUnit

SCU_P1_BaudrateCfg USINT

Internal
Variables

External
Variables Variable Data type Comment

Baud rate

2 Instruction Descriptions

2-644 NJ-series Instructions Reference Manual (W502)

IF ((Trigger=TRUE) AND (LastTrigger=FALSE) AND (ResetUnit_instance.Busy=FALSE)) THEN
 OperatingStart:=TRUE;
 Operating:=TRUE;
END_IF;
LastTrigger:=Trigger;

IF (OperatingStart=TRUE) THEN
 ResetUnit_instance(Execute:=FALSE);
 SCU_P1_BaudrateCfg:=USINT#8;
 OperatingStart:=FALSE;
END_IF;

IF (Operating=TRUE) THEN
 ResetUnit_instance(
 Execute:=TRUE,
 UnitNo :=_CBU_No00);

 IF (ResetUnit_instance.Done=TRUE) THEN

 Operating:=FALSE;
 END_IF;

 IF (ResetUnit_instance.Error=TRUE) THEN

 Operating:=FALSE;
 END_IF;
END_IF;

// Detect when Trigger changes to TRUE.

Execution condition
Value of Trigger from previous task period
Processing started
Processing

// Initialize ResetUnit_instance and set baud rate in device variable.

// Execute ResetUnit instruction.

// Processing after normal end

// Execution condition
// Unit number

// Processing after error end

CommentVariable Data type Initial valueInternal
Variables

External
Variables Variable Data type Comment

Baud rate

ST

Trigger
LaseTrigger
OperatingStart
Operating
ResetUnit_instance

False
False
False
False

BOOL
BOOL
BOOL
BOOL
ResetUnit

SCU_P1_BaudrateCfg USINT

2-645

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
ystem

 C
o

n
tro

l In
stru

ctio
n

s

2

G
etN

T
P

S
tatus

GetNTPStatus

The GetNTPStatus instruction reads the NTP status.

The GetNTPStatus instruction reads the NTP status. The following information is read: NTP last normal
operation time ExecTime and normal end flag ExecNormal.

The following figure shows a programming example.

Instruction Name FB/FUN Graphic expression ST expression

GetNTPStatus Read NTP Status FUN GetNTPStatus(ExecTime,
ExecNormal);

Variables

Name Meaning I/O Description Valid range Unit Default

Out Return value

Output

Always TRUE TRUE only ---

ExecTime NTP last normal
operation time

NTP last normal opera-
tion time

Depends on data type.

Year, month,
day, hour,
minutes,
seconds

Exec
Normal

NTP normal
end flag

TRUE: Normal end
FALSE: Error end

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

Out OK

ExecTime OK

Exec
Normal

OK

Function

(@)GetNTPStatus
EN ENO
 Out
 ExecTime
 ExecNormal

GetNTPStatus(abc, def);

LD ST

abc
def

GetNTPStatus
EN ENO

 ExecTime
 ExecNormal

2 Instruction Descriptions

2-646 NJ-series Instructions Reference Manual (W502)

* _sNTP_RESULT

• Return value Out is not used when the instruction is used in ST.

• This instruction reads the contents of the _EIP_NTPResult system-defined variable. You cannot
access this variable directly. Always use this instruction to read the contents of the variable.

Related System-defined Variables

Name Meaning Data type Description

_EIP_NTPResult NTP Status * Contains the NTP status.

Refer to the NJ-series CPU Unit Software
User's Manual (Cat. No. W501) for details.

Precautions for Correct Use

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

2-647NJ-series Instructions Reference Manual (W502)

Communications Instructions

Instruction Name Page Instruction Name Page
ExecPMCR Protocol Macro 2-648 EC_StopMon Stop EtherCAT Packet Monitor 2-740
SerialSend SCU Send Serial 2-658 EC_SaveMon Save EtherCAT Packets 2-742
SerialRcv SCU Receive Serial 2-665 EC_CopyMon Transfer EtherCAT Packets 2-744
SendCmd Send Command 2-674 EC_DisconnectSlave Disconnect EtherCAT Slave 2-746
CIPOpen Open CIP Class 3 Connection 2-684 EC_ConnectSlave Connect EtherCAT Slave 2-752
CIPRead Read Variable Class 3 Explicit 2-692 SktUDPCreate Create UDP Socket 2-754
CIPWrite Write Variable Class 3 Explicit 2-696 SktUDPRcv UDP Socket Receive 2-761
CIPSend Send Explicit Message Class 3 2-701 SktUDPSend UDP Socket Send 2-764
CIPClose Close CIP Class 3 Connection 2-704 SktTCPAccept Accept TCP Socket 2-767
CIPUCMMRead Read Variable UCMM Explicit 2-706 SktTCPConnect Connect TCP Socket 2-770
CIPUCMMWrite Write Variable UCMM Explicit 2-710 SktTCPRcv TCP Socket Receive 2-777
CIPUCMMSend Send Explicit Message UCMM 2-716 SktTCPSend TCP Socket Send 2-780
EC_CoESDOWrite Write EtherCAT CoE SDO 2-726 SktGetTCPStatus Read TCP Socket Status 2-783
EC_CoESDORead Read EtherCAT CoE SDO 2-729 SktClose Close TCP/UDP Socket 2-786
EC_StartMon Start EtherCAT Packet Monitor 2-734 SktClearBuf Clear TCP/UDP Socket Receive Buffer 2-789

2 Instruction Descriptions

2-648 NJ-series Instructions Reference Manual (W502)

ExecPMCR

The ExecPMCR instruction requests execution of a communications sequence (protocol data) regis-
tered in a Serial Communications Unit (unit version 2.2 or later).

* If you omit the input parameter, the default value is not applied. A building error will occur.

Instruction Name
FB/
FUN

Graphic expression ST expression

ExecPMCR Protocol Macro FB ExecPMCR_instance(Execute,
Port, SeqNo, SrcDat, DstDat,
Done, Busy, Error, ErrorID,
ErrorIDEx);

Variables

Name Meaning I/O Description Valid range Unit Default

Port Destina-
tion port

Input

Destination port ---

SeqNo Communi-
cations
sequence
number

Communications sequence
number

0 to 999 0

SrcDat[]
(array)

Send data
array

Send data array Depends on data type. *

DstDat[]
(array)

Receive
data array

In-out Receive data array Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

Port Refer to Function for details on the structure _sPORT.

SeqNo OK

SrcDat[]
(array)

OK

DstDat[]
(array)

OK

ExecPMCR
Execute Done
Port Busy
SeqNo Error
SrcDat ErrorID
DstDat

 ErrorIDEx

ExecPMCR_instance

2-649

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

E
xecP

M
C

R

The ExecPMCR instruction requests execution of the sequence that is specified with communications
sequence number SeqNo from the specified destination port Port.

If data is sent, it is sent from the second element (SrcDat[1]) of send data array SrcDat[]. The number of
array elements to send is specified in SrcDat[0].

If data is received successfully, the receive data is stored from the second element (DstDat[1]) of
receive data array DstDat[]. The number of receive data elements is stored in DstDat[0].

If data is not received successfully, the contents of DstDat[] from before instruction execution is retained
for the number of elements specified in DstDat[0].

The data type of destination port Port is the structure _sPORT. The specifications are as follows:

The following figure shows a timing chart. Communications is performed to the end after the value of
Done changes to TRUE.

Function

Name Meaning Description Data type Valid range Unit Default
Port Destination

port
Destination port _sPORT --- --- ---

UnitNo Unit number Unit number of Serial
Communications Unit

_eUnitNo _CBU_No00 to
_CBU_No15

CBU
No00

PhysicPortNo Serial port
number

Serial port number on
Serial Communications
Unit

USINT 1 or 2 1

Prepare SrcDat[] before
Execute changes to TRUE.

Protocol Macro Execution
Flag

Sequence End Completion
Flag

The receive buffer is checked every task period.
If data is received, it is stored in DstDat[].

Data communications ended.
The Protocol Macro Execution Flag changes to FALSE
and the Sequence End Completion Flag changes to TRUE.

Data communications started.
The Protocol Macro Execution
Flag changes to TRUE.

Execute

Busy

Done

Error

DstDat[]

SrcDat[]

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

Data communications started.
The Protocol Macro Execution
Flag changes to TRUE and the
Sequence End Completion Flag
changes to FALSE.

2 Instruction Descriptions

2-650 NJ-series Instructions Reference Manual (W502)

* “##” denotes the unit number on the Serial Communications Unit.

* “#” denotes the port number on the Serial Communications Unit.

Refer to the SYSMAC CX-Protocol Operation Manual (Cat. No. W344) for details on protocol macros.

• The ExecPMCR instruction starts execution of a protocol macro. Use the P#PmrExecSta (Protocol
Macro Execution Flag) system-defined variable to check the status of protocol macro execution.

• Execution of this instruction is continued until processing is completed even if the value of Execute
changes to FALSE or the execution time exceeds the task period. The value of Done changes to
TRUE when processing is completed. Use this to confirm normal completion of processing.

• Refer to Using this Section on page 2-2 for a timing chart for Execute, Done, Busy, and Error.

• An address in memory for CJ-series Units must be specified in the AT Specification attribute of Dst-
Dat[].

• Set the value of SrcDat[0] and DstDat[0] to 0 to use a direct specification and link word specification.
An error occurs if you set any other constant or variable, and the instruction is not executed.

• If the value of DstDat[0] is 0 or 1 and reception fails, all elements in DstDat[] change to 0.

• The instruction is executed only when there is an available port. Therefore, use the system-defined
variable _Port_isAvailable (Network Communications Instruction Enabled Flag) in an N.O. execution
condition for the instruction.

• The instruction is not executed while Busy is TRUE. Therefore, use Busy in an N.C. execution condi-
tion for the instruction.

Related System-defined Variables

Name Meaning Data type Description

_Port_numUsingPort Number of Used Ports USINT This is the number of ports that are currently used.

_Port_isAvailable Network Communica-
tions Instruction
Enabled Flag

BOOL TRUE: A port is available.

FALSE: A port is not available.

_CJB_SCU##P1ChgSta,
_CJB_SCU##P2ChgSta*

Serial Communica-
tions Unit ## Port 1/2
Settings Changing Flag

BOOL TRUE: The serial port settings are currently being
changed.

FALSE: The serial port settings are currently not
being changed.

Related Semi-user-defined Variables

Name Meaning Data type Description

P#_PmrExecSta* Protocol Macro Execu-
tion Flag

BOOL TRUE: Protocol macro execution is in progress.

FALSE: Protocol macro execution is not in progress
or failed.

P#_PmrSeqEndSta* Sequence End Com-
pletion Flag

BOOL TRUE: The sequence was completed with an End.

FALSE: The sequence was not completed with an
End.

P#_PmrSeqAbtSta* Sequence Abort Com-
pletion Flag

BOOL TRUE: The sequence was completed with an Abort.

FALSE: The sequence was not completed with an
Abort.

Additional Information

Precautions for Correct Use

2-651

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

E
xecP

M
C

R

• The Protocol Macro Execution Flag (semi-user-defined variable P#_PmrExecSta) changes to TRUE
when instruction execution is started. It changes to FALSE after the communications sequence is
completed and the receive data is stored in DstDat[]. You cannot execute this instruction for the same
serial port while P#_PmrExecSta is TRUE. Therefore, use P#_PmrExecSta in an N.C. execution con-
dition for the instruction.

• If the instruction is used in ST, make sure that the instruction is processed each task period as long
as instruction execution continues. Otherwise, normal processing is sometimes not possible.

• An error occurs in the following cases. Error will change to TRUE.

• The serial communications mode is not set to Protocol Macro Mode when the instruction is exe-
cuted.

• The value of _Port_isAvailable is FALSE.

• The value of SeqNo is outside of the valid range.

• The value of SeqNo is not registered to a Serial Communications Unit.

• The value of Port.UnitNo or Port.PhysicPortNo is outside of the valid range.

• There is no CJ-series Serial Communications Unit with the specified unit number.

• The value of SrcDat[0] exceeds the size of SrcDat[].

• The value of DstDat[0] exceeds the size of DstDat[].

• The value of SrcDat[0] or DstDat[0] exceeds 250 words.

• Communications fail.

• An address in memory for CJ-series Units is not specified in the AT Specification attribute of Dst-
Dat[].

• For this instruction, expansion error code ErrorIDEx gives the communications response code. The
values and meanings are listed in the following table. An expansion error code is output to ErrorIDEx
when the value of error code ErrorID is WORD#16#0800.

Value Error Correction
16#00001106 The value of SeqNo is not a regis-

tered communications sequence
number.

• Correct the value of SeqNo.

• Add the sequence with the CX-Protocol.

16#00002201 Instruction execution is already in
progress. The values of Busy and
P#_PmrExecSta are TRUE.

Use P#_PmrExecSta in an N.C. input as the execution
condition for the instruction.

16#00002202 The protocol is being switched, so
execution is not possible.

Use _CJB_SCU##P1ChgSta or
_CJB_SCU##P2ChgSta Serial Communications Unit,
Port 1/2 Settings Changing Flag in an N.C. input as the
execution condition for the instruction.

16#00002401 A checksum error occurred in the
protocol macro data or the data
transfer is not yet completed.

Transfer the protocol macro data from the CX-Protocol.

2 Instruction Descriptions

2-652 NJ-series Instructions Reference Manual (W502)

In this sample, a CJ-series Serial Communications Unit is used for data communications with an
OMRON Temperature Controller. The present value of the Temperature Controller is read with a proto-
col macro. CompoWay/F master sequence 610 (Read Variable Area) is used. The contents of send
data array SendData[] is sent from the Controller. The data received from the Temperature Controller is
stored in receive data array RecvData[].

The following communications specifications are used.

The communications data for sequence 610 (Read Variable Area) is allocated as shown below.

Sample Programming

Item Description
Unit used Serial Communications Unit

Unit number 2

Port number 1 (RS-422/485)
Communications
sequence number

610 (Read Variable Area)

Remote node number 3

Data to read Present value

Serial Communications Unit
with unit number 2

Send data

RS-422A/485

E5@N
Temperature
Controller,
node 00

Receive data

E5@N
Temperature
Controller,
node 01

E5@N
Temperature
Controller,
node 03

SendData[0]
SendData[1]
SendData[2]
SendData[3]
SendData[4]

RecvData[0]
RecvData[1]
RecvData[2]
RecvData[3]

Send Data: WORD Array Receive Data: WORD Array

Number of send data words
Not used. Node No.
Variable type

Read start address
Number of elements

Number of receive data words
Response code
Receive data

2-653

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

E
xecP

M
C

R

The contents of send data SendData[] and receive data RecvData[] are as follows:

Send Data: WORD Array

Receive Data: WORD Array

If the data is received successfully, the lower two bytes (RecvData[2]) and the upper two bytes (Recv-
Data[3]) of the present value of the Temperature Controller are assigned to TmpData.

Definitions of Global Variables

Variable Item Contents Value

SendData[0] Number of send data
words

Five words from Send-
Data[0] to SendData[4]
are sent.

WORD#16#0005

SendData[1] Node number Node 3 is used. WORD#16#0003

SendData[2] Variable type + Upper byte
of read start address

To read the present value,
the variable type is
BYTE#16#C0 and the
read start address is
WORD#16#00.

WORD#16#C000

SendData[3] Lower byte of read start
address + BYTE#16#00
(fixed value)

WORD#16#0000

SendData[4] Number of elements One element is read. WORD#16#0001

Variable Item Contents Value

RecvData[0] Number of receive data
words

Four words from Recv-
Data[0] to RecvData[3]
are received.

WORD#16#0004

RecvData[1] Response code WORD#16#0000 is
returned for a normal end.

RecvData[2] Receive data The lower two bytes of the
present value of the Tem-
perature Controller are
returned.

RecvData[3] The upper two bytes of the
present value of the Tem-
perature Controller are
returned.

RecvData[2]
RecvData[3]

TmpData

Lower 2 bytesUpper 2 bytes

SCU_P1_PmrSeqEndSta
SCU_P1_PmrSeqAbtSta
SCU_P1_PmrExecSta

BOOL
BOOL
BOOL

Name

Global Variables

Sequence End Completion Flag
Sequence Abort Completion Flag
Protocol Macro Execution Flag

IOBus://rack#0/slot#0/P1_PmrSta/P1_PmrSeqEndSta
IOBus://rack#0/slot#0/P1_PmrSta/P1_PmrSeqAbtSta
IOBus://rack#0/slot#0/P1_PmrSta/P1_PmrExecSta

Data type AT specification Comment

2 Instruction Descriptions

2-654 NJ-series Instructions Reference Manual (W502)

Determine if execution of the ExecPMCR instruction is completed.

Processing completed
Execution condition
Processing
Port settings
Send data
Receive data
Present value

Accept trigger.

Execute ExecPMCR instruction.

Set communications parameters.
Inline ST

// Serial Communications Unit with unit number 2
// Port number 1

Variable Data type Initial value AT
specification Comment

LD

OperatingEnd
Trigger
Operating
InPort
SendData
RecvData
TmpData
RS_instance
ExecPMCR_instance

False
False
False
(UnitNo:=_CBU_No00, PhysicPortNo:=0)
[5(16#0)]
[4(16#0)]
0

%D200

BOOL
BOOL
BOOL
_sPORT
ARRAY[0..4] OF WORD
ARRAY[0..3] OF WORD
DINT
RS
ExecPMCR

ExecPMCR_instance.Done

ExecPMCR_instance.Error

ExecPMCR_instance.Busy

OperatingEnd

Operating

OperatingEnd

Trigger _Port_isAvailable SCU_P1_PmrExecSta RS
 Set Q1
 Reset1

RS_instance

Operating

 InPort
 UINT#610
SendData[0]

RecvData[0]

1 InPort.UnitNo :=_CBU_No02;
2 InPort.PhysicPortNo:=USINT#1;
3 SendData[0] :=WORD#16#0005;
4 SendData[1] :=WORD#16#0003;
5 SendData[2] :=WORD#16#C000;
6 SendData[3] :=WORD#16#0000;
7 SendData[4] :=WORD#16#0001;
8 RecvData[0] :=WORD#16#0004;

Operating

ExecPMCR
Execute Done
Port Busy
SeqNo Error
SrcDat ErrorID
DstDat

 ErrorIDEx

ExecPMCR_instance

SCU_P1_PmrSeqEndSta
SCU_P1_PmrSeqAbtSta
SCU_P1_PmrExecSta
_Port_isAvailable

BOOL
BOOL
BOOL
BOOL

Variable Data type Comment

Sequence End Completion Flag
Sequence Abort Completion Flag
Protocol Macro Execution Flag
Network Communications Instruction Enabled Flag

Internal
Variables

External
Variables

Retain

2-655

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

E
xecP

M
C

R

Processing after normal end
Inline ST

Inline ST

// Processing after normal end1
2 TmpData:=DWORD_TO_DINT(SHL(WORD_TO_DWORD(
3 RecvData[3]), 16) OR WORD_TO_DWORD(RecvData[2]));

Processing after error end

1 // Processing after error end
2 ;

ExecPMCR_instance.Error

SCU_P1_PmrExecSta SCU_P1_PmrSeqEndSta

SCU_P1_PmrSeqAbtStaSCU_P1_PmrExecSta

2 Instruction Descriptions

2-656 NJ-series Instructions Reference Manual (W502)

Current state
Execution condition
Port settings

Send data
Receive data
Completion of ExecPMCR instruction execution
Present value

Variable Data type Initial value
AT

specification Comment

ST

IF (State=INT#0) THEN
 IF ((Trigger=TRUE) AND (_Port_isAvailable=TRUE) AND (SCU_P1_PmrExecSta<>TRUE)
 AND (ExecPMCR_instance.Busy<>TRUE)) THEN
 State:=INT#1;
 END_IF;
END_IF;

IF (State=INT#1) THEN
 InPort.UnitNo :=_CBU_No02;
 InPort.PhysicPortNo:=USINT#1;
 SendData[0] :=WORD#16#0005;
 SendData[1] :=WORD#16#0003;
 SendData[2] :=WORD#16#C000;
 SendData[3] :=WORD#16#0000;
 SendData[4] :=WORD#16#0001;
 RecvData[0] :=WORD#16#0004;
 ExecPMCR_instance(
 Execute:=FALSE,
 SrcDat :=SendData[0],
 DstDat :=RecvData[0]);
 State:=INT#2;
END_IF;

IF (State=INT#2) THEN
 ExecPMCR_instance(
 Execute:=TRUE,
 Port :=InPort,
 SeqNo :=UINT#610,
 SrcDat :=SendData[0],
 DstDat :=RecvData[0]);

 F_TRIG_instance(SCU_P1_PmrExecSta, End_ExecPMCR);

 IF (End_ExecPMCR=TRUE) THEN
 End_ExecPMCR:=FALSE;
 State:=INT#3;
 END_IF;

 IF (ExecPMCR_instance.Error=TRUE) THEN
 State:=INT#5;
 END_IF;

END_IF;

// Accept trigger.

// Set communications parameters and initialize ExecPMCR instruction.

// Serial Communications Unit with unit number 2
// Port number 1

// Initialize ExecPMCR instruction.
// Dummy

// Execute ExecPMCR instruction.

State
Trigger
InPort

SendData
RecvData
End_ExecPMCR
TmpData
RS_instance
ExecPMCR_instance
F_TRIG_instance

0
False
(UnitNo:=_CBU_No00,
 PhysicPortNo:=0)
[5(16#0)]
[4(16#0)]
False
0

%D200

INT
BOOL
_sPORT

ARRAY[0..4] OF WORD
ARRAY[0..3] OF WORD
BOOL
DINT
RS
ExecPMCR
F_TRIG

SCU_P1_PmrSeqEndSta
SCU_P1_PmrSeqAbtSta
SCU_P1_PmrExecSta
_Port_isAvailable

BOOL
BOOL
BOOL
BOOL

Variable Data type Comment

Sequence End Completion Flag
Sequence Abort Completion Flag
Protocol Macro Execution Flag
Network Communications Instruction Enabled Flag

Internal
Variables

External
Variables

Retain

2-657

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

E
xecP

M
C

R

IF (State=INT#3) THEN
 IF (SCU_P1_PmrSeqEndSta=TRUE) THEN
 State:=INT#4;
 END_IF;
 IF (SCU_P1_PmrSeqAbtSta=TRUE) THEN
 State:=INT#5;
 END_IF;
END_IF;

IF (State=INT#4) THEN

 TmpData:=DWORD_TO_DINT(SHL(WORD_TO_DWORD(RecvData[3]), 16)
 OR WORD_TO_DWORD(RecvData[2]));
 State:=INT#0;
END_IF;

IF (State=INT#5) THEN

 State:=INT#0;
END_IF;

// Processing after normal end.

// Processing after error end

// Confirm completion of ExecPMCR instruction execution.

2 Instruction Descriptions

2-658 NJ-series Instructions Reference Manual (W502)

SerialSend

The SerialSend instruction sends data in No-protocol Mode from a serial port on a Serial Communica-
tions Unit.

* If you omit an input parameter, the default value is not applied. A building error will occur.

Instruction Name
FB/
FUN

Graphic expression ST expression

SerialSend SCU Send
Serial

FB SerialSend_instance(Execute,
Port, SrcDat, SendSize, Done,
Busy, Error, ErrorID, ErrorIDEx);

Variables

Name Meaning I/O Description Valid range Unit Default

Port Destina-
tion port

Input

Destination port ---

SrcDat[]
(array)

Send data
array

Send data array Depends on data type. *

SendSize Number of
send data
elements

Number of elements to send
from SrcDat[]

0 to 256 Bytes 1

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

Port Refer to Function for details on the structure _sPORT.

SrcDat[]
(array)

OK

SendSize OK

SerialSend
Execute Done
Port Busy
SrcDat Error
SendSize ErrorID
 ErrorIDEx

SerialSend_instance

2-659

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

S
erialS

end

The SerialSend instruction sends data in No-protocol Mode from the port and the Serial Communica-
tions Unit specified with Port. The data that is sent is contained in send data array SrcDat[]. The number
of array elements to send is specified in number of send data elements SendSize.

To attach start and end codes to the send data, set them in the DM Area words that are assigned to the
Special Unit.

If you add start and end codes, the maximum number of bytes to send is 259 (1-byte start code, 2-byte
end code (for CR+LF specification), and 256 bytes of send data).

The data type of destination port Port is the structure _sPORT. The specifications are as follows:

The following figure shows a timing chart. Communications is performed to the end after the value of
Done changes to TRUE.

Function

Name Meaning Description Data type Valid range Unit Default
Port Destination

port
Destination port _sPORT --- --- ---

UnitNo Unit number Unit number of Serial
Communications Unit

_eUnitNo _CBU_No00 to
_CBU_No15

CBU
No00

PhysicPortNo Serial port
number

Serial port number on
Serial Communications
Unit

USINT 1 or 2 1

Execute

Busy

Done

Error

SrcDat[]

TRUE
FALSE

Prepare SrcDat[] before Execute
changes to TRUE.

SerialSend Instruction Execution
Flag

Data transmission started.
SerialSend Instruction Execution Flag changes to TRUE.

Data transmission ended.
SerialSend Instruction Execution Flag changes to FALSE.

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

2 Instruction Descriptions

2-660 NJ-series Instructions Reference Manual (W502)

* “#” denotes the port number on the Serial Communications Unit.

Refer to the following manual for details on no-protocol communications.

• CJ-series Serial Communications Units Operation Manual for NJ-series CPU Unit (Cat. No. W494)

• Execution of this instruction is continued until processing is completed even if the value of Execute
changes to FALSE or the execution time exceeds the task period. The value of Done changes to
TRUE when processing is completed. Use this to confirm normal completion of processing.

• Refer to Using this Section on page 2-2 for a timing chart for Execute, Done, Busy, and Error.

• You can use this instruction only for a Serial Communications Unit’s serial port that is set to No-proto-
col Mode.

• Nothing is sent if the value of SendSize is 0. When the instruction is executed, the value of Done
changes to TRUE.

• Even when attaching a start or end code, do not include it in the value of SendSize.

• The instruction is executed only when there is an available port. Therefore, use the system-defined
variable _Port_isAvailable (Network Communications Instruction Enabled Flag) in an N.O. execution
condition for the instruction.

• The instruction is not executed while Busy is TRUE. Therefore, use Busy in an N.C. execution condi-
tion for the instruction.

• You cannot execute this instruction while the SerialSend Instruction Executing Flag (semi-user-
defined variable P#NopSerialSendExecSta) is TRUE. Use P#NopSerialSendExecSta in an N.C. exe-
cution condition for the instruction.

• If the instruction is used in ST, make sure that the instruction is processed each task period as long
as instruction execution continues. Otherwise, normal processing is sometimes not possible.

Related System-defined Variables

Name Meaning Data type Description
_Port_numUsingPort Number of Used Ports USINT This is the number of ports that are currently used.

_Port_isAvailable Network Communica-
tions Instruction
Enabled Flag

BOOL TRUE: A port is available.

FALSE: A port is not available.

Related Semi-user-defined Variables

Name Meaning Data type Description
P#_NopSerialSendExecSta* SerialSend Instruction

Execution Flag
BOOL TRUE: Execution of the SerialSend instruction

is in progress.

FALSE: Execution of the SerialSend instruction
is not in progress.

P#_NopStartCodeYNCfg* No-protocol Start Code
Enable

BOOL TRUE: Start code

FALSE: No start code

P#_NopEndCodeYNCfg* No-protocol End Code
Enable

BOOL TRUE: End code

FALSE: No end code

P#_NopCRLFCfg* No-protocol CR LF
Specification

BOOL TRUE: CR+LF

FALSE: No CR+LF

P#_NopStartCodeCfg* No-protocol Start Code USINT 16#00 to 16#FF
P#_NopEndCodeCfg* No-protocol End Code USINT 16#00 to 16#FF

Additional Information

Precautions for Correct Use

2-661

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

S
erialS

end

• You cannot use this instruction in the primary periodic task.

• An error occurs in the following cases. Error will change to TRUE.

• The serial communications mode is not set to No-protocol Mode when the instruction is executed.

• The value of _Port_isAvailable is FALSE.

• The value of Port.UnitNo or Port.PhysicPortNo is outside of the valid range.

• There is no CJ-series Serial Communications Unit with the specified unit number.

• The value of SendSize is outside of the valid range.

• The value of SendSize exceeds the size of SrcDat[].

• Communications fail.

• The instruction is executed during a Unit restart.

• For this instruction, expansion error code ErrorIDEx gives the communications response code. The
values and meanings are listed in the following table. An expansion error code is output to ErrorIDEx
when the value of error code ErrorID is WORD#16#0800.

In this sample, a no-protocol command is sent to the barcode reader that is connected to serial port 2 of
a CJ-series Serial Communications Unit (unit number 0, device name ‘Barcode’). The Read Scene
Number command (@READ) is sent. The send data is the contents of the array variable SendDat[].
There is no start code and the end code is 16#OD (CR).

The settings of Serial Communications Unit are given in the following table.

Value Meaning
16#00000401 The serial communications mode is set to Protocol Macro, NT Link, Echoback Test, or

Serial Gateway Mode.

16#00000205 The serial communications mode is set to Host Link Mode.

16#00001001 The command is too long.

16#00001002 The command is too short.
16#00001003 The value of SendSize does not match the number of send bytes.

16#00001004 The command format is incorrect.

16#0000110C This is another parameter error.
16#00002201 The SerialSend or SerialRcv instruction is already in execution.

16#00002202 The protocol is being switched, so execution is not possible.

Sample Programming

Item Set value

Port 2: User-specified Setting Inclusion User settings

Port 2: Serial Communications Mode No-protocol

Port 2: Data Length 8 bits

Port 2: Stop Bits 1 bit

Port 2: Parity No

Port 2: Baud Rate 38,400 bps

Serial Communications Unit
with unit number 0

Barcode reader

Serial port 2

Command sent.

2 Instruction Descriptions

2-662 NJ-series Instructions Reference Manual (W502)

The text string ‘@READ’ is separated into individual characters and the character codes are stored in
the array elements of SendDat[]. Therefore, BYTE#16#40 (@) is stored in SendDat[0], BYTE#16#52(R)
is stored in SendData[1], etc. The StringToAry instruction is used to store the character codes.

Definitions of Global Variables

Port 2: No-Protocol End Code D

Port 2: No-Protocol Start Code Inclusion Setting No

Port 2: No-Protocol End Code Inclusion Setting Yes (Specify a desired end code.)

Item Set value

SendDat[0]
SendDat[1]
SendDat[2]
SendDat[3]
SendDat[4]

StringToAry
‘@READ’

BYTE#16#40
BYTE#16#52
BYTE#16#45
BYTE#16#41
BYTE#16#44

BYTE array

STRING data

BOOL

Name

Global Variables

IOBus://rack#0/slot#0/P2_NopSta
/P2_NopSerialSendExecSta

Barcode_P2_NopSerialSendExecSta
Data type AT specification Comment

SerialSend Instruction Execution Flag

2-663

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

S
erialS

end

Determine if execution of the SerialSend instruction is completed.

Processing completed
Execution condition
Processing
Port settings
Send data

Accept trigger.

Execute SerialSend instruction.

Set communications parameters.

Inline ST

Inline ST

Inline ST

Processing after normal end

1 // Processing after normal end
2 ;

Processing after error end

1 // Processing after error end
2 ;

Variable Data type Initial value Comment

LD

OperatingEnd
Trigger
Operating
InPort
SendDat
RS_instance
SerialSend_instance

False
False
False
(UnitNo:=_CBU_No00, PhysicPortNo:=0)
[5(16#0)]

BOOL
BOOL
BOOL
_sPORT
ARRAY[0..4] OF BYTE
RS
SerialSend

SerialSend_instance.Done

SerialSend_instance.Error

SerialSend_instance.Busy

OperatingEnd

Operating

OperatingEnd

Trigger _Port_isAvailable Barcode_P2_NopSerialSendExecSta RS
 Set Q1
 Reset1

RS_instance

Operating

1 StringToAry(In:=’@READ’, AryOut:=SendDat[0]);
2 InPort.UnitNo :=_CBU_No00;
3 InPort.PhysicPortNo:=USINT#2;

// Prepare SendDat[].
// Serial Communications Unit with unit number 0
// Serial port 2

Operating

 InPort
SendDat[0]
 UINT#5

SerialSend
Execute Done
Port Busy
SrcDat Error
SendSize ErrorID
 ErrorIDEx

SerialSend_instance

Operating SerialSend_instance.Done

Operating SerialSend_instance.Error

_Port_isAvailable
Barcode_P2_NopSerialSendExecSta

BOOL
BOOL

Variable Data type Comment

Network Communications Instruction Enabled Flag
SerialSend Instruction Execution Flag

Internal
Variables

External
Variables

2 Instruction Descriptions

2-664 NJ-series Instructions Reference Manual (W502)

Execution condition
Value of Trigger from previous task period
Processing started
Processing
Port settings
Send data

Variable Data type Initial value Comment

ST

IF ((Trigger=TRUE) AND (LastTrigger=FALSE) AND (_Port_isAvailable=TRUE)
 AND (Barcode_P2_NopSerialSendExecSta=FALSE) AND (SerialSend_instance.Busy=FALSE)) THEN
 OperatingStart:=TRUE;
 Operating :=TRUE;
END_IF;
LastTrigger:=Trigger;

IF (OperatingStart=TRUE) THEN
 SerialSend_instance(
 Execute:=FALSE,
 SrcDat :=SendDat[0]);
 StringToAry(In:=’@READ’, AryOut:=SendDat[0]);
 InPort.UnitNo :=_CBU_No00;
 InPort.PhysicPortNo:=USINT#2;
 OperatingStart :=FALSE;
END_IF;

IF (Operating=TRUE) THEN
 SerialSend_instance(
 Execute :=TRUE,
 Port :=InPort,
 SrcDat :=SendDat[0],
 SendSize:=UINT#5);

 IF (SerialSend_instance.Done=TRUE) THEN

 Operating:=FALSE;
 END_IF;

 IF (SerialSend_instance.Error=TRUE) THEN

 Operating:=FALSE;
 END_IF;
END_IF;

// Detect when Trigger changes to TRUE.

// Set communications parameters and initialize SerialSend instruction.

// Serial Communications Unit with unit number 0
// Serial port 2

// Port settings
// Send data
// Send data size

// Execute SerialSend instruction.

// Processing after normal end

// Processing after error end

Trigger
LastTrigger
OperatingStart
Operating
InPort
SendDat
SerialSend_instance

False
False
False
False
(UnitNo:=_CBU_No00, PhysicPortNo:=0)
[5(16#0)]

BOOL
BOOL
BOOL
BOOL
_sPORT
ARRAY[0..4] OF BYTE
SerialSend

_Port_isAvailable
Barcode_P2_NopSerialSendExecSta

BOOL
BOOL

Internal
Variables

External
Variables Variable Data type Comment

Network Communications Instruction Enabled Flag
SerialSend Instruction Execution Flag

2-665

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

S
erialR

cv

SerialRcv

The SerialRcv instruction receives data in No-protocol Mode from a serial port on a Serial Communica-
tions Unit.

Instruction Name
FB/
FUN

Graphic expression ST expression

SerialRcv SCU Receive
Serial

FB SerialRcv_instance(Execute, Port,
Size, DstDat, Done, Busy, Error,
ErrorID, ErrorIDEx, RcvSize);

Variables

Name Meaning I/O Description Valid range Unit Default

Port Destina-
tion port

Input

Destination port --- --- ---

Size Receive
data size

Size of receive data stored
in DstDat[]

0 to 256 Bytes 1

DstDat[]
(array)

Receive
data array

In-out Receive data array Depends on data type. --- ---

RcvSize Number of
receive
data array
elements

Output Number of receive data
array elements actually
stored in DstDat[]

0 to 256 Bytes ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

Port Refer to Function for details on the structure _sPORT.

Size OK

DstDat[]
(array)

OK

RcvSize OK

SerialRcv
Execute Done
Port Busy
Size Error
DstDat ErrorID

 ErrorIDEx
 RcvSize

SerialRcv_instance

2 Instruction Descriptions

2-666 NJ-series Instructions Reference Manual (W502)

First, data is received in No-protocol Mode from the serial port specified with Port and stored in the
receive buffer in the Serial Communications Unit. This instruction transfers the number of bytes speci-
fied with receive data size Size from the receive buffer to receive data array DstDat[].

After the data is transferred, the number of array elements that was actually stored in DstDat[] is
assigned to the number of receive data array elements RcvSize. If the amount of data in the receive
buffer is smaller than Size, all of the data in the receive buffer is transferred to DstDat[]. The number of
array elements that was actually stored in DstDat[] is assigned to RcvSize. The receive buffer is cleared
after the data is transferred.

Device variables are used in the user program to recognize the start code and end code in the receive
data. The start and end codes are deleted from the receive data before it is stored in DstDat[].

If you add start and end codes, the maximum number of bytes to receive is 259 (1-byte start code, 2-
byte end code (for CR+LF specification), and 256 bytes of send data).

The data type of destination port Port is the structure _sPORT. The specifications are as follows:

Function

Code to attach Device variable for port 1 Value

Specified start code
P1_NopStartCodeYNCfg TRUE
P1_NopStartCodeCfg Start code (16#00 to

16#FF)

Specified end code

P1_NopEndCodeYNCfg TRUE
P1_NopCRLFCfg FALSE

P1_NopEndCodeCfg End code (16#00 to
16#FF)

CR+LF as end code
P1_NopEndCodeYNCfg TRUE

P1_NopCRLFCfg TRUE

Name Meaning Description Data type Valid range Unit Default
Port Destination

port
Destination port _sPORT --- --- ---

UnitNo Unit number Unit number of Serial
Communications Unit

_eUnitNo _CBU_No00 to
_CBU_No15

CBU
No00

PhysicPortNo Serial port
number

Serial port number on
Serial Communications
Unit

USINT 1 or 2 1

2-667

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

S
erialR

cv

The following figure shows a timing chart.

Related System-defined Variables

Name Meaning Data type Description
_Port_numUsingPort Number of Used Ports USINT This is the number of ports that are currently used.
_Port_isAvailable Network Communica-

tions Instruction
Enabled Flag

BOOL TRUE: A port is available.

FALSE: A port is not available.

Related Semi-user-defined Variables

Name Meaning Data type Description
P#_NopRcvOvfSta* Reception Overflow

Flag
BOOL TRUE: The Unit received more than the speci-

fied amount of data (i.e., data was
received after the Reception Com-
pleted Flag changed to TRUE).

FALSE: The Unit did no receive more than the
specified number of bytes.

P#_NopRcvCompleteSta* Reception Completed
Flag

BOOL TRUE: Reception was completed.

FALSE: No data received or currently receiving
data.

P#_NopRcvCntSta* Reception Counter UINT 16#0000 to 16#0100: Number of bytes of
receive data

P#_NopStartCodeYNCfg* No-protocol Start Code
Enable

BOOL TRUE: Start code

FALSE: None
P#_NopEndCodeYNCfg* No-protocol End Code

Enable
BOOL TRUE: End code

FALSE: None
P#_NopCRLFCfg* No-protocol CR LF

Specification
BOOL TRUE: CR+LF

FALSE: No CR+LF

Execute

Busy

Done

Error

DstDat[]

TRUE
FALSE

Reception
Completed
Flag

Received data it is stored in DstDat[].
Reception Completed Flag changes to FALSE.

Data reception ended.
Reception Completed Flag changes to TRUE.

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

2 Instruction Descriptions

2-668 NJ-series Instructions Reference Manual (W502)

* “#” denotes the port number on the Serial Communications Unit.

• The Reception Completed Flag (P#_NopRcvCompleteSta) changes to TRUE at the following times.

• The amount of data set in Number of No-protocol Receive Data Bytes (P#_NopRcvDatSzCfg) is
received.

• The specified end code is received.

• A total of 256 bytes of data is received.

• The Reception Overflow Flag (P#_NopRcvOvfSta) changes to TRUE at the following times.

• Data is received when this instruction is not executed and the Reception Completed Flag
(P#_NopRcvCompleteSta) is TRUE.

• More than the amount of data set in Number of No-protocol Receive Data Bytes
(P#_NopRcvDatSzCfg) is received.

• Refer to the following manual for details on no-protocol communications.

• CJ-series Serial Communications Units Operation Manual for NJ-series CPU Unit (Cat. No.
W494)

• Execution of this instruction is continued until processing is completed even if the value of Execute
changes to FALSE or the execution time exceeds the task period. The value of Done changes to
TRUE when processing is completed. Use this to confirm normal completion of processing.

• Refer to Using this Section on page 2-2 for a timing chart for Execute, Done, Busy, and Error.

• Execute the instruction only when the Reception Completed Flag (P#_NopRcvCompleteSta) is
TRUE.

• When data is received, always execute this instruction to transfer the data in the receive buffer to Dst-
Dat[]. No more data is received until the previous data is transferred.

• The receive buffer in the Serial Communications Unit is cleared when this instruction is executed.
Therefore, you cannot separate the data in the receive buffer to transfer it to DstDat[].

• Reception stops automatically after 259 bytes of data is received. If this instruction is not executed
after that and more data is received, Overrun Error (P#_OverRunErr) changes to TRUE.

• Any receive data that exceeds the size specified with Size is discarded the next time the instruction is
executed.

• Even when a start or end code is attached, do not include it in the value of Size.

• You can use this instruction only for a Serial Communications Unit’s serial port that is set to No-proto-
col Mode.

• If the value of Size is 0, the data in the receive buffer is not transferred to DstDat[]. If that occurs, the
Reception Completed Flag (P#_NopRcvCompleteSta) and Reception Overflow Flag
(P#_NopRcvOvfSta) will change to FALSE. Also, the Reception Counter (P#_NopRcvCntSta) will be
0.

P#_NopRcvDatSzCfg* Number of No-protocol
Receive Data Bytes

USINT 16#01 to 16#FF: 1 to 255 bytes

16#00: 256 bytes

P#_NopStartCodeCfg* No-protocol Start Code USINT 16#00 to 16#FF

P#_NopEndCodeCfg* No-protocol End Code USINT 16#00 to 16#FF
P#_TransErr* Transmission Error BOOL TRUE: Error occurred.

FALSE: No error occurred.
P#_OverRunErr* Overrun Error BOOL TRUE: Error occurred.

FALSE: No error occurred.

Additional Information

Precautions for Correct Use

Name Meaning Data type Description

2-669

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

S
erialR

cv

• The instruction is executed only when there is an available port. Therefore, use the system-defined
variable _Port_isAvailable (Network Communications Instruction Enabled Flag) in an N.O. execution
condition for the instruction.

• Execute the instruction only when the Reception Completed Flag (P#_NopRcvCompleteSta) is
TRUE.

• The instruction is not executed while Busy is TRUE. Therefore, use Busy in an N.C. execution condi-
tion for the instruction.

• If the instruction is used in ST, make sure that the instruction is processed each task period as long
as instruction execution continues. Otherwise, normal processing is sometimes not possible.

• An error occurs in the following cases. Error will change to TRUE.

• The serial communications mode is not set to No-protocol Mode when the instruction is executed.

• The value of _Port_isAvailable is FALSE.

• The value of Port.UnitNo or Port.PhysicPortNo is outside of the valid range.

• There is no CJ-series Serial Communications Unit with the specified unit number.

• The value of Size is outside of the valid range.

• The value of Size exceeds the size of DstDat[].

• Communications fail.

• The instruction is executed during a Unit restart.

• For this instruction, expansion error code ErrorIDEx gives the communications response code. The
values and meanings are listed in the following table. An expansion error code is output to ErrorIDEx
when the value of error code ErrorID is WORD#16#0800.

In this sample, data that was read by the barcode reader that is connected to serial port 2 of a CJ-series
Serial Communications Unit (unit number 0, device name ‘Barcode’) is received. The receive data is
stored in array variable RecvDat[]. There is no start code and the end code is 16#OD (CR).

Value Meaning
16#00000401 The serial communications mode is set to Protocol Macro, NT Link, Echoback Test, or

Serial Gateway Mode.
16#00000205 The serial communications mode is set to Host Link Mode.

16#00001001 The command is too long.

16#00001002 The command is too short.
16#00001004 The command format is incorrect.

16#0000110C This is another parameter error.

16#00002201 The SerialSend or SerialRcv instruction is already in execution.
16#00002202 The protocol is being switched, so execution is not possible.

Sample Programming

Serial Communications Unit
with unit number 0

Barcode reader

Serial port 2

Read data received.

2 Instruction Descriptions

2-670 NJ-series Instructions Reference Manual (W502)

The settings of Serial Communications Unit are given in the following table.

The number from the barcode reader is separated into individual characters and bit strings for the char-
acter codes are stored in RecvDat[]. One element of the RecvDat[] array corresponds to one character
from the barcode. First, the AryToString instruction is used to convert the data to a text string
(RecvStringDat). Then, the STRING_TO_ULINT instruction is used to convert the data to an ULINT
integer (Code).

Definitions of Global Variables

Item Set value

Port 2: User-specified Setting Inclusion User settings

Port 2: Serial Communications Mode No-protocol

Port 2: Data Length 8 bits

Port 2: Stop Bits 1 bit

Port 2: Parity No

Port 2: Baud Rate 38,400 bps

Port 2: No-Protocol End Code D

Port 2: No-Protocol Start Code Inclusion Setting No

Port 2: No-Protocol End Code Inclusion Setting Yes (Specify a desired end code.)

RecvDat[0]
RecvDat[1]
RecvDat[2]
RecvDat[3]
 :

RecvStringDat
AryToString STRING_TO_ULINT

ULINT#4901‘4901 ’

BYTE#16#34
BYTE#16#39
BYTE#16#30
BYTE#16#31
 :

BYTE array

STRING data

Code

ULNIT data

BOOL

Name

Global Variables

IOBus://rack#0/slot#0/P2_NopSta
/P2_NopRcvCompleteSta

Barcode_P2_NopRcvCompleteSta

Data type AT specification Comment

Reception Completed Flag

2-671

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

S
erialR

cv

Determine if execution of the SerialRcv instruction is completed.

Processing completed
Execution condition
Processing
Port settings
Receive data
Receive data size
Barcode text string
Barcode integer

Accept trigger.

Execute SerialRcv instruction.

Set communications parameters.

Inline ST

Variable Data type Initial value Comment

LD

OperatingEnd
Trigger
Operating
InPort
RecvDat
RecvSize
RecvStringDat
Code
RS_instance
SerialRcv_instance

False
False
False
(UnitNo:=_CBU_No00, PhysicPortNo:=0)
[13(16#0)]
0
‘’
0

BOOL
BOOL
BOOL
_sPORT
ARRAY[0..12] OF BYTE
UINT
STRING[255]
ULINT
RS
SerialRcv

SerialRcv_instance.Done

SerialRcv_instance.Error

SerialRcv_instance.Busy

OperatingEnd

Operating

OperatingEnd

Trigger _Port_isAvailable Barcode_P2_NopRcvCompleteSta RS
 Set Q1
 Reset1

RS_instance

Operating

1 InPort.UnitNo :=_CBU_No00;
2 InPort.PhysicPortNo:=USINT#2;

// Serial Communications Unit with unit number 0
// Serial port 2

Operating

SerialRcv
Execute Done
Port Busy
Size Error
DstDat ErrorID

 ErrorIDEx
 RcvSize

SerialRcv_instance

 InPort
 UINT#13

RecvDat[0] RecvDat[0]

RecvSize

_Port_isAvailable
Barcode_P2_NopRcvCompleteSta

BOOL
BOOL

Internal
Variables

External
Variables

Network Communications Instruction Enabled Flag
Reception Completed Flag

Variable Data type Comment

2 Instruction Descriptions

2-672 NJ-series Instructions Reference Manual (W502)

Operating SerialRcv_instance.Done

RecvStringDat

RecvStringDat Code

RecvDat[0]
 RecvSize

Processing after normal end

Inline ST

Inline STOperating SerialRcv_instance.Error

Processing after error end

1 // Processing after error end
2 ;

1 // Processing after normal end
2 ;

AryToString
EN ENO
In
Size

STRING_TO_ULINT

EN ENO
In

2-673

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

S
erialR

cv

Execution condition
Value of Trigger from previous task period
Processing started
Processing
Port settings
Receive data
Receive data size
Barcode text string
Barcode integer

Variable Data type Initial value Comment

ST

IF ((Trigger=TRUE) AND (LastTrigger=FALSE) AND (_Port_isAvailable=TRUE)
 AND (Barcode_P2_NopRcvCompleteSta=TRUE) AND (SerialRcv_instance.Busy=FALSE)) THEN
 OperatingStart:=TRUE;
 Operating :=TRUE;
END_IF;
LastTrigger:=Trigger;

IF (OperatingStart=TRUE) THEN
 SerialRcv_instance(
 Execute:=FALSE,
 Port :=InPort,
 Size :=UINT#13,
 DstDat :=RecvDat[0],
 RcvSize=>RecvSize);
 InPort.UnitNo :=_CBU_No00;
 InPort.PhysicPortNo:=USINT#2;
 OperatingStart :=FALSE;
END_IF;

IF (Operating=TRUE) THEN
 SerialRcv_instance(
 Execute:=TRUE,
 Port :=InPort,
 Size :=UINT#13,
 DstDat :=RecvDat[0],
 RcvSize=>RecvSize);

 IF (SerialRcv_instance.Done=TRUE) THEN

 RecvStringDat:=AryToString(In:=RecvDat[0], Size:=RecvSize);
 Code :=STRING_TO_ULINT(RecvStringDat);
 Operating :=FALSE;
 END_IF;

 IF (SerialRcv_instance.Error=TRUE) THEN

 Operating:=FALSE;
 END_IF;
END_IF;

// Detect when Trigger changes to TRUE.

// Set communications parameters and initialize SerialRcv instruction.

// Serial Communications Unit with unit number 0
// Serial port 2

// Convert character codes to a text string.
// Convert text string to an integer.

// Initialize instance.
// Port settings
// Receive data size
// Receive data
// Data size that was actually received

// Execute SerialRcv instruction.

// Processing after normal end

// Processing after error end

Trigger
LastTrigger
OperatingStart
Operating
InPort
RecvDat
RecvSize
RecvStringDat
Code
SerialRcv_instance

False
False
False
False
(UnitNo:=_CBU_No00, PhysicPortNo:=0)
[13(16#0)]
0
‘’
0

BOOL
BOOL
BOOL
BOOL
_sPORT
ARRAY[0..12] OF BYTE
UINT
STRING[255]
ULINT
SerialRcv

_Port_isAvailable
Barcode_P2_NopRcvCompleteSta

BOOL
BOOL

Internal
Variables

External
Variables Variable Data type Comment

Network Communications Instruction Enabled Flag
Reception Completed Flag

2 Instruction Descriptions

2-674 NJ-series Instructions Reference Manual (W502)

SendCmd

The SendCmd instruction uses a serial gateway and sends a command to a Serial Communications
Unit. Or, it sends an explicit command to a DeviceNet Unit.

* If you omit an input parameter, the default value is not applied. A building error will occur.

Instruction Name
FB/
FUN

Graphic expression ST expression

SendCmd Send Com-
mand

FB SendCmd_instance(Execute,
DstNetAdr, CommPort, CmdDat,
CmdSize, RespDat, Option, Done,
Busy, Error, ErrorID, ErrorIDEx);

Variables

Name Meaning I/O Description Valid range Unit Default
DstNetAdr Destination

network
address

Input

Destination network address ---

CommPort Destination
serial port

Destination serial port Only _NONE _NONE

CmdDat[]
(array)

Command
array

Command to send Depends on data
type.

*

CmdSize Command
data size

Command data size 2 to maximum
data length
(depends on net-
work type)

Bytes 2

Option Response Response monitoring and retry
specifications

--- --- ---

RespDat[]
(array)

Response
storage array

In-out Array to store response Depends on data
type.

--- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

DstNetAdr Refer to Function for details on the structure _sDNET_ADR.

CommPort Refer to Function for the enumerators of the enumerated type _ePORT.

CmdDat[]
(array)

OK

CmdSize OK

Option Refer to Function for details on the structure _sRESPONSE.

RespDat[]
(array)

OK

SendCmd
Execute Done
DstNetAdr Busy
CommPort Error
CmdDat ErrorID
CmdSize ErrorIDEx
RespDat

Option

SendCmd_instance

2-675

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

S
endC

m
d

The SendCmd instruction sends the contents of command array CmdDat[] to the destination specified
with destination network address DstNetAdr and destination serial port CommPort. The command data
size CmdSize specifies how many elements of CmdDat[] contain the command. The response that is
returned is stored in response storage array RespDat[].

The data type of DstNetAdr is structure _sDNET_ADR. The specifications are as follows:

The destination node is found with routing tables. If the value of DstNetAdr.NetNo is 0, the data is
routed through the built-in EtherNet/IP port. If the value of DstNetAdr.NodeNo is 255, the data is broad-
cast to all nodes with the specified network address.

The data type of CommPort is enumerated type _ePORT. The meanings of the enumerators of enumer-
ated type _ePORT are as follows:

The data type of Option is structure _sRESPONSE. The specifications are as follows:

If the value of the Response Not Necessary Flag (Option.isNonResp) is FALSE and the response does
not return within the value set for the Timeout Time (Option.TimeOut), the command is resent until
there is a response. Option.Retry specifies the number of retries. The timeout time is Option.TimeOut
multiplied by 0.1 s. However, if the value of Option.TimeOut is 0, the timeout time is 2.0 s. The default
value of Option.TimeOut is 2.0 s. No responses are received for broadcast data. Also, the command is
not resent.

Function

Name Meaning Description Data type Valid range Unit Default
DstNetAdr Destination

network
address

Destination network
address

_sDNET_ADR --- --- ---

NetNo Network
address

Network address USINT
0

0
NodeNo Node address Node address USINT

UnitNo Unit address Unit address BYTE Depends on
data type.

16#00

Enumerators Meaning
_NONE The destination is not a serial port in Host Link Mode.

Name Meaning Description Data type Valid range Unit Default
Option Response Response monitoring

and retry specifications
_sRESPONSE --- --- ---

isNonResp No response TRUE:Response is not
required.

FALSE:Response is
required.

BOOL

Depends on
data type.

--- FALSE

TimeOut Timeout time Timeout time

0: 2.0 s

UINT 0.1 s 20

(2.0 s)
Retry Retry count Retry count USINT 0 to 15 Times 0

2 Instruction Descriptions

2-676 NJ-series Instructions Reference Manual (W502)

• The command or response is sometimes lost during communications due to noise or other factors.
You can increase reliability by setting Option.Retry to a value higher than 0 to perform retry process-
ing when a response is not returned.

• To specify a serial port with the serial gateway function, specify the unit address of the serial port for
DstNetAdr.NetNo. The unit addresses of the ports on Serial Communications Units are as follows:

• Port 1
Unit address = BYTE#16#80 + BYTE#16#04 × unit number (hex)

Example for Unit Number 1
BYTE#16#80+BYTE#16#04 × 1 = BYTE#16#84

• Port 2
Unit address = BYTE#16#81 + BYTE#16#04 × unit number (hex)

Example for Unit Number 2
BYTE#16#81+BYTE#16#04 × 2 = BYTE#16#89

• The instruction is executed only when there is an available port. Therefore, use the system-defined
variable _Port_isAvailable (Network Communications Instruction Enabled Flag) in an N.O. execution
condition for the instruction.

• Execution of this instruction is continued until processing is completed even if the value of Execute
changes to FALSE or the execution time exceeds the task period. The value of Done changes to
TRUE when processing is completed. Use this to confirm normal completion of processing.

• If the instruction is used in ST, make sure that the instruction is processed each task period as long
as instruction execution continues. Otherwise, normal processing is sometimes not possible.

• The command is not sent if the value of CmdSize is 0. When the instruction is executed, the value of
Done changes to TRUE.

• Refer to Using this Section on page 2-2 for a timing chart for Execute, Done, Busy, and Error.

• An error occurs in the following cases. Error will change to TRUE.

• The value of CommPort is outside of the valid range.

• The value of a member of DstNetAdr is outside of the valid range.

• The value of CmdSize is outside of the valid range.

• The value of a member of Option is outside of the valid range.

• The value of CmdSize exceeds the size of CmdDat[].

• The response size exceeds the size of RespDat[].

• The value of _Port_isAvailable is FALSE.

• Communications fail.

Related System-defined Variables

Name Meaning Description
_Port_numUsingPort Number of Used Ports This is the number of ports that are currently used.

_Port_isAvailable Network Communica-
tions Instruction
Enabled Flag

TRUE: A port is available.

FALSE: A port is not available.

Additional Information

Precautions for Correct Use

2-677

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

S
endC

m
d

• For this instruction, expansion error code ErrorIDEx gives the communications response code. The
values and meanings are listed in the following table. An expansion error code is output to ErrorIDEx
when the value of error code ErrorID is WORD#16#0800.

Value Error Correction
16#00000101 The local node is not part of the network. Make the local node part of the network.

16#00000105 The IP address of the local node is out of
range.

Set the rotary switches on the Serial Commu-
nications Unit correctly.

16#00000106 The IP address of the local node is also used
by another node in the network.

Change one of the node addresses that are
duplicated.

16#00000202 A Unit with the specified unit address does
not exist at the destination.

Correctly set the unit address for the destina-
tion network address.

16#00000301 A Communications Controller Error occurred. Refer to the operation manual for the relevant
Unit and make suitable corrections.

16#00000304 The unit number setting is not correct. Set the rotary switches on the Serial Commu-
nications Unit correctly.

16#00000401 The command that was sent is not sup-
ported.

Set the command string correctly.

16#00000402 The Unit model or version is not supported. Check the Unit model and version.

16#00001001 The command is too long. Set the command string correctly.
16#00001002 The command is too short. Set the command string correctly.

16#00001003 The number of write elements that is speci-
fied in the command does not agree with the
number of write data.

Specify the same number of write elements
and write data.

16#00001004 The command format is incorrect. Set the command string correctly.

16#0000110B The response is too long. Set the number of elements in the command
string correctly.

16#0000110C This is another parameter error. Set the command string correctly.

16#00002202 The operating mode is wrong. Check the operating mode.
16#00002502 There is an error in the part of memory for

processing.
Transfer the correct data to memory.

16#00002503 The registered I/O Unit configuration does
not agree with the physical Unit configura-
tion.

Check the I/O Unit configuration.

16#00002504 There are too many local or remote I/O
points.

Set the number of local and remote I/O points
correctly.

16#00002505 An error occurred in a data transmission
between the CPU Unit and a CPU Bus Unit.

Check the Unit and the Connecting Cable.
After removing the error, execute a command
to reset the error.

16#00002506 The same rack number, unit number, or I/O
address is set more than once.

Correct the settings so that each number is
unique.

16#00002507 An error occurred in a data transmission
between the CPU Unit and an I/O Unit.

Check the Unit and the Connecting Cable.
After removing the error, execute a command
to reset the error.

16#00002509 There is an error in SYSMAC BUS/2 data
transmission.

Check the Unit and the Connecting Cable.
After removing the error, execute a command
to reset the error.

16#0000250A An error occurred in a CPU Bus Unit data
transmission.

Check the Unit and the Connecting Cable.
After removing the error, execute a command
to reset the error.

16#0000250D The same word setting is used more than
once.

Set the I/O words correctly.

16#00002510 The end station setting is wrong. Set the end station correctly.

2 Instruction Descriptions

2-678 NJ-series Instructions Reference Manual (W502)

In this sample, the SendCmd instruction sends an explicit message via a DeviceNet Unit. This sample
reads the vendor ID from the slave with node address 16#0B through the DeviceNet Unit with unit
address 16#10.

The following communications specifications are used.

The contents of command array SendDat[] and response storage array RecvDat[] are as follows:

Command Array: BYTE array

Sample Programming

Item Description

Unit address of DeviceNet Unit 16#10

Slave node address 16#0B

Service code 16#0E

Class ID 1

Instance ID 1

Attribute ID 1

Timeout time 2.0 s

Retry count 2

Array element Item Content Value

SendDat[0]
Command code

The command code to send an
explicit message is 16#2801.

BYTE#16#28

SendDat[1] BYTE#16#01

SendDat[2] Slave node address The node address is 16#0B. BYTE#16#0B

SendDat[3] Service code The service code to read the value of
a specified attribute (Get Attribute
Single) is 16#0E.

BYTE#16#0E

SendDat[4]
Class ID

The class ID of the Identity object is
16#0001.

BYTE#16#00

SendDat[5] BYTE#16#01

SendDat[6]
Instance ID ---

BYTE#16#00

SendDat[7] BYTE#16#01

SendDat[8] Attribute ID The attribute ID of the vendor ID
(Vendor ID) is 16#01.

BYTE#16#01

DeviceNet Unit with
unit number 0 (unit address 16#10)

Explicit message

Slave with node address 16#0B

2-679

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

S
endC

m
d

Response Storage Array: BYTE Array

Definitions of Global Variables

Array element Item Content
RecvDat[0]

Command code
The command code to send an explicit message is
16#2801.RecvDat[1]

RecvDat[2]
Completion code The completion code is 16#0000 for a normal end.

RecvDat[3]

RecvDat[4] Number of bytes received after
the slave node address

4 bytes
RecvDat[5]

RecvDat[6] Slave node address The node address is 16#0B for a normal end.

RecvDat[7] Service code The service code for a normal end is 16#8E.
RecvDat[8]

Vendor ID Slave vendor ID.
RecvDat[9]

BOOL

Global Variables

IOBus://rack#0/slot#0/Unit2Sta
/OnlineSta

DeviceNet_OnlineSta
Name Data type AT specification Comment

Online

2 Instruction Descriptions

2-680 NJ-series Instructions Reference Manual (W502)

LD

OperatingEnd
Trigger
Operating
InDNetAdr
InOption
SendDat
RecvDat
RS_instance
SendCmd_instance

False
False
False
(NetNo:=0, NodeNo:=0, UnitNo:=16#0)
(isNonResp:=False, TimeOut:=0, Retry:=0)
[9(16#0)]
[10(16#0)]

BOOL
BOOL
BOOL
_sDNET_ADR
_sRESPONSE
ARRAY[0..8] OF BYTE
ARRAY[0..9] OF BYTE
RS
SendCmd

SendCmd_instance.Done

SendCmd_instance.Error

Determine if execution of the SendCmd instruction is completed.

Accept trigger.

Execute SendCmd instruction.

OperatingEnd

Operating

OperatingEnd

Trigger _Port_isAvailable DeviceNet_OnlineSta RS
 Set Q1
 Reset1

RS_instance

Operating

 InDNetAdr
 _NONE
 SendDat[0]
 UINT#9

 RecvDat[0]
 InOption

 1 InDNetAdr.NetNo :=USINT#0;
 2 InDNetAdr.NodeNo :=USINT#0;
 3 InDNetAdr.UnitNo :=BYTE#16#10;
 4 InOption.isNonResp:=FALSE;
 5 InOption.TimeOut :=UINT#20;
 6 InOption.Retry :=USINT#2;
 7 SendDat[0] :=BYTE#16#28;
 8 SendDat[1] :=BYTE#16#01;
 9 SendDat[2] :=BYTE#16#0B;
10 SendDat[3] :=BYTE#16#0E;
11 SendDat[4] :=BYTE#16#00;
12 SendDat[5] :=BYTE#16#01;
13 SendDat[6] :=BYTE#16#00;
14 SendDat[7] :=BYTE#16#01;
15 SendDat[8] :=BYTE#16#01;

Set communications parameters.
Inline ST

// Set network address.

// Set response.

// Set command array.

Operating

_Port_isAvailable BOOL

SendCmd
Execute Done
DstNetAdr Busy
CommPort Error
CmdDat ErrorID
CmdSize ErrorIDEx
RespDat

Option

SendCmd_instance

Processing completed
Execution condition
Processing
Destination network address
Response
Send data
Receive data

Variable Data type Initial value Comment
Internal
Variables

External
Variables Variable Data type Comment

Network Communications Instruction Enabled Flag

2-681

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

S
endC

m
d

SendCmd_instance.Error

Operating SendCmd_instance.Done

Processing after normal end
Inline ST

Inline ST

// Processing after normal end1
2 ;

Processing after error end

1 // Processing after error end
2 ;

Operating

2 Instruction Descriptions

2-682 NJ-series Instructions Reference Manual (W502)

ST

IF ((Trigger=TRUE) AND (LastTrigger=FALSE) AND (_Port_isAvailable=TRUE)
 AND (DeviceNet_OnlineSta=TRUE)) THEN
 OperatingStart:=TRUE;
 Operating :=TRUE;
END_IF;
LastTrigger:=Trigger;

IF (OperatingStart=TRUE) THEN
 SendCmd_instance(
 Execute:=FALSE,
 DstNetAdr:=InDNetAdr,
 CommPort:=_NONE,
 CmdDat :=SendDat[0],
 CmdSize :=UINT#9,
 RespDat:=RecvDat[0],
 Option :=InOption);
 InDNetAdr.NetNo :=USINT#0;
 InDNetAdr.NodeNo :=USINT#0;
 InDNetAdr.UnitNo :=BYTE#16#10;
 InOption.isNonResp:=FALSE;
 InOption.TimeOut :=UINT#20;
 InOption.Retry :=USINT#2;
 SendDat[0] :=BYTE#16#28;
 SendDat[1] :=BYTE#16#01;
 SendDat[2] :=BYTE#16#0B;
 SendDat[3] :=BYTE#16#0E;
 SendDat[4] :=BYTE#16#00;
 SendDat[5] :=BYTE#16#01;
 SendDat[6] :=BYTE#16#00;
 SendDat[7] :=BYTE#16#01;
 SendDat[8] :=BYTE#16#01;
 OperatingStart :=FALSE;
END_IF;

// Detect when Trigger changes to TRUE.

// Set communications parameters and initialize SendCmd instruction.

Trigger
LastTrigger
OperatingStart
Operating
InDNetAdr
InOption
SendDat
RecvDat
SendCmd_instance

False
False
False
False
(NetNo:=0, NodeNo:=0, UnitNo:=16#0)
(isNonResp:=False, TimeOut:=0, Retry:=0)
[9(16#0)]
[10(16#0)]

BOOL
BOOL
BOOL
BOOL
_sDNET_ADR
_sRESPONSE
ARRAY[0..8] OF BYTE
ARRAY[0..9] OF BYTE
SendCmd

DeviceNet_OnlineSta
_Port_isAvailable

BOOL
BOOL

// Set network address.

// Set response.

// Set command array.

Execution condition
Value of Trigger from previous task period
Processing started
Processing
Destination network address
Response
Send data
Receive data

Variable Data type Initial value Comment
Internal
Variables

External
Variables Variable Data type Comment

Online
Network Communications Instruction Enabled Flag

2-683

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

S
endC

m
d

IF (Operating=TRUE) THEN
 SendCmd_instance(
 Execute :=TRUE,
 DstNetAdr:=InDNetAdr,
 CommPort:=_NONE,
 CmdDat :=SendDat[0],
 CmdSize :=UINT#9,
 RespDat:=RecvDat[0],
 Option :=InOption);

 IF (SendCmd_instance.Done=TRUE) THEN

 Operating:=FALSE;
 END_IF;

 IF (SendCmd_instance.Error=TRUE) THEN

 Operating:=FALSE;
 END_IF;
END_IF;

// Execute SendCmd instruction.

// Processing after normal end

// Processing after error end

2 Instruction Descriptions

2-684 NJ-series Instructions Reference Manual (W502)

CIPOpen

The CIPOpen instruction opens a CIP class 3 connection with the specified remote node.

The CIPOpen instruction opens a CIP class 3 connection with another Controller on a CIP network. The
other Controller is specified with route path RoutePath. The handle Handle is output when the connec-
tion is open.

TimeOut specifies the timeout time. If a response does not return within the timeout time, it is assumed
that communications failed. The timeout time is reset when the CIPRead, CIPWrite, or CIPSend
instruction is executed.

The data type of Handle is structure _sCIP_HANDLE. The specifications are as follows:

Instruction Name
FB/
FUN

Graphic expression ST expression

CIPOpen Open CIP
Class 3 Con-
nection

FB CIPOpen_instance(Execute,
RoutePath, TimeOut, Done, Busy,
Error, ErrorID, ErrorIDEx, Handle);

Variables

Name Meaning I/O Description Valid range Unit Default
RoutePath Route path

Input

Route path Depends on data
type.

--- ---

TimeOut Timeout time Timeout time 1 to 65535 0.1 s 20
(2 s)

Handle Handle Output Handle --- --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

RoutePath OK

TimeOut OK

Handle Refer to Function for details on the structure _sCIP_HANDLE.

Function

Name Meaning Description Data type Valid range Unit Default
Handle Handle Handle _sCIP_

HANDLE
--- --- ---

Handle Handle Handle UDINT Depends on
data type.

--- ---

CIPOpen

CIPOpen_instance

Execute Done
RoutePath Busy
TimeOut Error
 ErrorID
 ErrorIDEx
 Handle

2-685

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

C
IP

O
pen

The following figure shows a programming example.

Refer to the following manuals for details on CIP communications.

• NJ-series CPU Unit Built-in EtherNet/IP Port User’s Manual (Cat. No. W506)

• CJ-series EtherNet/IP Units Operation Manual for NJ-series CPU Unit (Cat. No. W495)

• Execution of this instruction is continued until processing is completed even if the value of Execute
changes to FALSE or the execution time exceeds the task period. The value of Done changes to
TRUE when processing is completed. Use this to confirm normal completion of processing.

• Refer to Using this Section on page 2-2 for a timing chart for Execute, Done, Busy, and Error.

• You must execute this instruction before you execute CIPRead, CIPWrite, or CIPSend.

• For this instruction, the first timeout time after a connection is established is 10 s even if the value of
TimeOut is set to less than 100 (10 s).

• Use the CIPClose instruction to close connections that were opened with the CIPOpen instruction.

• Even if the connection times out, the handle created by this instruction will remain. Always use the
CIPClose instruction to close the connection.

• Handles that are created with this instruction are disabled when you change to PROGRAM mode.

• You can create a maximum of 32 handles at the same time.

• You can use this instruction only through a built-in EtherNet/IP port on an NJ-series CPU Unit or a
port on an EtherNet/IP Unit connected to an NJ-series CPU Unit.

• This instruction does not use ErrorIDEx.

• An error occurs in the following cases. Error will change to TRUE.

• There is a setting error for the local IP address.

• The text string in RoutePath does not end in a NULL character.

• The value of TimeOut is outside of the valid range.

Related System-defined Variables

Name Meaning
Data
type

Description

_EIP_EtnOnlineSta Online BOOL Status of built-in EtherNet/IP port communications

TRUE: Can be used.

FALSE: Cannot be used.

Additional Information

Precautions for Correct Use

CIPOpen_instance(A, ‘2\192.168.250.2’, UINT#0, abc,
 def, ghi, jkl, mno, pqr);

LD ST

def
ghi
jkl
mno
pqr

abc

‘02\192.168.250.2’
UINT#0

A CIPOpen

CIPOpen_instance

Execute Done
RoutePath Busy
TimeOut Error
 ErrorID
 ErrorIDEx
 Handle

2 Instruction Descriptions

2-686 NJ-series Instructions Reference Manual (W502)

This sample uses CIP class 3 messages to write a variable, read a variable, and send a message. The
Controllers are connected to an EtherNet/IP network. The IP address of the remote node is
192.168.250.2.
The following procedure is used.

1 The CIPOpen instruction is used to open a class 3 connection. The timeout time is 2 s.

2 The CIPWrite instruction is used to write the value of a variable at a remote node. The variable
name at the remote node is WritingDat and the contents of the WriteDat is written to it. Writing-
Dat must be defined as a global variable at the remote node and the Network Publish attribute
must be set.

3 The CIPRead instruction is used to read the value of a variable at a remote node. The value of
the variable OriginalDat at the other node is read and the read value is stored in the ReadDat
variable. OriginalDat must be defined as a global variable at the remote node and the Network
Publish attribute must be set.

4 The CIPSend instruction is used to send an explicit message to a remote node. The contents of
the message is to read identity information (product name). The class ID, instance ID, attribute
ID, and service code are as follows: The response data is stored in the ResDat variable.

5 The CIPClose instruction is used to close the class 3 connection.

Sample Programming

Item Value

Class ID 1

Instance ID 1

Attribute ID 7

Service code 16#0E

Built-in EtherNet/IP port

Value of variable read.

Built-in EtherNet/IP port

IP address: 192.168.250.2

Value of variable written.
WriteDat

ResDat Response

ReadDat

Variable name: Writing-
Dat, global variable with a
Network Publish attribute

Message sent to read identity
information (product name).

Variable name: OriginalDat,
global variable with a
Network Publish attribute

2-687

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

C
IP

O
pen

LD

OperatingEnd
Trigger
Operating
WriteDat
ReadDat
ReqPath
ResDat
Dummy
RS_instance
CIPOpen_instance
CIPWrite_instance
CIPRead_instance
CIPSend_instance
CIPClose_instance

False
False
False
1234
0
(ClassID:=0, InstanceID:=0, isAttributeID:=False, AttributeID:=0)
[11(16#0)]
16#0

BOOL
BOOL
BOOL
INT
INT
_sREQUEST_PATH
ARRAY[0..10] OF BYTE
BYTE
RS
CIPOpen
CIPWrite
CIPRead
CIPSend
CIPClose

Determine if instruction execution is completed.

Accept trigger.

Variable Data type Initial value Comment

Processing completed
Execution condition
Processing
Write data
Read data
Request path
Response data
Dummy

CIPOpen_instance.Done

CIPOpen_instance.Error

CIPOpen_instance.Busy

CIPWrite_instance.Error

CIPRead_instance.Error

CIPWrite_instance.Done
CIPRead_instance.Done

CIPSend_instance.Done OperatingEnd

Operating

OperatingEnd

CIPClose_instance.Done

Trigger

CIPSend_instance.Error

CIPClose_instance.Error

RS
 Set Q1
 Reset1

RS_instance

1

1

CIPWrite_instance.Busy CIPRead_instance.Busy

CIPSend_instance.Busy CIPClose_instance.Busy

2 Instruction Descriptions

2-688 NJ-series Instructions Reference Manual (W502)

Instruction execution
Operating

 ‘02\192.168.250.2’
 UINT#20

 CIPWrite_instance.Done

 CIPRead_instance.Done

 CIPOpen_instance.Done

 CIPSend_instance.Done

 CIPOpen_instance.Handle
 ‘OriginalDat’
 UINT#1

 ReadDat

 CIPOpen_instance.Handle
 BYTE#16#0E
 ReqPath
 Dummy
 UINT#0

 ResDat

 CIPOpen_instance.Handle
 ‘WritingDat’
 UINT#1
 WriteDat

 CIPOpen_instance.Handle

 ReadDat

 UINT#1 ReqPath.ClassID

CIPOpen

CIPOpen_instance

Execute Done
RoutePath Busy
TimeOut Error
 ErrorID
 ErrorIDEx
 Handle

CIPClose

CIPClose_instance

Execute Done
Handle Busy
 Error
 ErrorID
 ErrorIDEx

CIPWrite

CIPWrite_instance

Execute Done
Handle Busy
DstDat Error
Size ErrorID
SrcDat ErrorIDEx

@MOVE
EN ENO
In Out

 UINT#1 ReqPath.InstanceID

@MOVE
EN ENO
In Out

 TRUE ReqPath.isAttributeID

@MOVE
EN ENO
In Out

 UINT#7 ReqPath.AttributeID

@MOVE
EN ENO
In Out

CIPSend

CIPSend_instance

Execute Done
Handle Busy
ServiceCode Error
RqPath ErrorID
ServiceDat ErrorIDEx
Size RespSize
RespServiceDat

CIPRead

CIPRead_instance

Execute Done
Handle Busy
SrcDat Error
Size ErrorID
DstDat

 ErrorIDEx
 RcvSize

2-689

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

C
IP

O
pen

Operating CIPClose_instance.Done

CIPOpen_instance.Error

Processing after normal end
Inline ST

Inline ST

1 // Processing after normal end
2 ;

Operating

Processing after error end

CIPWrite_instance.Error

CIPRead_instance.Error

1 // Processing after error end
2 ;

CIPSend_instance.Error

CIPClose_instance.Error

2 Instruction Descriptions

2-690 NJ-series Instructions Reference Manual (W502)

ST

IF ((Trigger=TRUE) AND (DoCIPTrigger=FALSE) AND (_Eip_EtnOnlineSta=TRUE)) THEN
 DoCIPTrigger:=TRUE;
 Stage :=INT#1;
 CIPOpen_instance(Execute:=FALSE);
 CIPWrite_instance(
 Execute :=FALSE,
 SrcDat :=WriteDat);
 CIPRead_instance(
 Execute :=FALSE,
 DstDat :=ReadDat);
 CIPSend_instance(
 Execute :=FALSE,
 ServiceDat := Dummy,
 RespServiceDat:=ResDat);
 CIPClose_instance(Execute:=FALSE);
END_IF;

IF (DoCIPTrigger=TRUE) THEN
 CASE Stage OF
 1 :
 CIPOpen_instance(
 Execute :=TRUE,
 TimeOut :=UINT#20,
 RoutePath:=’02\192.168.250.2’);

 IF (CIPOpen_instance.Done=TRUE) THEN
 Stage:=INT#2;
 ELSIF (CIPOpen_instance.Error=TRUE) THEN
 Stage:=INT#10;
 END_IF;

 2 :
 CIPWrite_instance(
 Execute:=TRUE,
 Handle :=CIPOpen_instance.Handle,
 DstDat :='WritingDat',
 Size :=UINT#1,
 SrcDat :=WriteDat);

 IF (CIPWrite_instance.Done=TRUE) THEN
 Stage:=INT#3;
 ELSIF (CIPWrite_instance.Error=TRUE) THEN
 Stage:=INT#20;
 END_IF;

// Start sequence when Trigger changes to TRUE.

// Open CIP class 3 connection.

// Request writing value of variable.

// Timeout time: 2.0 s
// Route path

// Normal end

// Error end

// Normal end

// Error end

// Handle
// Source variable name
// Number of elements to write
// Write data

// Initialize instance.

// Initialize instance.
// Dummy

// Initialize instance.
// Dummy
// Dummy

// Initialize instance.
// Dummy
// Dummy
// Initialize instance.

Trigger
DoCIPTrigger
Stage
WriteDat
ReadDat
ReqPath

ResDat
Dummy
CIPOpen_instance
CIPWrite_instance
CIPRead_instance
CIPSend_instance
CIPClose_instance

False
False
0
0
0
(ClassID:=0, InstanceID:=0,
isAttributeID:=False, AttributeID:=0)
[11(16#0)]
16#0

BOOL
BOOL
INT
INT
INT
_sREQUEST_PATH

ARRAY[0..10] OF BYTE
BYTE
CIPOpen
CIPWrite
CIPRead
CIPSend
CIPClose

Execution condition
Processing
Stage change
Write data
Read data
Request path

Response data
Dummy

_EIP_EtnOnlineSta BOOL

Variable Data type Initial valueInternal
Variables

External
Variables Variable Data type Comment

Online

Comment

Constant

2-691

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

C
IP

O
pen

 3 :
 CIPRead_instance(
 Execute:=TRUE,
 Handle :=CIPOpen_instance.Handle,
 SrcDat :=’OriginalDat’,
 Size :=UINT#1,
 DstDat :=ReadDat);

 IF (CIPRead_instance.Done=TRUE) THEN
 Stage:=INT#4;
 ELSIF (CIPRead_instance.Error=TRUE) THEN
 Stage:=INT#30;
 END_IF;

 4 :
 ReqPath.ClassID :=UINT#01;
 ReqPath.InstanceID :=UINT#01;
 ReqPath.isAttributeID:=TRUE;
 ReqPath.AttributeID :=UINT#07;
 CIPSend_instance(
 Execute :=TRUE,
 Handle :=CIPOpen_instance.Handle,
 ServiceCode :=BYTE#16#0E,
 RqPath :=ReqPath,
 ServiceDat :=Dummy,
 Size :=UINT#0,
 RespServiceDat:=ResDat);

 IF (CIPSend_instance.Done=TRUE) THEN
 Stage:=INT#5;
 ELSIF (CIPSend_instance.Error=TRUE) THEN
 Stage:=INT#40;
 END_IF;

 5 :
 CIPClose_instance(
 Execute :=TRUE,
 Handle :=CIPOpen_instance.Handle);

 IF (CIPClose_instance.Done=TRUE) THEN
 Stage:=INT#0;
 ELSIF (CIPClose_instance.Error=TRUE) THEN
 Stage:=INT#50;
 END_IF;

 0:
 DoCIPTrigger:=FALSE;
 Trigger :=FALSE;

 ELSE
 DoCIPTrigger:=FALSE;
 Trigger :=FALSE;
 END_CASE;
END_IF;

// Processing after normal end

// Processing after error end

// Request closing CIP class 3 connection.

// Handle

// Normal end

// Error end

// Handle
// Source variable name
// Number of elements to read
// Read data

// Normal end

// Error end

// Send message

// Handle
// Service code
// Request path
// Service data
// Number of elements
// Response data

// Request reading value of variable.

2 Instruction Descriptions

2-692 NJ-series Instructions Reference Manual (W502)

CIPRead

The CIPRead instruction uses a class 3 explicit message to read the value of a variable in another Con-
troller on a CIP network.

Instruction Name
FB/
FUN

Graphic expression ST expression

CIPRead Read Variable
Class 3 Explicit

FB CIPRead_instance(Execute,
Handle, SrcDat, Size, DstDat,
Done, Busy, Error, ErrorID,
ErrorIDEx, RcvSize);

Variables

Name Meaning I/O Description Valid range Unit Default
Handle Handle

Input

Handle obtained with CIPOpen
instruction

SrcDat Source vari-
able name

Name of variable to read in
other Controller

Depends on data
type.

''

Size Number of
elements to
read

Number of elements to read 0 to 1988 1

DstDat Read data In-out Read data value Depends on data
type.

--- ---

RcvSize Read data
size

Output Read data size 0 to 1988 Bytes ---
B

o
o

lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

Handle Refer to Function for details on the structure _sCIP_HANDLE.

SrcDat OK

Size OK

DstDat OK

An enumeration, array, structure, structure member, or union member can also be specified.*

RcvSize OK

CIPRead

CIPRead_instance

Execute Done
Handle Busy
SrcDat Error
Size ErrorID
DstDat

 ErrorIDEx
 RcvSize

2-693

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

C
IP

R
ead

The CIPRead instruction reads the value of the network variable specified with source variable name
SrcDat from another Controller on a CIP network. The other Controller is specified with Handle.
The read data value is stored in DstDat.
Size specifies the number of elements to read. If SrcDat is an array, specify the number of elements to
read with Size. If SrcDat is not an array, always specify 1 for Size. If the value of Size is 0, nothing is
read regardless of whether SrcDat is an array or not.
When the read operation is completed, the number of bytes of the data that was read is assigned to
read data size RcvSize. You can read a maximum of 1,988 bytes of data.

The data type of Handle is structure _sCIP_HANDLE. The specifications are as follows:

If the value of ErrorID is WORD#16#1C00, the CIP message error code is stored in ErrorIDEx.

The following example reads the value of variable abc. The read data is stored in variable def and the
value of variable vwx changes to UINT#1.

To read array data, pass a subscripted array element to ScrDat as the parameter. Also pass a sub-
scripted array element to DstDat as the parameter. The following example reads the four array variable
elements abc[3] to abc[6] and stores the results in array variable elements def[10] to def[13]. The value
of variable vwx will be UINT#4.

Function

Name Meaning Description Data type Valid range Unit Default
Handle Handle Handle _sCIP_

HANDLE
--- --- ---

Handle Handle Handle UDINT Depends on
data type.

--- ---

Reading Arrays

CIPRead_instance(A, cip_h, ‘abc’, UINT#1,
 def, ghi, jkl, mno, pqr,
 stu, vwx);

LD ST

jkl
mno
pqr

stu
vwx

cip_h
‘abc’

UINT#1

def def

ghiA CIPRead

CIPRead_instance

Execute Done
Handle Busy
SrcDat Error
Size ErrorID
DstDat

 ErrorIDEx
 RcvSize

CIPRead_instance(A, cip_h, ‘abc[3]’, UINT#4,
 def[10], ghi, jkl, mno, pqr,
 stu, vwx);

LD ST

jkl
mno
pqr

stu
vwx

cip_h
‘abc[3]’

UINT#4

def[10] def[10]

ghiA CIPRead

CIPRead_instance

Execute Done
Handle Busy
SrcDat Error
Size ErrorID
DstDat

 ErrorIDEx
 RcvSize

2 Instruction Descriptions

2-694 NJ-series Instructions Reference Manual (W502)

Refer to the following manuals for details on CIP communications.

• NJ-series CPU Unit Built-in EtherNet/IP Port User’s Manual (Cat. No. W506)

• CJ-series EtherNet/IP Units Operation Manual for NJ-series CPU Unit (Cat. No. W495)

• Execution of this instruction is continued until processing is completed even if the value of Execute
changes to FALSE or the execution time exceeds the task period. The value of Done changes to
TRUE when processing is completed. Use this to confirm normal completion of processing.

• Refer to Using this Section on page 2-2 for a timing chart for Execute, Done, Busy, and Error.

• Execute the CIPOpen instruction to obtain the value for Handle before you execute this instruction.

• This instruction can be used only through the built-in EtherNet/IP ports on NJ-series CPU Units.

• If a variable is read from an OMRON Controller, the variable must be published to the network. Pub-
lish the variable to the network in advance.

• You cannot specify an address in memory for CJ-series Units directly to read data. To read specific
addresses in memory for CJ-series Units, use an AT specification in advance to assign the memory
addresses to a variable.

• You cannot specify an address in local memory for CJ-series Units directly to store data. To store
data in specific addresses in memory for CJ-series Units, use an AT specification in advance to
assign the memory addresses to DstDat.

• The characters that can be used in SrcDat are specified in the following table.

• An error occurs in the following cases. Error will change to TRUE.

• There is a setting error for the local IP address.

• The value of Handle.Handle is outside of the valid range.

• The value of Size is outside of the valid range.

• The value of DstDat is outside of the valid range.

Related System-defined Variables

Name Meaning
Data
type

Description

_EIP_EtnOnlineSta Online BOOL Status of built-in EtherNet/IP port communications

TRUE: Can be used.

FALSE: Cannot be used.

Additional Information

Precautions for Correct Use

Item Specification
Maximum num-
ber of bytes

127 bytes

Character code UTF-8

Applicable char-
acters

Alphanumeric characters (not case sensitive), single-byte Katakana, multibyte characters,
and ‘_’ (underbars)

Prohibited text
strings

• Any text string that starts with ASCII characters 0 to 9 (character codes 16#30 to 16#39)

• A text string that consists of only a single _ (underbar) ASCII character
• Any text string that includes two or more consecutive _ (underbar) ASCII characters

• Any text string that starts with an _ (underbar) ASCII character

• Any text string that ends with an _ (underbar) ASCII character
• Any text string that starts with “P_”

2-695

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

C
IP

R
ead

• The value of RcvSize is outside of the valid range.

• For this instruction, expansion error code ErrorIDEx gives the CIP message error code. The
meanings are as follows:

Refer to the sample programming that is provided for the CIPOpen instruction (page 2-684).

Value Error

16#02000000 Normal communications are not possible due to a high load at the remote node.

16#05000000 The specified source variable does not exits on the other Controller.

16#0C008010 The specified source variable is being downloaded.

16#0C008011

16#11000000 The value of Size is exceeds the data size that can currently be read.

16#20008017 The specified source variable is not an array and the number of elements to read is not 1.

16#20008018 The specified source variable is an array and the number of elements to read exceeds the
number of elements in the array.

16#26000000 The specified destination variable contains only the NULL character.

Sample Programming

2 Instruction Descriptions

2-696 NJ-series Instructions Reference Manual (W502)

CIPWrite

The CIPWrite instruction uses a class 3 explicit message to write the value of a variable in another Con-
troller on a CIP network.

* If you omit an input parameter, the default value is not applied. A building error will occur.

* You cannot specify a STRING array.

The CIPWrite instruction writes the value of the network variable specified with destination variable
name DstDat at another Controller on a CIP network. The other Controller is specified with Handle. The
content of source data ScrDat is written.

Size specifies the number of elements to write. If DstDat is an array, specify the number of elements to
write with Size. If DstDat is not an array, always specify 1 for Size. If the value of Size is 0, nothing is
written regardless of whether DstDat is an array or not.

Instruction Name
FB/
FUN

Graphic expression ST expression

CIPWrite Write Variable
Class 3 Explicit

FB CIPWrite_instance(Execute,
Handle, DstDat, Size, SrcDat,
Done, Busy, Error, ErrorID,
ErrorIDEx);

Variables

Name Meaning I/O Description Valid range Unit Default
Handle Handle

Input

Handle obtained with CIPOpen
instruction

--- --- ---

DstDat Destination
variable name

Name of variable to write in
another Controller

Depends on data
type.

''

Size Number of
elements to
write

Number of elements to write
0 to 1980 1

SrcDat Source data
Data value to write

Depends on data
type.

*

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

Handle Refer to Function for details on the structure _sCIP_HANDLE.

DstDat OK

Size OK

SrcDat OK

Handle An enumeration, array, structure, structure member, or union member can also be specified.*

Function

CIPWrite

CIPWrite_instance

Execute Done
Handle Busy
DstDat Error
Size ErrorID
SrcDat ErrorIDEx

2-697

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

C
IP

W
rite

The data type of Handle is structure _sCIP_HANDLE. The specifications are as follows:

If the value of ErrorID is WORD#16#1C00, the CIP message error code is stored in ErrorIDEx.

The following example writes variable abc. The contents of variable def is written to variable abc.

To write array data, pass a subscripted array element to DstDat as the parameter. Also pass a sub-
scripted array element to SrcDat as the parameter. The following example stores the contents of array
variable elements def[10] to def[13] in the four array variable elements abc[3] to abc[6].

The maximum size of the data that you can write depends on the data type and variable name that are
specified for DstDat, as given in the following table.

Maximum write data size [bytes] = Base size − Size of variable name of DstDat

Name Meaning Description Data type Valid range Unit Default
Handle Handle Handle _sCIP_

HANDLE
--- --- ---

Handle Handle Handle UDINT Depends on
data type.

--- ---

Writing Arrays

Maximum Write Data Size

Item in above formula Meaning

Base size • Data type of variable specified for DstDat is a structure or STRING: 1,986 bytes
• Other data types: 1,988 bytes

CIPWrite_instance(A, cip_h, ‘abc’, UINT#1, def,
 ghi, jkl, mno, pqr, stu);

LD ST

jkl
mno
pqr
stu

ghi

def

cip_h
‘abc’

UINT#1

A CIPWrite

CIPWrite_instance

Execute Done
Handle Busy
DstDat Error
Size ErrorID
SrcDat ErrorIDEx

CIPWrite_instance(A, cip_h, ‘abc[3]’, UINT#4, def,
 ghi[10], jkl, mno, pqr, stu);

LD ST

jkl
mno
pqr
stu

ghi

def[10]

cip_h
‘abc[3]’

UINT#4

A CIPWrite

CIPWrite_instance

Execute Done
Handle Busy
DstDat Error
Size ErrorID
SrcDat ErrorIDEx

2 Instruction Descriptions

2-698 NJ-series Instructions Reference Manual (W502)

Refer to the following manuals for details on CIP communications.

• NJ-series CPU Unit Built-in EtherNet/IP Port User’s Manual (Cat. No. W506)

• CJ-series EtherNet/IP Units Operation Manual for NJ-series CPU Unit (Cat. No. W495)

• Execution of this instruction is continued until processing is completed even if the value of Execute
changes to FALSE or the execution time exceeds the task period. The value of Done changes to
TRUE when processing is completed. Use this to confirm normal completion of processing.

• Refer to Using this Section on page 2-2 for a timing chart for Execute, Done, Busy, and Error.

• Execute the CIPOpen instruction to obtain the value for Handle before you execute this instruction.

Size of variable name of
DstDat

• The size of the variable name is calculated as the total bytes for the ASCII charac-
ters in all structure levels plus two times the number of levels.

• If the number of bytes of ASCII characters in a level is an odd number, add 1.

• If a level in the structure is an array, add four times the number of dimensions in the
array.

• Periods and commas in the structure and arrays are not included in the variable
name size.

Example 1: When the Variable Name of DstDat Is aaa.bbbbb[1,2,3].cc

• The text string “aaa” in the first level is 3 bytes. It is an odd number, so 1 is added
to make 4 bytes.

• The text string “bbbbb[1,2,3]” in the second level is 5 bytes. It is an odd number,
so 1 is added to make 6 bytes.

• Also bbbbb[1,2,3] is a three-dimensional array, so 3 times 4, or 12, is added to
make 18 bytes.

• The text string “cc” in the third level is 2 bytes. It is an even number, so 2 bytes is
used in the calculation.

• If we add the number of levels 3 times 2, or 6, to 4 bytes for the first level, 18 bytes
for the second level, and 2 bytes for the third level, the size of the variable name
come to 30 bytes.

Example 2: When the Variable Name of DstDat Is val

• The text string “val” in the first level is 3 bytes. It is an odd number, so 1 is added
to make 4 bytes.

• If we then add the number of levels 1 times 2, or 2, the size of the variable name
is 6 bytes.

Example 3: When the Variable Name of DstDat Is array[8].

• The text string “array” in the first level is 5 bytes. It is an odd number, so 1 is
added to make 6 bytes.

• It is a one-dimensional array. Therefore, 1 times 4, or 4, is added.

• If we then add the number of levels 1 times 2, or 2, the size of the variable name
is 12 bytes.

Related System-defined Variables

Name Meaning
Data
type

Description

_EIP_EtnOnlineSta Online BOOL Status of built-in EtherNet/IP port communications

TRUE: Can be used.

FALSE: Cannot be used.

Additional Information

Precautions for Correct Use

Item in above formula Meaning

2-699

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

C
IP

W
rite

• You can use this instruction only through a built-in EtherNet/IP port on an NJ-series CPU Unit or a
port on an EtherNet/IP Unit connected to an NJ-series CPU Unit.

• If a variable is written to an OMRON Controller, the variable must be published to the network. Pub-
lish the variable to the network in advance.

• You cannot specify an address in memory for CJ-series Units directly to write data. To write specific
addresses in memory for CJ-series Units, use an AT specification in advance to assign the memory
addresses to a variable.

• You cannot directly specify an address in local memory for CJ-series Units. To write specific
addresses in memory for CJ-series Units, use an AT specification in advance to assign the memory
addresses to SrcDat.

• The characters that can be used in DstDat are specified in the following table.

• An error occurs in the following cases. Error will change to TRUE.

• There is a setting error for the local IP address.

• The value of Handle.Handle is outside of the valid range.

• The value of Size is outside of the valid range.

• The value of SrcDat is outside of the valid range.

• For this instruction, expansion error code ErrorIDEx gives the CIP message error code. The
meanings are as follows:

Item Specification
Maximum num-
ber of bytes

127 bytes

Character code UTF-8

Applicable char-
acters

Alphanumeric characters (not case sensitive), single-byte Katakana, multibyte characters,
and ‘_’(underbars)

Prohibited text
strings

• Any text string that starts with ASCII characters 0 to 9 (character codes 16#30 to 16#39)

• A text string that consists of only a single _ (underbar) ASCII character
• Any text string that includes two or more consecutive _ (underbar) ASCII characters

• Any text string that starts with an _ (underbar) ASCII character

• Any text string that ends with an _ (underbar) ASCII character
• Any text string that starts with “P_”

Value Error

16#02000000 Normal communications are not possible due to a high load at the remote node.

16#05000000 The specified source variable does not exits on the other Controller.

16#0C008010 The specified source variable is being downloaded.

16#0C008011

16#1F000102 • The specified destination variable has a Constant attribute, so it cannot be written.

• The write data does not agree with the number of write elements.

16#20008017 The specified destination variable is not an array and the number of elements to write is
not 1.

16#20008018 The specified destination variable is an array and the number of elements to write
exceeds the number of elements in the array.

16#20008028 • The specified destination variable is an enumeration and the write data is not the value
of an enumerator.

• The specified destination variable has a Range Specification attribute and the write
data is out of range.

16#26000000 The specified destination variable contains only the NULL character.

2 Instruction Descriptions

2-700 NJ-series Instructions Reference Manual (W502)

Refer to the sample programming that is provided for the CIPOpen instruction (page 2-684).

Sample Programming

2-701

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

C
IP

S
end

CIPSend

The CIPSend instruction sends a class 3 CIP message to a specified device on a CIP network.

* If you omit an input parameter, the default value is not applied. A building error will occur.

Instruction Name
FB/
FUN

Graphic expression ST expression

CIPSend Send Explicit
Message Class
3

FB CIPSend_instance(Execute,
Handle, ServiceCode, RqPath,
ServiceDat, Size, RespService-
Dat, Done, Busy, Error, ErrorID,
ErrorIDEx, RespSize);

Variables

Name Meaning I/O Description Valid range Unit Default
Handle Handle

Input

Handle obtained with CIPOpen
instruction

ServiceCode Service code Service code Depends on data
type.

RqPath Request path Request path (class ID,
instance ID, attribute ID)

ServiceDat Service data Service data to send
Depends on data
type.

Size Number of
elements to
send

Number of elements to send *

RespService-
Dat

Response
data

In-out Response data Depends on data
type.

--- ---

RespSize Response
size

Output Response data size Depends on data
type.

Bytes ---

CIPSend

CIPSend_instance

Execute Done
Handle Busy
ServiceCode Error
RqPath ErrorID
ServiceDat ErrorIDEx
Size RespSize
RespServiceDat

2 Instruction Descriptions

2-702 NJ-series Instructions Reference Manual (W502)

The CIPSend instruction sends service data ServiceDat for the service specified with service code Ser-
viceCode as a class 3 explicit message.
The destination is specified with handle Handle.
RqPath specifies the request path.

Size specifies the number of elements to send. If ServiceDat is an array, specify the number of ele-
ments to send with Size. If ServiceDat is not an array, always specify 1 for Size. If no service data is
required, set Size to 0.
The response data received later is stored in RespServiceDat. The number of bytes of the response
data is stored in RespSize.

The data type of Handle is structure _sCIP_HANDLE. The specifications are as follows:

The data type of RqPath is structure _sREQUEST_PATH. The specifications are as follows:

If the value of ErrorID is WORD#16#1C00, the CIP message error code is stored in ErrorIDEx. The
meaning and values of ErrorIDEx depend on the remote node. Refer to the manual for the remote node.

If ServiceDat or RespServiceDat is an array, pass a subscripted array element to it as the parameter.

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

Handle Refer to Function for details on the structure _sCIP_HANDLE.

ServiceCode OK

RqPath Refer to Function for details on the structure _sREQUEST_PATH.

ServiceDat OK OK OK OK OK OK OK OK OK OK OK OK OK OK

An array, structure member, or union member can also be specified.

Size OK

RespService-
Dat

OK OK OK OK OK OK OK OK OK OK OK OK OK OK

An array, structure member, or union member can also be specified.

RespSize OK

Function

Name Meaning Description Data type Valid range Unit Default
Handle Handle Handle _sCIP_

HANDLE
--- --- ---

Handle Handle Handle UDINT Depends on
data type.

--- ---

Name Meaning Description Data type Valid range Unit Default
RqPath Request path Request path (class ID,

instance ID, attribute ID)
sREQUEST
PATH

--- --- ---

ClassID Class ID Class ID UINT

Depends on
data type.

0
InstanceID Instance ID Instance ID UINT

isAttributeID Attribute
usage

TRUE:Attribute ID used.

FALSE:Attribute ID not
used.

BOOL FALSE

AttributeID Attribute ID Attribute ID UINT 0

Sending and Receiving Arrays

2-703

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

C
IP

S
end

You can read a maximum of 1,990 bytes of data. The maximum size of the data that you can write
depends on whether there is a request path attribute, as given below.

Maximum write data size [bytes] = Base size − Attribute usage

Refer to the following manuals for details on CIP communications.

• NJ-series CPU Unit Built-in EtherNet/IP Port User’s Manual (Cat. No. W506)

• CJ-series EtherNet/IP Units Operation Manual for NJ-series CPU Unit (Cat. No. W495)

• Execution of this instruction is continued until processing is completed even if the value of Execute
changes to FALSE or the execution time exceeds the task period. The value of Done changes to
TRUE when processing is completed. Use this to confirm normal completion of processing.

• Refer to Using this Section on page 2-2 for a timing chart for Execute, Done, Busy, and Error.

• Execute the CIPOpen instruction to obtain the value for Handle before you execute this instruction.

• You can use this instruction only through a built-in EtherNet/IP port on an NJ-series CPU Unit or a
port on an EtherNet/IP Unit connected to an NJ-series CPU Unit.

• If a variable is written to an OMRON Controller, the variable must be published to the network. Pub-
lish the variable to the network in advance.

• An error occurs in the following cases. Error will change to TRUE.

• There is a setting error for the local IP address.

• The value of Handle.Handle is outside of the valid range.

• The value of ServiceCode is outside of the valid range.

• The value of a member of RqPath is outside of the valid range.

• The value of Size is outside of the valid range.

Refer to the sample programming that is provided for the CIPOpen instruction (page 2-684).

Maximum Read/Write Data Size

Item in above formula Meaning

Base size 1,992 bytes

Attribute usage Attribute ID used: 12 bytes

Attribute ID not used: 8 bytes

Related System-defined Variables

Name Meaning
Data
type

Description

_EIP_EtnOnlineSta Online BOOL Status of built-in EtherNet/IP port communications

TRUE: Can be used.

FALSE: Cannot be used.

Additional Information

Precautions for Correct Use

Sample Programming

2 Instruction Descriptions

2-704 NJ-series Instructions Reference Manual (W502)

CIPClose

The CIPClose instruction closes the CIP class 3 connection to the specified handle.

The CIPClose instruction closes the CIP class 3 connection specified with the handle Handle.

The data type of Handle is structure _sCIP_HANDLE. The specifications are as follows:

The following figure shows a programming example.

Instruction Name
FB/
FUN

Graphic expression ST expression

CIPClose Close CIP
Class 3 Con-
nection

FB CIPClose_instance(Execute,
Handle, Done, Busy, Error,
ErrorID, ErrorIDEx);

Variables

Name Meaning I/O Description Valid range Unit Default
Handle Handle Input Handle obtained with CIPOpen

instruction
--- --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

Handle Refer to Function for details on the structure _sCIP_HANDLE.

Function

Name Meaning Description Data type Valid range Unit Default
Handle Handle Handle _sCIP_

HANDLE

--- --- ---

Handle Handle Handle UDINT Depends on
data type.

--- ---

CIPClose

CIPClose_instance

Execute Done
Handle Busy
 Error
 ErrorID
 ErrorIDEx

CIPClose_instance(A, cip_h, abc, def,
 ghi, jkl, mno);

LD ST

def
ghi
jkl
mno

abc

cip_h

A CIPClose

CIPClose_instance

Execute Done
Handle Busy
 Error
 ErrorID
 ErrorIDEx

2-705

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

C
IP

C
lose

Refer to the following manuals for details on CIP communications.

• NJ-series CPU Unit Built-in EtherNet/IP Port User’s Manual (Cat. No. W506)

• CJ-series EtherNet/IP Units Operation Manual for NJ-series CPU Unit (Cat. No. W495)

• Execution of this instruction is continued until processing is completed even if the value of Execute
changes to FALSE or the execution time exceeds the task period. The value of Done changes to
TRUE when processing is completed. Use this to confirm normal completion of processing.

• Refer to Using this Section on page 2-2 for a timing chart for Execute, Done, Busy, and Error.

• Specify the handle that was obtained with the CIPOpen instruction for Handle.

• You can use this instruction only through a built-in EtherNet/IP port on an NJ-series CPU Unit or a
port on an EtherNet/IP Unit connected to an NJ-series CPU Unit.

• This instruction does not use ErrorIDEx.

• An error occurs in the following cases. Error will change to TRUE.

• There is a setting error for the local IP address.

• The value of Handle.Handle is outside of the valid range.

Refer to the sample programming that is provided for the CIPOpen instruction (page 2-684).

Related System-defined Variables

Name Meaning
Data
type

Description

_EIP_EtnOnlineSta Online BOOL Status of built-in EtherNet/IP port communications

TRUE: Can be used.

FALSE: Cannot be used.

Additional Information

Precautions for Correct Use

Sample Programming

2 Instruction Descriptions

2-706 NJ-series Instructions Reference Manual (W502)

CIPUCMMRead

The CIPUCMMRead instruction uses a UCMM explicit message to read the value of a variable in
another Controller on the specified CIP network.

* You cannot specify a STRING array.

Instruction Name
FB/
FUN

Graphic expression ST expression

CIPUCMM
Read

Read Variable
UCMM Explicit

FB CIPUCMMRead_instance(Execute,
RoutePath, TimeOut, SrcDat, Size,
DstDat, Done, Busy, Error, ErrorID,
ErrorIDEx, RcvSize);

Variables

Name Meaning I/O Description Valid range Unit Default
RoutePath Route path

Input

Route path Depends on data
type.

−--- ---

TimeOut Timeout time Timeout time 1 to 65535 0.1 s 20 (2 s)

SrcDat Source vari-
able name

Name of variable to read in
other Controller

Depends on data
type.

''

Size Number of
elements to
read

Number of elements to read 0 to 496 1

DstDat Read data In-out Read data value Depends on data
type.

--- ---

RcvSize Read data
size

Output Read data size 0 to 496 Bytes ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

RoutePath OK OK

TimeOut OK

SrcDat OK

Size OK

DstDat
OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

An enumeration, array, structure, structure member, or union member can also be specified.*

RcvSize OK

CIPUCMMRead

CIPUCMMRead_instance

Execute Done
RoutePath Busy
TimeOut Error
SrcDat ErrorID
Size ErrorIDEx
DstDat

 RcvSize

2-707

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

C
IP

U
C

M
M

R
ead

The CIPUCMMRead instruction reads the value of the network variable specified with source variable
name SrcDat from another Controller on a CIP network. The other Controller is specified with route
path RoutePath.
The read data value is stored in DstDat.

Size specifies the number of elements to read. If SrcDat is an array, specify the number of elements to
read with Size. If SrcDat is not an array, always specify 1 for Size. If the value of Size is 0, nothing is
read regardless of whether SrcDat is an array or not.
When the read operation is completed, the number of bytes of the data that was read is assigned to
read data size RcvSize. You can read a maximum of 496 bytes of data.

TimeOut specifies the timeout time. If a response does not return within the timeout time, it is assumed
that communications failed.

If the value of ErrorID is WORD#16#1C00, the CIP message error code is stored in ErrorIDEx.

The following example reads the value of variable abc. The read data is stored in variable def and the
value of variable vwx changes to UINT#1.

To read array data, pass a subscripted array element to ScrDat as the parameter. Also pass a sub-
scripted array element to DstDat as the parameter. The following example reads the four array variable
elements abc[3] to abc[6] and stores the results in array variable elements def[10] to def[13]. The value
of variable vwx will be UINT#4.

Function

Reading Arrays

CIPUCMMRead_instance(A, ‘2\192.168.250.2’,
 UINT#0, ‘abc’, UINT#1,
 def, ghi, jkl, mno, pqr,
 stu, vwx);

LD ST

jkl
mno
pqr
stu

vwx

ghi

‘abc’
UINT#1

def def

UINT#0

A

‘02\192.168.250.2’

CIPUCMMRead

CIPUCMMRead_instance

Execute Done
RoutePath Busy
TimeOut Error
SrcDat ErrorID
Size ErrorIDEx
DstDat

 RcvSize

CIPUCMMRead_instance(A, ‘2\192.168.250.2’,
 UINT#0, ‘abc[3]’, UINT#4,
 def[10], ghi, jkl, mno, pqr,
 stu, vwx);

LD ST

jkl
mno
pqr
stu

vwx

ghi

‘abc[3]’
UINT#4

def[10] def[10]

UINT#0

A

‘02\192.168.250.2’

CIPUCMMRead

CIPUCMMRead_instance

Execute Done
RoutePath Busy
TimeOut Error
SrcDat ErrorID
Size ErrorIDEx
DstDat

 RcvSize

2 Instruction Descriptions

2-708 NJ-series Instructions Reference Manual (W502)

Refer to the following manuals for details on CIP communications.

• NJ-series CPU Unit Built-in EtherNet/IP Port User’s Manual (Cat. No. W506)

• CJ-series EtherNet/IP Units Operation Manual for NJ-series CPU Unit (Cat. No. W495)

• Execution of this instruction is continued until processing is completed even if the value of Execute
changes to FALSE or the execution time exceeds the task period. The value of Done changes to
TRUE when processing is completed. Use this to confirm normal completion of processing.

• Refer to Using this Section on page 2-2 for a timing chart for Execute, Done, Busy, and Error.

• This instruction can be used only through the built-in EtherNet/IP ports on NJ-series CPU Units.

• If a variable is read from an OMRON Controller, the variable must be published to the network. Pub-
lish the variable to the network in advance.

• You cannot specify an address in memory for CJ-series Units directly to read data. To read specific
addresses in memory for CJ-series Units, use an AT specification in advance to assign the memory
addresses to a variable.

• You cannot specify an address in local memory for CJ-series Units directly to store data. To store
data in specific addresses in memory for CJ-series Units, use an AT specification in advance to
assign the memory addresses to DstDat.

• If the variable that is read is a user-defined structure, you can read a maximum of 492 bytes.

• The characters that can be used in SrcDat are specified in the following table.

• An error occurs in the following cases. Error will change to TRUE.

• There is a setting error for the local IP address.

• The text string in RoutePath does not end in a NULL character.

• The value of TimeOut is outside of the valid range.

Related System-defined Variables

Name Meaning
Data
type

Description

_EIP_EtnOnlineSta Online BOOL Status of built-in EtherNet/IP port communications

TRUE: Can be used.

FALSE: Cannot be used.

Additional Information

Precautions for Correct Use

Item Specification
Maximum num-
ber of bytes

127 bytes

Character code UTF-8

Applicable char-
acters

Alphanumeric characters (not case sensitive), single-byte Katakana, multibyte characters,
and ‘_’ (underbars)

Prohibited text
strings

• Any text string that starts with ASCII characters 0 to 9 (character codes 16#30 to 16#39)

• A text string that consists of only a single _ (underbar) ASCII character

• Any text string that includes two or more consecutive _ (underbar) ASCII characters
• Any text string that starts with an _ (underbar) ASCII character

• Any text string that ends with an _ (underbar) ASCII character

• Any text string that starts with “P_”

2-709

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

C
IP

U
C

M
M

R
ead

• The value of Size is outside of the valid range.

• The value of DstDat is outside of the valid range.

• The value of RcvSize is outside of the valid range.

• For this instruction, expansion error code ErrorIDEx gives the CIP message error code. The mean-
ings are as follows:

Refer to the sample programming that is provided for the CIPUCMMSend instruction (page 2-716).

Value Error
16#02000000 Normal communications are not possible due to a high load at the remote node.

16#05000000 The specified source variable does not exist on the other Controller.
16#0C008010 The specified source variable is being downloaded.

16#0C008011

16#11000000 The value of Size is exceeds the data size that can currently be read.
16#20008017 The specified source variable is not an array and the number of elements to read is not 1.

16#20008018 The specified source variable is an array and the number of elements to read exceeds the
number of elements in the array.

16#26000000 The specified destination variable contains only the NULL character.

Sample Programming

2 Instruction Descriptions

2-710 NJ-series Instructions Reference Manual (W502)

CIPUCMMWrite

The CIPUCMMWrite instruction uses a UCMM explicit message to write the value of a variable in
another Controller on a CIP network.

* If you omit an input parameter, the default value is not applied. A building error will occur.

* You cannot specify a STRING array.

Instruction Name
FB/
FUN

Graphic expression ST expression

CIPUCMM
Write

Write Variable
UCMM Explicit

FB CIPUCMMWrite_instance(Execute,
RoutePath, TimeOut, DstDat, Size,
SrcDat, Done, Busy, Error, ErrorID,
ErrorIDEx);

Variables

Name Meaning I/O Description Valid range Unit Default
RoutePath Route path

Input

Route path Depends on data
type.

--- ---

TimeOut Timeout time Timeout time 1 to 65535 0.1 s 20 (2 s)
DstDat Destination

variable name
Name of variable to write in
another Controller

Depends on data
type.

''

Size Number of
elements to
write

Number of elements to write 0 to 488 1

SrcDat Source data Data value to write Depends on data
type.

*

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

RoutePath OK

TimeOut OK

DstDat OK

Size OK

SrcDat
OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

An enumeration, array, structure, structure member, or union member can also be specified.*

CIPUCMMWrite

CIPUCMMWrite_instance

Execute Done
RoutePath Busy
TimeOut Error
DstDat ErrorID
Size ErrorIDEx
SrcDat

2-711

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

C
IP

U
C

M
M

W
rite

The CIPUCMMWrite instruction writes the value of the network variable specified with destination vari-
able name DstDat at another Controller on a CIP network. The other Controller is specified with route
path RoutePath.
The content of source data ScrDat is written.
Size specifies the number of elements to write. If DstDat is an array, specify the number of elements to
write with Size. If DstDat is not an array, always specify 1 for Size. If the value of Size is 0, nothing is
written regardless of whether DstDat is an array or not.

TimeOut specifies the timeout time. If a response does not return within the timeout time, it is assumed
that communications failed.

If the value of ErrorID is WORD#16#1C00, the CIP message error code is stored in ErrorIDEx.

The following example writes variable abc. The contents of variable def is written to variable abc.

]

To write array data, pass a subscripted array element to DstDat as the parameter. Also pass a sub-
scripted array element to SrcDat as the parameter. The following example stores the contents of array
variable elements def[10] to def[13] in the four array variable elements abc[3] to abc[6].

]

The maximum size of the data that you can write depends on the data type and variable name that are
specified for DstDat and the route path, as given in the following table.

Maximum write data size [bytes] = Base size − Size of variable name of DstDat − Path information size

Function

Writing Arrays

Maximum Write Data Size

Item in above formula Meaning

Base size • Data type of variable specified for DstDat is a structure or STRING: 494
bytes

• Other data types: 496 bytes

CIPUCMMWrite_instance(A, ‘2\192.168.250.2’,
 UINT#0, ‘abc’, UINT#1,
 def, ghi, jkl, mno, pqr,
 stu);

LD ST

jkl
mno
pqr
stu

ghi

def

‘abc’
UINT#1

UINT#0

A

‘02\192.168.250.2’

CIPUCMMWrite

CIPUCMMWrite_instance

Execute Done
RoutePath Busy
TimeOut Error
DstDat ErrorID
Size ErrorIDEx
SrcDat

CIPUCMMWrite_instance(A, ‘2\192.168.250.2’,
 UINT#0, ‘abc[3]’, UINT#4,
 def[10], ghi, jkl, mno, pqr,
 stu);

LD ST

jkl
mno
pqr
stu

ghi

def[10]

‘abc[3]’
UINT#4

UINT#0

A

‘02\192.168.250.2’

CIPUCMMWrite

CIPUCMMWrite_instance

Execute Done
RoutePath Busy
TimeOut Error
DstDat ErrorID
Size ErrorIDEx
SrcDat

2 Instruction Descriptions

2-712 NJ-series Instructions Reference Manual (W502)

Size of variable name of DstDat • The size of the variable name is calculated as the total bytes for the ASCII
characters in all structure levels plus two times the number of levels.

• If the number of bytes of ASCII characters in a level is an odd number, add
1.

• If a level in the structure is an array, add four times the number of dimen-
sions in the array.

• Periods and commas in the structure and arrays are not included in the vari-
able name size.

Example 1: When the Variable Name of DstDat Is aaa.bbbbb[1,2,3].cc

• The text string “aaa” in the first level is 3 bytes. It is an odd number, so 1 is
added to make 4 bytes.

• The text string “bbbbb[1,2,3]” in the second level is 5 bytes. It is an odd
number, so 1 is added to make 6 bytes.

• Also bbbbb[1,2,3] is a three-dimensional array, so 3 times 4, or 12, is
added to make 18 bytes.

• The text string “cc” in the third level is 2 bytes. It is an even number, so 2
bytes is used in the calculation.

• If we add the number of levels 3 times 2, or 6, to 4 bytes for the first level,
18 bytes for the second level, and 2 bytes for the third level, the size of the
variable name come to 30 bytes.

Example 2: When the Variable Name of DstDat Is val

• The text string “val” in the first level is 3 bytes. It is an odd number, so 1 is
added to make 4 bytes.

• If we then add the number of levels 1 times 2, or 2, the size of the variable
name is 6 bytes.

Example 3: When the Variable Name of DstDat Is array[8].

• The text string “array” in the first level is 5 bytes. It is an odd number, so 1
is added to make 6 bytes.

• It is a one-dimensional array. Therefore, 1 times 4, or 4, is added.
• If we then add the number of levels 1 times 2, or 2, the size of the variable

name is 12 bytes.

Item in above formula Meaning

2-713

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

C
IP

U
C

M
M

W
rite

* A hop is routing between the sending node and receiving node. For example, if the route path is
02\192.168.250.2\01\#00, the message is first routed to the node with an IP address of 192.168.250.2 to send
the message to unit address 00. This involves one hop.

Refer to the following manuals for details on CIP communications.

• NJ-series CPU Unit Built-in EtherNet/IP Port User’s Manual (Cat. No. W506)

Path information size • If there are no hops, the path information size is 0 bytes.*

• If there are hops, the path information size is the route path size plus 12
bytes.

• The route path size is the bytes size of the ASCII characters in the route
path.

• However, the following precautions apply.
• If the address portion starts with “#”, calculate the network and address

portions as a total of 2 bytes.
• If the address portion does not start with “#”, calculate the network portion

as 2 bytes.
• If the address portion does not start with “#” and the number of bytes in

the ASCII characters for the address portion is an odd number, add 1
byte.

• Do not include the level separator, “\”, between levels of the route path in
the route path size.

• Do not include the first hop in the route path size.

Example 1: When the Route Path Is 01\#11\02\192.168.250.2\01\#01

• The first hop in the route path size is not included, so ignore ‘01\#11’ at
the start of the path.

• The network type is ‘02’, so use 2 bytes in the calculation.
• The address portion is ‘192.168.250.2’, so use 13 bytes in the calculation.

It is an odd number, so 1 is added to make 14 bytes.
• For the following ‘01\#01’, the address portion starts with “#”, so the net-

work and address portions are calculated as a total of 2 bytes.
• If you add all of the above sizes, the size of the route path is 18 bytes.

• If we then add 12 bytes to the route path size, the path information size is
30 bytes.

Example 2: When the Route Path Is 02\192.168.250.2\01\#00

• The first hop in the route path size is not included, so ignore
‘02\192.168.250.2’ at the start of the path.

• For the following ‘01#01’, the address portion starts with “#”, so the net-
work and address portions are calculated as a total of 2 bytes.

• Therefore, the size of the route path is 2 bytes.

• If we then add 12 bytes to the route path size, the path information size is
14 bytes.

Example 3: When the Route Path Is 02\192.168.250.2

• If there are no hops, the path information size is 0 bytes.

Related System-defined Variables

Name Meaning
Data
type

Description

_EIP_EtnOnlineSta Online BOOL Status of built-in EtherNet/IP port communications

TRUE: Can be used.

FALSE: Cannot be used.

Additional Information

Item in above formula Meaning

2 Instruction Descriptions

2-714 NJ-series Instructions Reference Manual (W502)

• CJ-series EtherNet/IP Units Operation Manual for NJ-series CPU Unit (Cat. No. W495)

• Execution of this instruction is continued until processing is completed even if the value of Execute
changes to FALSE or the execution time exceeds the task period. The value of Done changes to
TRUE when processing is completed. Use this to confirm normal completion of processing.

• Refer to Using this Section on page 2-2 for a timing chart for Execute, Done, Busy, and Error.

• You can use this instruction only through a built-in EtherNet/IP port on an NJ-series CPU Unit or a
port on an EtherNet/IP Unit connected to an NJ-series CPU Unit.

• If a variable is written to an OMRON Controller, the variable must be published to the network. Pub-
lish the variable to the network in advance.

• You cannot specify an address in memory for CJ-series Units directly to write data. To write specific
addresses in memory for CJ-series Units, use an AT specification in advance to assign the memory
addresses to a variable.

• You cannot directly specify an address in local memory for CJ-series Units. To write specific
addresses in memory for CJ-series Units, use an AT specification in advance to assign the memory
addresses to SrcDat.

• The characters that can be used in DstDat are specified in the following table.

• An error occurs in the following cases. Error will change to TRUE.

• There is a setting error for the local IP address.

• The text string in RoutePath does not end in a NULL character.

• The value of TimeOut is outside of the valid range.

• The value of Size is outside of the valid range.

• The value of SrcDat is outside of the valid range.

• For this instruction, expansion error code ErrorIDEx gives the CIP message error code. The mean-
ings are as follows:

Precautions for Correct Use

Item Specification
Maximum num-
ber of bytes

127 bytes

Character code UTF-8

Applicable char-
acters

Alphanumeric characters (not case sensitive), single-byte Katakana, multibyte characters,
and ‘_’ (underbars)

Prohibited text
strings

• Any text string that starts with ASCII characters 0 to 9 (character codes 16#30 to 16#39)

• A text string that consists of only a single _ (underbar) ASCII character
• Any text string that includes two or more consecutive _ (underbar) ASCII characters

• Any text string that starts with an _ (underbar) ASCII character

• Any text string that ends with an _ (underbar) ASCII character
• Any text string that starts with “P_”

Value Error
16#02000000 Normal communications are not possible due to a high load at the remote node.
16#05000000 The specified destination variable does not exist on the other Controller.

16#0C008010 The specified destination variable is being downloaded.

16#0C008011
16#1F000102 The specified destination variable has a Constant attribute, so it cannot be written.

16#20008017 The specified destination variable is not an array and the number of elements to write is not 1.

16#20008018 The specified destination variable is an array and the number of elements to write exceeds the
number of elements in the array.

2-715

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

C
IP

U
C

M
M

W
rite

Refer to the sample programming that is provided for the CIPUCMMSend instruction (page 2-716).

16#20008028 • The specified destination variable is an enumeration and the write data is not the value of an
enumerator.

• The specified destination variable has a Range Specification attribute and the write data is
out of range.

16#26000000 The specified destination variable name is only the NULL character.

Sample Programming

Value Error

2 Instruction Descriptions

2-716 NJ-series Instructions Reference Manual (W502)

CIPUCMMSend

The CIPUCMMSend instruction sends a UCMM CIP message to a specified device on a CIP network.

* If you omit an input parameter, the default value is not applied. A building error will occur.

Instruction Name
FB/
FUN

Graphic expression ST expression

CIPUCMM
Send

Send Explicit
Message
UCMM

FB CIPUCMMSend_instance(Execute,
RoutePath, TimeOut, ServiceCode,
RqPath, ServiceDat, Size,
RespServiceDat, Done, Busy, Error,
ErrorID, ErrorIDEx, RespSize);

Variables

Name Meaning I/O Description Valid range Unit Default
RoutePath Route path

Input

Route path Depends on data type. --- ---

TimeOut Timeout time Timeout time 1 to 65535 0.1 s 20
(2.0 s)

ServiceCode Service code Service code Depends on data type.

---RqPath Request path Request path (class ID,
instance ID, attribute ID)

ServiceDat Command
data

Data to send

Depends on data type.

*

Size Number of
elements to
send

Number of elements to send 1

RespServiceD
at

Response
data

In-out Response data Depends on data type. --- ---

RespSize Response
size

Output Response data size Depends on data type. Bytes ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

RoutePath
OK

TimeOut OK

Service
Code

OK

ReqPath Refer to Function for details on the structure _sREQUEST_PATH.

ServiceDat
OK OK OK OK OK OK OK OK OK OK OK OK OK OK

An array, structure member, or union member can also be specified.

Size OK

CIPUCMMSend

CIPUCMMSend_instance

Execute Done
RoutePath Busy
TimeOut Error
ServiceCode ErrorID
RqPath ErrorIDEx
ServiceDat RespSize
Size
RespServiceDat

2-717

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

C
IP

U
C

M
M

S
end

The CIPUCMMSend instruction sends command data ServiceDat for the service specified with service
code ServiceCode as a UCMM explicit message.
The destination is specified with route path RoutePath.
RqPath specifies the request path.

Size specifies the number of elements to send. If ServiceDat is an array, specify the number of ele-
ments to send with Size. If ServiceDat is not an array, always specify 1 for Size. If no service data is
required, set Size to 0.

The response data received later is stored in RespServiceDat. The number of bytes of the response
data is stored in RespSize.

TimeOut specifies the timeout time. If a response does not return within the timeout time, it is assumed
that communications failed.

The data type of RqPath is structure _sREQUEST_PATH. The specifications are as follows:

If the value of ErrorID is WORD#16#1C00, the CIP message error code is stored in ErrorIDEx. The
meaning and values of ErrorIDEx depend on the remote node. Refer to the manual for the remote node.

If ServiceDat or RespServiceDat is an array, pass a subscripted array element to it as the parameter.

You can read a maximum of 492 bytes of data. The maximum size of the data that you can write
depends on whether there is a request path attribute and the route path that is used, as given below.

Maximum write data size [bytes] = Base size − Attribute usage − Path information size

RespSer-
viceDat

OK OK OK OK OK OK OK OK OK OK OK OK OK OK

An array, structure member, or union member can also be specified.

RespSize OK

Function

Name Meaning Description Data type Valid range Unit Default
RqPath Request path Request path (class ID,

instance ID, attribute ID)
sREQUEST
PATH

--- --- ---

ClassID Class ID Class ID UINT

Depends on
data type.

0
InstanceID Instance ID Instance ID UINT

isAttributeID Attribute
usage

TRUE:Attribute ID used.

FALSE:Attribute ID not
used.

BOOL FALSE

AttributeID Attribute ID Attribute ID UINT 0

Sending and Receiving Arrays

Maximum Read/Write Data Size

Item in above formula Meaning

Base size 500 bytes

Attribute usage Attribute ID used: 12 bytes

Attribute ID not used: 8 bytes

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

2 Instruction Descriptions

2-718 NJ-series Instructions Reference Manual (W502)

* A hop is routing between the sending node and receiving node. For example, if the route path is
02\192.168.250.2\01\#00, the message is first routed to the node with an IP address of 192.168.250.2 to send
the message to unit address 00. This involves one hop.

Refer to the following manuals for details on CIP communications.

• NJ-series CPU Unit Built-in EtherNet/IP Port User’s Manual (Cat. No. W506)

Path information size • If there are no hops, the path information size is 0 bytes.*

• If there are hops, the path information size is the route path size plus 12
bytes.

• The route path size is the bytes size of the ASCII characters in the route
path.

• However, the following precautions apply.
• If the address portion starts with “#”, calculate the network and address

portions as a total of 2 bytes.
• If the address portion does not start with “#”, calculate the network portion

as 2 bytes.
• If the address portion does not start with “#” and the number of bytes in

the ASCII characters for the address portion is an odd number, add 1
byte.

• Do not include the level separator, “\”, between levels of the route path in
the route path size.

• Do not include the first hop in the route path size.

Example 1: When the Route Path Is 01\#11\02\192.168.250.2\01\#01

• The first hop in the route path size is not included, so ignore ‘01\#11’ at
the start of the path.

• The network type is ‘02’, so use 2 bytes in the calculation.
• The address portion is ‘192.168.250.2’, so use 13 bytes in the calculation.

It is an odd number, so 1 is added to make 14 bytes.
• For the following ‘01\#01’, the address portion starts with “#”, so the net-

work and address portions are calculated as a total of 2 bytes.
• If you add all of the above sizes, the size of the route path is 18 bytes.

• If we then add 12 bytes to the route path size, the path information size is
30 bytes.

Example 2: When the Route Path Is 02\192.168.250.2\01\#00

• The first hop in the route path size is not included, so ignore
‘02\192.168.250.2’ at the start of the path.

• For the following ‘01#01’, the address portion starts with “#”, so the net-
work and address portions are calculated as a total of 2 bytes.

• Therefore, the size of the route path is 2 bytes.

• If we then add 12 bytes to the route path size, the path information size is
14 bytes.

Example 3: When the Route Path Is 02\192.168.250.2

• If there are no hops, the path information size is 0 bytes.

Related System-defined Variables

Name Meaning
Data
type

Description

_EIP_EtnOnlineSta Online BOOL Status of built-in EtherNet/IP port communications

TRUE: Can be used.

FALSE: Cannot be used.

Additional Information

Item in above formula Meaning

2-719

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

C
IP

U
C

M
M

S
end

• CJ-series EtherNet/IP Units Operation Manual for NJ-series CPU Unit (Cat. No. W495)

• Execution of this instruction is continued until processing is completed even if the value of Execute
changes to FALSE or the execution time exceeds the task period. The value of Done changes to
TRUE when processing is completed. Use this to confirm normal completion of processing.

• Refer to Using this Section on page 2-2 for a timing chart for Execute, Done, Busy, and Error.

• You can use this instruction only through a built-in EtherNet/IP port on an NJ-series CPU Unit or a
port on an EtherNet/IP Unit connected to an NJ-series CPU Unit.

• If a variable is written to an OMRON Controller, the variable must be published to the network. Pub-
lish the variable to the network in advance.

• An error occurs in the following cases. Error will change to TRUE.

• There is a setting error for the local IP address.

• The text string in RoutePath does not end in a NULL character.

• The value of TimeOut is outside of the valid range.

• The value of ServiceCode is outside of the valid range.

• The value of a member of RqPath is outside of the valid range.

• The value of Size is outside of the valid range.

This sample uses CIP UCMM messages to write a variable, read a variable, and send a message. The
Controllers are connected to an EtherNet/IP network. The IP address of the remote node is
192.168.250.2.
The following procedure is used.

1 The CIPUCMMWrite instruction is used to write the value of a variable at a remote node. The
variable name at the remote node is WritingDat and the contents of the WriteDat is written to it.
WritingDat must be defined as a global variable at the remote node and the Network Publish
attribute must be set.

2 The CIPUCMMRead instruction is used to read the value of a variable at a remote node. The
value of the variable OriginalDat at the other node is read and the read value is stored in the
ReadDat variable. OriginalDat must be defined as a global variable at the remote node and the
Network Publish attribute must be set.

3 The CIPUCMMSend instruction is used to send an explicit message to a remote node. The con-
tents of the message is to read identity information (product name). The class ID, instance ID,
attribute ID, and service code are as follows: The response data is stored in the ResDat vari-
able.

Precautions for Correct Use

Sample Programming

Item Value

Class ID 1

Instance ID 1

Attribute ID 7

Service code 16#0E

2 Instruction Descriptions

2-720 NJ-series Instructions Reference Manual (W502)

Built-in EtherNet/IP port Built-in EtherNet/IP port

IP address: 192.168.250.2

Value of variable written.
WriteDat

Message sent to read identity
information (product name).

ResDat

Value of variable read.

Response

ReadDat

Variable name: WritingDat,
global variable with a
Network Publish attribute

Variable name: OriginalDat,
global variable with a
Network Publish attribute

2-721

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

C
IP

U
C

M
M

S
end

LD

OperatingEnd
Trigger
Operating
WriteDat
ReadDat
ReqPath

ResDat
Dummy
RS_instance
CIPUCMMWrite_instance
CIPUCMMRead_instance
CIPUCMMSend_instance

False
False
False
1234
0
(ClassID:=0, InstanceID:=0,
isAttributeID:=False, AttributeID:=0)
[11(16#0)]
16#0

BOOL
BOOL
BOOL
INT
INT
_sREQUEST_PATH

ARRAY[0..10] OF BYTE
BYTE
RS
CIPUCMMWrite
CIPUCMMRead
CIPUCMMSend

Determine if instruction execution is completed.

Processing completed
Execution condition
Processing
Write data
Read data
Request path

Response data
Dummy

Accept trigger.

Variable Data type Initial value Comment

CIPUCMMWrite_instance.Done

CIPUCMMWrite_instance.Busy

CIPUCMMRead_instance.Done OperatingEnd

Operating

OperatingEnd

CIPUCMMWrite_instance.Error

CIPUCMMRead_instance.Error

CIPUCMMSend_instance.Error

CIPUCMMSend_instance.Done

Trigger

RS
 Set Q1
 Reset1

RS_instance

CIPUSMMRead_instance.Busy CIPUCMMSend_instance.Busy

1

1

2 Instruction Descriptions

2-722 NJ-series Instructions Reference Manual (W502)

Instruction execution
Operating

 CIPUCMMRead_instance.Done

 CIPUCMMWrite_instance.Done

 ‘02\192.168.250.2’
 UINT#20
 ‘WritingDat’
 UINT#1
 WriteDat

 ‘02\192.168.250.2’
 UINT#20
 ‘OriginalDat’
 UINT#1

 ReadDat

 ‘02\192.168.250.2’
 UINT#20
 BYTE#16#0E
 ReqPath
 Dummy
 UINT#0

 ResDat

 ReadDat

 UINT#1 ReqPath.ClassID

@MOVE
EN ENO
In Out

 UINT#1 ReqPath.InstanceID

@MOVE
EN ENO
In Out

 TRUE ReqPath.isAttributeID

@MOVE
EN ENO
In Out

 UINT#7 ReqPath.AttributeID

@MOVE
EN ENO
In Out

CIPUCMMWrite

CIPUCMMWrite_instance

Execute Done
RoutePath Busy
TimeOut Error
DstDat ErrorID
Size ErrorIDEx
SrcDat

CIPUCMMRead

CIPUCMMRead_instance

Execute Done
RoutePath Busy
TimeOut Error
SrcDat ErrorID
Size ErrorIDEx
DstDat

 RcvSize

CIPUCMMSend

CIPUCMMSend_instance

Execute Done
RoutePath Busy
TimeOut Error
ServiceCode ErrorID
RqPath ErrorIDEx
ServiceDat RespSize
Size
RespServiceDat

2-723

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

C
IP

U
C

M
M

S
end

Operating CIPUCMMSend_instance.Done

CIPUCMMWrite_instance.Error

Processing after normal end
Inline ST

Inline ST

1 // Processing after normal end
2 ;

Operating

Processing after error end

CIPUCMMRead_instance.Error

CIPUCMMSend_instance.Error

1 // Processing after error end
2 ;

2 Instruction Descriptions

2-724 NJ-series Instructions Reference Manual (W502)

ST

IF ((Trigger=TRUE) AND (DoUCMMTrigger=FALSE) AND (_Eip_EtnOnlineSta=TRUE)) THEN
 DoUCMMTrigger:=TRUE;
 Stage :=INT#1;
 CIPUCMMWrite_instance(
 Execute :=FALSE,
 SrcDat :=WriteDat);
 CIPUCMMRead_instance(
 Execute :=FALSE,
 DstDat :=ReadDat);
 CIPUCMMSend_instance(
 Execute :=FALSE,
 ServiceDat := Dummy,
 RespServiceDat:=ResDat);
END_IF;

IF (DoUCMMTrigger=TRUE) THEN
 CASE Stage OF
 1 :
 CIPUCMMWrite_instance(
 Execute :=TRUE,
 RoutePath:='02\192.168.250.2',
 TimeOut :=UINT#20,
 DstDat :='WritingDat',
 Size :=UINT#1,
 SrcDat :=WriteDat);

 IF (CIPUCMMWrite_instance.Done=TRUE) THEN
 Stage:=INT#2;
 ELSIF (CIPUCMMWrite_instance.Error=TRUE) THEN
 Stage:=INT#10;
 END_IF;

 2 :
 CIPUCMMRead_instance(
 Execute :=TRUE,
 RoutePath:='02\192.168.250.2',
 TimeOut :=UINT#20,
 SrcDat :='OriginalDat',
 Size :=UINT#1,
 DstDat :=ReadDat);

 IF (CIPUCMMRead_instance.Done=TRUE) THEN
 Stage:=INT#3;
 ELSIF (CIPUCMMRead_instance.Error=TRUE) THEN
 Stage:=INT#40;
 END_IF;

// Start sequence when Trigger changes to TRUE.

// Request writing value of variable.

// Normal end

// Error end

// Route path
// Timeout time
// Source variable name
// Number of elements to write
// Write data

// Initialize instance.
// Dummy

// Initialize instance.
// Dummy
// Dummy

// Initialize instance.
// Dummy
// Dummy

Trigger
DoUCMMTrigger
Stage
WriteDat
ReadDat
ReqPath

ResDat
Dummy
CIPUCMMWrite_instance
CIPUCMMRead_instance
CIPUCMMSend_instance

False
False
0
0
0
(ClassID:=0, InstanceID:=0,
isAttributeID:=False, AttributeID:=0)
[11(16#0)]
16#0

BOOL
BOOL
INT
INT
INT
_sREQUEST_PATH

ARRAY[0..10] OF BYTE
BYTE
CIPUCMMWrite
CIPUCMMRead
CIPUCMMSend

Execution condition
Processing
Stage change
Write data
Read data
Request path

Response data
Dummy

// Normal end

// Error end

// Route path
// Timeout time
// Source variable name
// Number of elements to read
// Read data

// Request reading value of variable.

_EIP_EtnOnlineSta BOOL

Variable Data type Initial value Comment

ConstantVariable Data type Comment

Internal
Variables

External
Variables

Online

2-725

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

C
IP

U
C

M
M

S
end

 3 :
 ReqPath.ClassID :=UINT#01;
 ReqPath.InstanceID :=UINT#01;
 ReqPath.isAttributeID:=TRUE;
 ReqPath.AttributeID :=UINT#07;
 CIPUCMMSend_instance(
 Execute :=TRUE,
 RoutePath :='02\192.168.250.2',
 TimeOut :=UINT#20,
 ServiceCode :=BYTE#16#0E,
 RqPath :=ReqPath,
 ServiceDat := Dummy,
 Size :=UINT#0,
 RespServiceDat:=ResDat);

 IF (CIPUCMMSend_instance.Done=TRUE) THEN
 Stage:=INT#0;
 ELSIF (CIPUCMMSend_instance.Error=TRUE) THEN
 Stage:=INT#30;
 END_IF;

 0:
 DoUCMMTrigger:=FALSE;
 Trigger :=FALSE;

 ELSE
 DoUCMMTrigger:=FALSE;
 Trigger :=FALSE;
 END_CASE;
END_IF;

// Processing after normal end

// Processing after error end

// Normal end

// Error end

// Send message

// Route path
// Timeout time
// Service code
// Request path
// Service data
// Number of elements
// Response data

2 Instruction Descriptions

2-726 NJ-series Instructions Reference Manual (W502)

EC_CoESDOWrite

The EC_CoESDOWrite instruction writes a value to a CoE* object of a specified slave on an EtherCAT
network.

* CoE stands for CAN Application Protocol over EtherCAT.

Instruction Name
FB/
FUN

Graphic expression ST expression

EC_CoESDO
Write

Write Ether-
CAT CoE SDO

FB EC_CoESDOWrite_instance(Execute,
NodeAdr, SdoObj, TimeOut, WriteDat,
WriteSize, Done, Busy, Error, ErrorID,
AbortCode);

Variables

Name Meaning I/O Description Valid range Unit Default
NodeAdr Slave node

address

Input

Node address of the slave to
access

1 to 192

--- ---
SdoObj SDO parame-

ter
SDO parameter ---

TimeOut Timeout time 0: 2.0s
1 to 65535: 0.1 to 6553.5 s Depends on data

type.
0.1 s

20
(2.0 s)

WriteDat Write data Write data ---

---WriteSize Write data
size

Write data size 1 to 2048
Bytes

AbortCode Abort code Output Response code for SDO
access specified by CoE
0: Normal end

Depends on data
type.

--- ---
B

o
o

lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

NodeAdr OK

SdoObj Refer to Function for details on the structure _sSDO_ACCESS.

TimeOut OK

WriteDat
OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

An enumeration, array, array element, structure, structure member, or union member can also be specified.

WriteSize OK

AbortCode OK

EC_CoESDOWrite

Execute Done
NodeAdr Busy
SdoObj Error
TimeOut ErrorID
WriteDat AbortCode
WriteSize

EC_CoESDOWrite_instance

2-727

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

E
C

_C
oE

S
D

O
W

rite

The EC_CoESDOWrite instruction writes data to the CoE object of the node specified with slave node
address NodeAdr. The content of WriteDat is written to the object. The number of bytes of data to write
is specified with WriteSize. The SDO parameter is specified with SdoObj.

The data type of SdoObj is structure _sSDO_ACCESS. The specifications are as follows:

After the write is completed, the instruction waits for the response for the time specified with timeout
time TimeOut. The response is stored in AbortCode. AbortCode is 0 for a normal response. A value is
stored in AbortCode only when the value of ErrorID is 16#1804 (SDO abort response).
The meaning and values of AbortCode depend on the slave. Refer to the manual for the slave.

The following figure shows a timing chart. A value is stored in AbortCode when Busy changes to FALSE
after the completion of instruction processing.

• Refer to the NJ-series CPU Unit Built-in EtherCAT Port User’s Manual (Cat. No. W505) for details on
EtherCAT communications.

• Refer to A-4 SDO Abort Codes on page A-47 for the SDO abort codes.

Function

Name Meaning Description Data type Valid range Unit Default
SdoObj SDO

parameter
SDO parameter _sSDO_

ACCESS
--- --- ---

Index Index Index number in the
object dictionary defined
in CoE

UINT
1 to 65535

--- ---

Subindex Subindex Subindex number in the
object dictionary defined
in CoE

USINT

Depends on
data type.

IsCompleteAccess Complete
access

Specification of com-
plete access of SDO

TRUE: Access data for
all subindexes

FALSE: Access data for
the specified subindex

BOOL

Related System-defined Variables

Name Meaning Data type Description
_EC_MBXSlavTbl[i]

“i” is the node address.

Message Communica-
tions Enabled Slave
Table

BOOL This variable indicates when communications are
possible for each slave.

TRUE: Communications are possible.

FALSE: Communications are not possible.

Additional Information

TRUE
FALSE

Task periodTRUE
FALSE

TRUE
FALSE

Execute

Busy

Done

AbortCode Cleared to 0. Updated to result.

2 Instruction Descriptions

2-728 NJ-series Instructions Reference Manual (W502)

• Execution of this instruction is continued until processing is completed even if the value of Execute
changes to FALSE or the execution time exceeds the task period. The value of Done changes to
TRUE when processing is completed. Use this to confirm normal completion of processing.

• Refer to Using this Section on page 2-2 for a timing chart for Execute, Done, Busy, and Error.

• This instruction can be used only for the NJ-series EtherCAT ports.

• An error occurs in the following cases. Error will change to TRUE.

• The EtherCAT master is not in a state that allows message communications.

• The slave specified with NodeAdr does not exist.

• The slave specified with NodeAdr is not in a state that allows communications.

• The slave returns an error response.

Precautions for Correct Use

2-729

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

E
C

_C
oE

S
D

O
R

ead

EC_CoESDORead

The EC_CoESDORead instruction reads a value from a CoE* object of a specified slave on an Ether-
CAT network.

* CoE stands for CAN Application Protocol over EtherCAT.

Instruction Name
FB/
FUN

Graphic expression ST expression

EC_CoESDOR
ead

Read EtherCAT
CoE SDO

FB EC_CoESDORead_instance(Execute,
NodeAdr, SdoObj, TimeOut, ReadDat,
Done, Busy, Error, ErrorID, AbortCode,
ReadSize);

Variables

Name Meaning I/O Description Valid range Unit Default
NodeAdr Slave node

address

Input

Node address of the slave to
access

1 to 192

--- ---
SdoObj SDO parame-

ter
SDO parameter ---

TimeOut Timeout time 0: 2.0s
1 to 65535: 0.1 to 6553.5 s

Depends on data
type.

0.1 s 0
(2.0 s)

AbortCode Abort code

Output

Response code for SDO
access specified by CoE
0: Normal end Depends on data

type.

ReadSize Read data
size

Size of data stored in ReadDat
after the data is read

Bytes

ReadDat Read data In-out Read data buffer Depends on data
type.

--- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

NodeAdr OK

SdoObj Refer to Function for details on the structure _sSDO_ACCESS.

TimeOut OK

AbortCode OK

ReadSize OK

ReadDat
OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

An enumeration, array, array element, structure, structure member, or union member can also be specified.

EC_CoESDORead

Execute Done
NodeAdr Busy
SdoObj Error
TimeOut ErrorID
ReadDat

 AbortCode
 ReadSize

EC_CoESDORead_instance

2 Instruction Descriptions

2-730 NJ-series Instructions Reference Manual (W502)

The EC_CoESDORead instruction reads data from the CoE object of the node specified with slave
node address NodeAdr. The read data is stored in ReadDat. Then size of data that was stored is stored
in ReadSize. The value of ReadSize is valid only when the data was stored successfully.
The SDO parameter is specified with SdoObj.

The data type of SdoObj is structure _sSDO_ACCESS. The specifications are as follows:

After the read is completed, the instruction waits for the response for the time specified with timeout
time TimeOut. The response is stored in AbortCode. AbortCode is 0 for a normal response. A value is
stored in AbortCode only when the value of ErrorID is 16#1804 (SDO abort response).
The meaning and values of AbortCode depend on the slave. Refer to the manual for the slave.

The following figure shows a timing chart. A value is stored in AbortCode when Busy changes to FALSE
after the completion of instruction processing.

• Refer to the NJ-series CPU Unit Built-in EtherCAT Port User’s Manual (Cat. No. W505) for details on
EtherCAT communications.

• Refer to A-4 SDO Abort Codes on page A-47 for the SDO abort codes.

Function

Name Meaning Description Data type Valid range Unit Default
SdoObj SDO parame-

ter
SDO parameter _sSDO_

ACCESS
--- --- ---

Index Index Index number in the
object dictionary defined
in CoE

UINT 1 to 65535

--- ---

Subindex Subindex Subindex number in the
object dictionary defined
in CoE

USINT

Depends on
data type.

IsCompleteAc-
cess

Complete
access

Specification of com-
plete access of SDO

TRUE:Access data for
all subindexes

FALSE:Access data for
the specified
subindex

BOOL

Related System-defined Variables

Name Meaning Data type Description
_EC_MBXSlaveTbl[i]

“i” is the node address.

Message Communica-
tions Enabled Slave
Table

BOOL This variable indicates when communications are
possible for each slave.

TRUE: Communications are possible.

FALSE: Communications are not possible.

Additional Information

Execute

Busy

Done

AbortCode

TRUE
FALSE

Cleared to 0. Updated to result.

Task periodTRUE
FALSE

TRUE
FALSE

2-731

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

E
C

_C
oE

S
D

O
R

ead

• Execution of this instruction is continued until processing is completed even if the value of Execute
changes to FALSE or the execution time exceeds the task period. The value of Done changes to
TRUE when processing is completed. Use this to confirm normal completion of processing.

• Refer to Using this Section on page 2-2 for a timing chart for Execute, Done, Busy, and Error.

• This instruction can be used only for the NJ-series EtherCAT ports.

• An error occurs in the following cases. Error will change to TRUE.

• The EtherCAT master is not in a state that allows message communications.

• The slave specified with NodeAdr does not exist.

• The slave specified with NodeAdr is not in a state that allows communications.

• The slave returns an error response.

• The read data size is larger than the size of ReadDat.

This sample uses an EtherCAT SDO message to read the software version of an OMRON V1.02 R88D-
KN01L-ECT Servo Drive. The node address of the slave is 1.
The object index for the software version is 16#100A. The subindex is 0. The read value is stored in
STRING variable VersionInfo.

Precautions for Correct Use

Sample Programming

Built-in EtherCAT port

SDO read

Remote slave node address 1

Object Dictionary Settings
Index: 16#100A
Subindex 0

2 Instruction Descriptions

2-732 NJ-series Instructions Reference Manual (W502)

Variable Data type Initial value Comment

LD

Trigger
SdoObject

VersionInfo
EC_CoESDORead_instance

False
(Index:=0, Subindex:=0,
 IsCompleteAccess:=False)
‘’

BOOL
_sSDO_ACCESS

STRING[256]
EC_CoESDORead

Trigger

UINT#16#100A SdoObject.Index

_EC_MBXSlavTbl[1]

Inline ST

Inline ST

Trigger EC_CoESDORead_instance.Done

EC_CoESDORead_instance.Error

1 // Processing after normal end
2 ;

Trigger
1 // Processing after error end
2 ;

@MOVE
EN ENO
In Out

USINT#0

UINT#1

UINT#20

SdoObject.Subindex

SdoObject

@MOVE
EN ENO
In Out

FALSE

VersionInfo

SdoObject.IsComleteAccess

@MOVE
EN ENO
In Out

_EC_MBXSlavTbl ARRAY[1..192] OF BOOL

EC_CoESDORead

Execute Done
NodeAdr Busy
SdoObj Error
TimeOut ErrorID
ReadDat

 AbortCode
 ReadSize

EC_CoESDORead_instance

Internal
Variables

External
Variables Variable Data type CommentConstant

Execution condition
SDO parameter

Read data

Accept trigger.

Processing after normal end

Processing after error end

Message Communications Enabled Slave Table

2-733

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

E
C

_C
oE

S
D

O
R

ead

Execution condition
SDO parameter

Processing
Read data
Normal end
Error end

Variable Data type Initial value Comment

ST

IF ((Trigger=TRUE) AND (DoSdoRead=FALSE) AND (_EC_MBXSlavTbl[1]=TRUE)) THEN
 DoSdoRead :=TRUE;
 SdoObject.Index :=UINT#16#100A;
 SdoObject.Subindex :=USINT#0;
 SdoObject.IsCompleteAccess:=FALSE;
 EC_CoESDORead_instance(
 Execute:=FALSE,
 ReadDat:=VersionInfo);
END_IF;

IF (DoSdoRead=TRUE) THEN
 EC_CoESDORead_instance(
 Execute :=TRUE,
 NodeAdr :=UINT#1,
 SdoObj :=SdoObject,
 TimeOut :=UINT#20,
 ReadDat:=VersionInfo);

 IF (EC_CoESDORead_instance.Done=TRUE) THEN

 NormalEnd:=NormalEnd+UINT#1;
 ELSIF (EC_CoESDORead_instance.Error=TRUE) THEN

 ErrorEnd :=ErrorEnd+UINT#1;
 END_IF;

 DoSdoRead:=FALSE;
END_IF;

// Detect when Trigger changes to TRUE.

// Execute EC_CoESDORead instruction.

// Initialize instance.
// Dummy

// Node address 1
// SDO parameter
// Timeout time: 2.0 s
// Read data

// Processing after normal end

// Processing after error end

Trigger
SdoObject

DoSdoRead
VersionInfo
NormalEnd
ErrorEnd
EC_CoESDORead_instance

False
(Index:=0, Subindex:=0,
 IsCompleteAccess:=False)
False
‘’
0
0

BOOL
_sSDO_ACCESS

BOOL
STRING[256]
UINT
UINT
EC_CoESDORead

_EC_MBXSlavTbl ARRAY[1..192] OF BOOL

Constant

Internal
Variables

External
Variables Variable Data type Comment

Message Communications Enabled Slave Table

2 Instruction Descriptions

2-734 NJ-series Instructions Reference Manual (W502)

EC_StartMon

The EC_StartMon instruction starts execution of packet monitoring for EtherCAT communications.

Only common variables are used.

The EC_StartMon instruction starts execution of packet monitoring for EtherCAT communications. The
packet monitor function collects a specified number of the most recent EtherCAT communications pack-
ets. When the specified number of packets is exceeded, old packets are discarded in order. After the
EC_StartMon instruction is executed, packet monitoring continues until the EC_StopMon instruction is
executed.

• You cannot save collected packet data in an internal file of the main memory of the CPU Unit during
ECATStartMonitor execution.

• Do the following to save packet data in an internal file in the main memory of the CPU Unit: First, exe-
cute the EC_StopMon instruction to stop packet monitoring. Then execute the EC_SaveMon instruc-
tion to save the packets.

• Refer to the NJ-series CPU Unit Built-in EtherCAT Port User’s Manual (Cat. No. W505) for details on
EtherCAT communications.

Instruction Name
FB/
FUN

Graphic expression ST expression

EC_StartMon Start EtherCAT
Packet Monitor

FB EC_SatrtMon_instance(Execute, Done,
Busy, Error, ErrorID);

Variables

Function

Related System-defined Variables

Name Meaning Data type Description
_EC_PktMonStop Packet Monitoring

Stopped
BOOL This variable shows if packet monitoring is stopped.

TRUE: Stopped.

FALSE: Not stopped.

_EC_PktSaving Saving Packet Data
File

BOOL This variable shows if the instruction is saving packet
data in an internal file in the main memory of the CPU
Unit.

TRUE: Saving.

FALSE: Not saving.

Additional Information

EC_StartMon

Execute Done
 Busy
 Error
 ErrorID

EC_StartMon_instance

2-735

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

E
C

_S
tartM

on

• Execution of this instruction is continued until processing is completed even if the value of Execute
changes to FALSE or the execution time exceeds the task period. The value of Done changes to
TRUE when processing is completed. Use this to confirm normal completion of processing.

• Refer to Using this Section on page 2-2 for a timing chart for Execute, Done, Busy, and Error.

• This instruction can be used only for the NJ-series EtherCAT ports.

• An error occurs in the following case. Error will change to TRUE.

• A packet data save operation to an internal file in the main memory of the CPU Unit is in progress.

This sample transfers EtherCAT communications packets to an SD Memory Card when an EtherCAT
slave error occurs. The file name is ‘PacketFile.’ The processing procedure is as follows:

1 The system-defined variable _EC_ErrSta (EtherCAT Error) is monitored and processing is
started if an error occurs.

2 The EC_StopMon instruction is used to stop execution of packet monitoring for EtherCAT com-
munications.

3 The EC_SaveMon instruction is used to save EtherCAT communications packet data to an inter-
nal file in the main memory of the CPU Unit.

4 The EC_CopyMon instruction is used to copy that file to the SD Memory Card.

5 The EC_StartMon instruction is used to restart execution of packet monitoring for EtherCAT
communications.

Precautions for Correct Use

Sample Programming

2 Instruction Descriptions

2-736 NJ-series Instructions Reference Manual (W502)

Processing completed
Execution condition

Variable Data type Initial value Comment

LD

OperatingEnd
Operating
RS_instance
EC_StopMon_instance
EC_SaveMon_instance
EC_CopyMon_instance
EC_StartMon_instance

False
False

BOOL
BOOL
RS
EC_StopMon
EC_SaveMon
EC_CopyMon
EC_StartMon

Determine if instruction execution is completed.

Monitor for EtherCAT errors.

_EC_ErrSta
_EC_PktMonStop
_EC_PktSaving
_Card1Ready

WORD
BOOL
BOOL
BOOL

Constant

Internal
Variables

External
Variables Variable Data type Comment

Built-in EtherCAT Error
Packet Monitoring Stopped
Saving Packet Data File
SD Memory Card Ready Flag

EC_StartMon_instance.Done

EC_StopMon_instance.Error

_EC_PktMonStop

OperatingEnd

Operating

OperatingEnd

 _EC_ErrSta
WORD#16#00

EC_SaveMon_instance.Error

EC_CopyMon_instance.Error

EC_StartMon_instance.Error

RS
 Set Q1
 Reset1

RS_instance

<>
EN
In1
In2

Up
In

EC_StopMon_instance.Busy

EC_SaveMon_instance.Busy EC_CopyMon_instance.Busy

_EC_PktSaving

EC_StartMon_instance.Busy

1

2

2

1

2-737

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

E
C

_S
tartM

on

Inline ST
Processing after normal end

1 // Processing after normal end
2 ;

Instruction execution

Operating

Operating _Card1Ready EC_StopMon
Execute Done
 Busy
 Error
 ErrorID

EC_StopMon_instance
EC_SaveMon

Execute Done
 Busy
 Error
 ErrorID

EC_SaveMon_instance

‘PacketFile’

EC_CopyMon

Execute Done
FileName Busy
 Error
 ErrorID

EC_CopyMon_instance
EC_StartMon

Execute Done
 Busy
 Error
 ErrorID

EC_StartMon_instance

3

3

2 Instruction Descriptions

2-738 NJ-series Instructions Reference Manual (W502)

Controller error in the EtherCAT Master Function Module.
Detect when EC_Err changes to TRUE.
Processing
Stage change

Variable Data type Initial value Comment

ST

EC_Err:=(_EC_ErrSta <> WORD#16#00);
R_TRIG_instance(Clk:=EC_Err, Q=>EC_Err_Trigger);

IF ((EC_Err_Trigger=TRUE) AND (DoEC_PktSave=FALSE) AND (_EC_PktMonStop=FALSE)
 AND (_EC_PktSaving=FALSE) AND (_Card1Ready=TRUE)) THEN
 DoEC_PktSave:=TRUE;
 Stage :=INT#1;
 EC_StopMon_instance(Execute:=FALSE);
 EC_SaveMon_instance(Execute:=FALSE);
 EC_CopyMon_instance(Execute:=FALSE);
 EC_StartMon_instance(Execute:=FALSE);
END_IF;

IF (DoEC_PktSave=TRUE) THEN
 CASE Stage OF
 1 :
 EC_StopMon_instance(
 Execute :=TRUE);

 IF (EC_StopMon_instance.Done=TRUE) THEN
 Stage:=INT#2;
 ELSIF (EC_StopMon_instance.Error=TRUE) THEN
 Stage:=INT#10;
 END_IF;

 2 :
 EC_SaveMon_instance(
 Execute :=TRUE);

 IF (EC_SaveMon_instance.Done=TRUE) THEN
 Stage:=INT#3;
 ELSIF (EC_SaveMon_instance.Error=TRUE) THEN
 Stage:=INT#20;
 END_IF;

 3 :
 EC_CopyMon_instance(
 Execute :=TRUE,
 FileName:=’PacketFile’);

 IF (EC_CopyMon_instance.Done=TRUE) THEN
 Stage:=INT#4;
 ELSIF (EC_CopyMon_instance.Error=TRUE) THEN
 Stage:=INT#30;
 END_IF;

// Start sequence when _EC_ErrSta changes to TRUE.

// Instruction execution

// Stop EtherCAT packet monitor.

// Save EtherCAT packet data in an internal file.

// Copy EtherCAT packet data file to the SD Memory Card.

// Normal end

// Error end

// Normal end

// Error end

// Normal end

// Error end

// Initialize instance.

EC_Err
EC_Err_Trigger
DoEC_PktSave
Stage
R_TRIG_instance
EC_StopMon_instance
EC_SaveMon_instance
EC_CopyMon_instance
EC_StartMon_instance

False
False
False
0

BOOL
BOOL
BOOL
INT
R_TRIG
EC_StopMon
EC_SaveMon
EC_CopyMon
EC_StartMon

_EC_ErrSta
_EC_PktMonStop
_EC_PktSaving
_Card1Ready

WORD
BOOL
BOOL
BOOL

Constant

Internal
Variables

External
Variables Variable Data type Comment

Built-in EtherCAT Error
Packet Monitoring Stopped
Saving Packet Data File
SD Memory Card Ready Flag

2-739

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

E
C

_S
tartM

on

 4 :
 EC_StartMon_instance(
 Execute :=TRUE);

 IF (EC_StartMon_instance.Done=TRUE) THEN
 Stage:=INT#0;
 ELSIF (EC_StartMon_instance.Error=TRUE) THEN
 Stage:=INT#40;
 END_IF;

 0 :
 DoEC_PktSave:=FALSE;

 ELSE
 DoEC_PktSave:=FALSE;
 END_CASE;
END_IF;

// Processing after normal end

// Processing after error end

// Restart EtherCAT packet monitor.

// Normal end

// Error end

2 Instruction Descriptions

2-740 NJ-series Instructions Reference Manual (W502)

EC_StopMon

The EC_StopMon instruction stops execution of packet monitoring for EtherCAT communications.

Only common variables are used.

The EC_StopMon instruction stops execution of packet monitoring for EtherCAT communications. The
packet monitor function collects a specified number of the most recent EtherCAT communications pack-
ets.

• Do the following to save collected packet data in an internal file in the main memory of the CPU Unit:
First, stop packet monitoring. Then execute the EC_SaveMon instruction to save the packets.

• Refer to the NJ-series CPU Unit Built-in EtherCAT Port User’s Manual (Cat. No. W505) for details on
EtherCAT communications.

• Execution of this instruction is continued until processing is completed even if the value of Execute
changes to FALSE or the execution time exceeds the task period. The value of Done changes to
TRUE when processing is completed. Use this to confirm normal completion of processing.

• Refer to Using this Section on page 2-2 for a timing chart for Execute, Done, Busy, and Error.

• This instruction can be used only for the NJ-series EtherCAT ports.

Instruction Name
FB/
FUN

Graphic expression ST expression

EC_StopMon Stop EtherCAT
Packet Monitor

FB EC_StopMon_instance(Execute,
Done, Busy, Error, ErrorID);

Variables

Function

Related System-defined Variables

Name Meaning Data type Description
_EC_PktMonStop Packet Monitoring

Stopped
BOOL This variable shows if packet monitoring is stopped.

TRUE: Stopped.

FALSE: Not stopped.

_EC_PktSaving Saving Packet Data
File

BOOL This variable shows if the instruction is saving packet
data in an internal file in the main memory of the CPU
Unit.

TRUE: Saving.

FALSE: Not saving.

Additional Information

Precautions for Correct Use

EC_StopMon

Execute Done
 Busy
 Error
 ErrorID

EC_StopMon_instance

2-741

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

E
C

_S
topM

on

• An error occurs in the following case. Error will change to TRUE.

• Packet monitoring is already stopped.

Refer to the sample programming that is provided for the EC_StartMon instruction (page 2-734).

Sample Programming

2 Instruction Descriptions

2-742 NJ-series Instructions Reference Manual (W502)

EC_SaveMon

The EC_SaveMon instruction saves EtherCAT communications packet data to an internal file in the
main memory of the CPU Unit.

Only common variables are used.

The EC_SaveMon instruction saves EtherCAT communications packet data that was collected by the
packet monitoring function to an internal file in the main memory of the CPU Unit. The packet monitor
function collects a specified number of the most recent EtherCAT communications packets.

• You cannot execute packet monitoring while this instruction is in execution.

• Refer to the NJ-series CPU Unit Built-in EtherCAT Port User’s Manual (Cat. No. W505) for details on
EtherCAT communications.

• Execution of this instruction is continued until processing is completed even if the value of Execute
changes to FALSE or the execution time exceeds the task period. The value of Done changes to
TRUE when processing is completed. Use this to confirm normal completion of processing.

• Refer to Using this Section on page 2-2 for a timing chart for Execute, Done, Busy, and Error.

• This instruction can be used only for the NJ-series EtherCAT ports.

Instruction Name
FB/
FUN

Graphic expression ST expression

EC_SaveMon Save Ether-
CAT Packets

FB EC_SaveMon_instance(Execute,
Done, Busy, Error, ErrorID);

Variables

Function

Related System-defined Variables

Name Meaning Data type Description
_EC_PktMonStop Packet Monitoring

Stopped
BOOL This variable shows if packet monitoring is stopped.

TRUE: Stopped.

FALSE: Not stopped.
_EC_PktSaving Saving Packet Data

File
BOOL This variable shows if the instruction is saving packet

data in an internal file in the main memory of the CPU
Unit.

TRUE: Saving.

FALSE: Not saving.

Additional Information

Precautions for Correct Use

EC_SaveMon

Execute Done
 Busy
 Error
 ErrorID

EC_SaveMon_instance

2-743

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

E
C

_S
aveM

on

• You cannot execute this instruction while packet monitoring is in progress. Execute the EC_StopMon
instruction in advance to stop packet monitoring.

• An error occurs in the following case. Error will change to TRUE.

• Packet monitoring is in progress.

Refer to the sample programming that is provided for the EC_StartMon instruction (page 2-734).

Sample Programming

2 Instruction Descriptions

2-744 NJ-series Instructions Reference Manual (W502)

EC_CopyMon

The EC_CopyMon instruction transfers packet data in an internal file in the main memory of the CPU
Unit to a SD Memory Card.

The EC_CopyMon instruction transfers packet data in an internal file in the main memory of the CPU
Unit to a SD Memory Card. FileName specifies the file name on the SD Memory Card.

Refer to the NJ-series CPU Unit Built-in EtherCAT Port User’s Manual (Cat. No. W505) for details on
EtherCAT communications.

Instruction Name
FB/
FUN

Graphic expression ST expression

EC_CopyMon Transfer Ether-
CAT Packets

FB EC_CopyMon_instance(Execute, File-
Name, Done, Busy, Error, ErrorID);

Variables

Name Meaning I/O Description Valid range Unit Default
FileName File name Input File name on the SD Memory

Card
Depends on data
type.

--- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

FileName OK

Function

Related System-defined Variables

Name Meaning Data type Description
_EC_PktSaving Saving Packet Data

File
BOOL This variable shows if the instruction is saving packet

data in an internal file in the main memory of the CPU
Unit.

TRUE: Saving.

FALSE: Not saving.

Additional Information

EC_CopyMon

Execute Done
FileName Busy
 Error
 ErrorID

EC_CopyMon_instance

2-745

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

E
C

_C
opyM

on

• Execution of this instruction is continued until processing is completed even if the value of Execute
changes to FALSE or the execution time exceeds the task period. The value of Done changes to
TRUE when processing is completed. Use this to confirm normal completion of processing.

• Refer to Using this Section on page 2-2 for a timing chart for Execute, Done, Busy, and Error.

• This instruction can be used only for the NJ-series EtherCAT ports.

• You cannot execute this instruction while a packet save operation is in progress.

• To use this instruction, execute the EC_SaveMon instruction in advance to save the packet data in an
internal file in the main memory of the CPU Unit.

• An error occurs in the following case. Error will change to TRUE.

• A packet data file save operation is in progress.

Refer to the sample programming that is provided for the EC_StartMon instruction (page 2-734).

Precautions for Correct Use

Sample Programming

2 Instruction Descriptions

2-746 NJ-series Instructions Reference Manual (W502)

EC_DisconnectSlave

The EC_DisconnectSlave instruction disconnects the specified slave from the network.

The EC_DisconnectSlave instruction disconnects the slave specified with slave node address NodeAdr
from the EtherCAT network.
Here, disconnection from the network means that the slave is placed in a state in which it does not
operate even though it still exists on the network.

Instruction Name
FB/
FUN

Graphic expression ST expression

EC_Disconnect
Slave

Disconnect
EtherCAT
Slave

FB EC_DisconnectSlave_instance(Execute,
NodeAdr, Done, Busy, Error, ErrorID);

Variables

Name Meaning I/O Description Valid range Unit Default
NodeAdr Slave node

address
Input Node address of the slave to

disconnect
1 to 192 --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

NodeAdr OK

Function

Related System-defined Variables

Name Meaning Data type Description
_EC_EntrySlavTbl[i]

“i” is the node address.

Network Connected
Slave Table

BOOL[] This variable shows if slaves are part of (i.e., exist
on) the network.

TRUE: Part of the network.

FALSE: Not part of the network.

_EC_DisconnSlavTbl[i]

“i” is the node address.

Disconnected Slave
Table

BOOL[] This variable shows the slaves for which there are
currently disconnect commands in effect.

TRUE: Disconnect command is in effect.

FALSE: Disconnect command is not in effect.
_EC_DisableSlavTbl[i]

“i” is the node address.

Disabled Slave Table BOOL[] This variable shows if slaves are disabled on the
network.

TRUE: Disabled.

FALSE: Not disabled.

EC_DisconnectSlave

Execute Done
NodeAdr Busy
 Error
 ErrorID

EC_DisconnectSlave_instance

2-747

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

E
C

_D
isconnectS

lave

Refer to the NJ-series CPU Unit Built-in EtherCAT Port User’s Manual (Cat. No. W505) for details on
EtherCAT communications.

• Execution of this instruction is continued until processing is completed even if the value of Execute
changes to FALSE or the execution time exceeds the task period. The value of Done changes to
TRUE when processing is completed. Use this to confirm normal completion of processing.

• Refer to Using this Section on page 2-2 for a timing chart for Execute, Done, Busy, and Error.

• This instruction can be used only for the NJ-series EtherCAT ports.

• If there are slaves with daisy-chain connections (i.e., connected to the output port) after the discon-
nected slave, they are disconnected from the EtherCAT network also.

• An error occurs in the following case. Error will change to TRUE.

• The slave specified with NodeAdr is not part of the EtherCAT network. That is, the value of
_EC_EntrySlavTbl[i] (Network Connected Slave Table) is FALSE.

• The slave specified with NodeAdr is disabled.

This sample disconnects slave 1 from the EtherCAT network and then connects it again. When Trigger
1 changes to TRUE, the EC_DisconnectSlave instruction is executed to disconnect slave 1. When Trig-
ger 2 changes to TRUE, the EC_ConnectSlave instruction is executed to connect slave 1 again.

Additional Information

Precautions for Correct Use

Sample Programming

2 Instruction Descriptions

2-748 NJ-series Instructions Reference Manual (W502)

Processing 1 completed.
Execution condition 1
Processing 1

Processing 1 completed.
Execution condition 2
Processing 2

Variable Data type Initial value Comment

LD

Operating1End
Trigger1
Operating1
RS_instance1
EC_DisconnectSlave_instance
Operating2End
Trigger2
Operating2
RS_instance2
EC_ConnectSlave_instance

False
False
False

False
False
False

BOOL
BOOL
BOOL
RS
EC_DisconnectSlave
BOOL
BOOL
BOOL
RS
EC_ConnectSlave

EC_DisconnectSlave_instance.Done

EC_DisconnectSlave_instance.Error

Determine if execution of the EC_DisconnectSlave instruction is completed.

Accept trigger 1.

Execute EC_DisconnectSlave instruction.

Operating1End

Operating1

Operating1End

UINT#1

Trigger1 _EC_EntrySlavTbl[1] RS
 Set Q1
 Reset1

RS_instance1

Operating1

Operating1 EC_DisconnectSlave_instance.Done

Processing after normal end
Inline ST

Inline STEC_DisconnectSlave_instance.Error

1 // Processing after normal end
2 ;

Operating1

Processing after error end

1 // Processing after error end
2 ;

EC_DisconnectSlave

Execute Done
NodeAdr Busy
 Error
 ErrorID

EC_DisconnectSlave_instance

EC_ConnectSlave_instance.Done

EC_ConnectSlave_instance.Error

Determine if execution of the EC_ConnectSlave instruction is completed.

Operating2End

_EC_EntrySlavTbl
_EC_DisconnSlavTbl

ARRAY[1..192] OF BOOL
ARRAY[1..192] OF BOOL

Constant

Internal
Variables

External
Variables Variable Data type Comment

Network Connected Slave Table
Disconnected Slave Table

2-749

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

E
C

_D
isconnectS

lave

Execute EC_ConnectSlave instruction.

UINT#1

Operating2

Operating2 EC_ConnectSlave_instance.Done

Processing after normal end
Inline ST

Inline STEC_ConnectSlave_instance.Error

1 // Processing after normal end
2 ;

Operating2

Processing after error end

1 // Processing after error end
2 ;

Accept trigger 2.

Operating2

Operating2End

Trigger2 _EC_DisconnSlavTbl[1] RS
 Set Q1
 Reset1

RS_instance2

EC_ConnectSlave

Execute Done
NodeAdr Busy
 Error
 ErrorID

EC_ConnectSlave_instance

2 Instruction Descriptions

2-750 NJ-series Instructions Reference Manual (W502)

Execution condition 1
Value of Trigger1 from previous task period
Processing 1 started.
Processing 1

Execution condition 2
Value of Trigger2 from previous task period
Processing 2 started.
Processing 2

Variable Data type Initial value Comment

ST

IF ((Trigger1=TRUE) AND (LastTrigger1=FALSE) AND (_EC_EntrySlavTbl[1]=TRUE)) THEN
 Operating1Start:=TRUE;
 Operating1 :=TRUE;
END_IF;
LastTrigger1:=Trigger1;

IF (Operating1Start=TRUE) THEN
 EC_DisconnectSlave_instance(Execute:=FALSE);
 Operating1Start:=FALSE;
END_IF;

IF (Operating1=TRUE) THEN
 EC_DisconnectSlave_instance(
 Execute :=TRUE,
 NodeAdr:=UINT#1);

 IF (EC_DisconnectSlave_instance.Done=TRUE) THEN

 Operating1:=FALSE;
 END_IF;

 IF (EC_DisconnectSlave_instance.Error=TRUE) THEN

 Operating1:=FALSE;
 END_IF;
END_IF;

// Detect when Trigger1 changes to TRUE.

// Initialize EC_DisconnectSlave instruction.

// Execute EC_DisconnectSlave instruction.

// Processing after normal end

// Processing after error end

IF ((Trigger2=TRUE) AND (LastTrigger2=FALSE) AND (_EC_DisconnSlavTbl[1]=TRUE)) THEN
 Operating2Start:=TRUE;
 Operating2 :=TRUE;
END_IF;
LastTrigger2:=Trigger2;

IF (Operating2Start=TRUE) THEN
 EC_ConnectSlave_instance(Execute:=FALSE);
 Operating2Start:=FALSE;
END_IF;

// Detect when Trigger2 changes to TRUE.

// Initialize EC_ConnectSlave instruction.

Trigger1
LastTrigger1
Operating1Start
Operating1
EC_DisconnectSlave_instance
Trigger2
LastTrigger2
Operating2Start
Operating2
EC_ConnectSlave_instance

False
False
False
False

False
False
False
False

BOOL
BOOL
BOOL
BOOL
EC_DisconnectSlave
BOOL
BOOL
BOOL
BOOL
EC_ConnectSlave

_EC_EntrySlavTbl
_EC_DisconnSlavTbl

ARRAY[1..192] OF BOOL
ARRAY[1..192] OF BOOL

Constant

Internal
Variables

External
Variables Variable Data type Comment

Network Connected Slave Table
Disconnected Slave Table

2-751

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

E
C

_D
isconnectS

lave

IF (Operating2=TRUE) THEN
 EC_ConnectSlave_instance(
 Execute :=TRUE,
 NodeAdr:=UINT#1);

 IF (EC_ConnectSlave_instance.Done=TRUE) THEN

 Operating2:=FALSE;
 END_IF;

 IF (EC_ConnectSlave_instance.Error=TRUE) THEN

 Operating2:=FALSE;
 END_IF;
END_IF;

// Execute EC_ConnectSlave instruction.

// Processing after normal end

// Processing after error end

2 Instruction Descriptions

2-752 NJ-series Instructions Reference Manual (W502)

EC_ConnectSlave

The EC_ConnectSlave instruction connects the specified slave to the EtherCAT network.

The EC_ConnectSlave instruction connects the slave specified with slave node address NodeAdr to the
EtherCAT network.
Here, connection to the network means that the slave exists on the network and it is placed in a state in
which it operates.

Refer to the NJ-series CPU Unit Built-in EtherCAT Port User’s Manual (Cat. No. W505) for details on
EtherCAT communications.

Instruction Name
FB/
FUN

Graphic expression ST expression

EC_ConnectSl
ave

Connect Ether-
CAT Slave

FB EC_ConnectSlave_instance(Execute,
NodeAdr, Done, Busy, Error, ErrorID);

Variables

Name Meaning I/O Description Valid range Unit Default
NodeAdr Slave node

address
Input Node address of the slave to

connect
1 to 192 --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

NodeAdr OK

Function

Related System-defined Variables

Name Meaning Data type Description
_EC_EntrySlavTbl[i]

“i” is the node address.

Network Connected
Slave Table

BOOL[] This variable shows if slaves are part of (i.e., exist on)
the network.

TRUE: Part of the network.

FALSE: Not part of the network.

_EC_DisconnSlavTbl[i]

“i” is the node address.

Disconnected Slave
Table

BOOL[] This variable shows the slaves for which there are
currently disconnect commands in effect.

TRUE: Disconnect command is in effect.

FALSE: Disconnect command is not in effect.

Additional Information

EC_ConnectSlave

Execute Done
NodeAdr Busy
 Error
 ErrorID

EC_ConnectSlave_instance

2-753

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

E
C

_C
onnectS

lave

• Execution of this instruction is continued until processing is completed even if the value of Execute
changes to FALSE or the execution time exceeds the task period. The value of Done changes to
TRUE when processing is completed. Use this to confirm normal completion of processing.

• Refer to Using this Section on page 2-2 for a timing chart for Execute, Done, Busy, and Error.

• This instruction can be used only for the NJ-series EtherCAT ports.

• An error occurs in the following cases. Error will change to TRUE.

• The slave specified with NodeAdr is not part of the EtherCAT network. That is, the value of
_EC_EntrySlavTbl[i] (Network Connected Slave Table) is FALSE.

• The slave specified with NodeAdr is not disconnected from the network.

Refer to the sample programming that is provided for the EC_DisconnectSlave instruction (page 2-746).

Precautions for Correct Use

Sample Programming

2 Instruction Descriptions

2-754 NJ-series Instructions Reference Manual (W502)

SktUDPCreate

The SktUDPCreate instruction creates a UDP socket request to open a servo port for the built-in Ether-
Net/IP.

The SktUDPCreate instruction opens the port specified with the local UDP port number ScrUdpPort. To
do this, it executes the Socket() and Bind() socket functions. Information on the socket that is opened is
stored in Socket. The UDP port is open when the instruction is completed normally (i.e., when the value
of Done changes to TRUE).

Instruction Name
FB/
FUN

Graphic expression ST expression

SktUDP Create Create UDP
Socket

FB None SktUDPCreate_instance(Execute,
SrcUdpPort, Done, Busy, Error,
ErrorID, Socket);

Variables

Name Meaning I/O Description Valid range Unit Default
SrcUdpPort Local UDP

port number
Input Local UDP port number 1 to 65535 --- 1

Socket Socket Output Socket --- --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

SrcUdpPort OK

Socket Refer to Function for details on the structure _sSOCKET.

Function

2-755

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

S
ktU

D
P

C
reate

The data type of Socket is structure _sSOCKET. The specifications are as follows:

* These members are not used for this instruction.

Refer to the NJ-series CPU Unit Built-in EtherNet/IP Port User’s Manual (Cat. No. W506) for details on
socket services.

• Execution of this instruction is continued until processing is completed even if the value of Execute
changes to FALSE or the execution time exceeds the task period. The value of Done changes to
TRUE when processing is completed. Use this to confirm normal completion of processing.

• Refer to Using this Section on page 2-2 for a timing chart for Execute, Done, Busy, and Error.

• This instruction can be used only for the built-in EtherNet/IP on NJ-series CPU Units.

• This instruction must be used in ST. It cannot be used in a ladder diagram.

• Use the SktClose instruction to close handles that are created with this instruction.

• Handles that are created with this instruction are disabled when you change to PROGRAM mode.

• You can execute a maximum of 32 of the following instructions at the same time: SktUDPCreate,
SktUDPRcv, SktUDPSend, SktTCPAccept, SktTCPConnect, SktTCPRcv, SktTCPSend, SktGetTCP-
Status, SktClose, and SktClearBuf.

• You can open a maximum of 16 sockets combined for UDP and TCP sockets.

• An error occurs in the following cases. Error will change to TRUE.

• There is a setting error for the local IP address.

• The value of SrcUdpPort is outside of the valid range.

• The port that is specified with SrcUdpPort is already open or close processing is in progress for it.

Name Meaning Description Data type Valid range Unit Default
Socket Socket Socket _sSOCKET --- --- ---

Handle Handle Handle for data commu-
nications

UDINT Depends on
data type.

--- ---

SrcAdr* Local address Local IP address and
port number

sSOCKET
ADDRESS

--- --- ---

PortNo* Port number Port number UINT 1 to 65535

--- ---
IpAdr* IP address IP address or host

name. A DNS or Hosts
setting is required to use
a host name.

STRING Depends on
data type.

DstAdr* Destination
address

Destination IP address
and port number

sSOCKET
ADDRESS

--- --- ---

PortNo* Port number Port number UINT 1 to 65535

--- ---
IpAdr* IP address IP address or host

name. A DNS or Hosts
setting is required to use
a host name.

STRING Depends on
data type.

Related System-defined Variables

Name Meaning
Data
type

Description

_EIP_EtnOnlineSta Online BOOL Status of built-in EtherNet/IP port communications

TRUE: Can be used.

FALSE: Cannot be used.

Additional Information

Precautions for Correct Use

2 Instruction Descriptions

2-756 NJ-series Instructions Reference Manual (W502)

• The port that is specified with ScrUdpPort is already in use.

In this sample, the UDP socket service is used for data communications between the NJ-series Control-
ler and a remote node.

The processing procedure is as follows:

1 The SktUDPCreate instruction is used to request creating a UDP socket.

2 The SktUDPSend instruction is used to request sending data. The data in SendSocketDat[] is
sent.

3 The SktUDPRcv instruction is used to request receiving data. The received data is stored in
RcvSocketDat[].

4 The SktClose instruction is used to close the socket.

Sample Programming

IP address: 192.168.250.1
UDP port number: 6000

Ethernet line

Built-in EtherNet/IP port

Data received.
Remote node

IP address: 192.168.250.2
UDP port number: 6001

Data sent.

2-757

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

S
ktU

D
P

C
reate

Execution condition
Processing
Stage change
Receive data
Socket

Send data

Variable Data type Initial value Comment

ST

IF ((Trigger=TRUE) AND (DoSendAndRcv=FALSE) AND (_Eip_EtnOnlineSta=TRUE)) THEN
 DoSendAndRcv:=TRUE;
 Stage :=INT#1;
 SktUDPCreate_instance(Execute:=FALSE);
 SktUDPSend_instance(
 Execute :=FALSE,
 SendDat:=SendSocketDat[0]);
 SktUDPRcv_instance(
 Execute:=FALSE,
 RcvDat :=RcvSocketDat[0]);
 SktClose_instance(Execute:=FALSE);
END_IF;

IF (DoSendAndRcv=TRUE) THEN
 CASE Stage OF
 1 :
 SktUDPCreate_instance(
 Execute :=TRUE,
 SrcUdpPort:=UINT#6000,
 Socket =>WkSocket);

 IF (SktUDPCreate_instance.Done=TRUE) THEN
 Stage:=INT#2;
 ELSIF (SktUDPCreate_instance.Error=TRUE) THEN
 Stage:=INT#10;
 END_IF;

 2 :
 WkSocket.DstAdr.PortNo:=UINT#6001;
 WkSocket.DstAdr.IpAdr :=’192.168.250.2’;
 SktUDPSend_instance(
 Execute :=TRUE,
 Socket :=WkSocket,
 SendDat:=SendSocketDat[0],
 Size :=UINT#2000);

 IF (SktUDPSend_instance.Done=TRUE) THEN
 Stage:=INT#3;
 ELSIF (SktUDPSend_instance.Error=TRUE) THEN
 Stage:=INT#20;
 END_IF;

// Start sequence when Trigger changes to TRUE.

// Request creating socket.

// Local UDP port number
// Socket

// Socket
// Send data
// Send data size

// Normal end

// Error end

// Normal end

// Error end

// Initialize instance.
// Initialize instance.

// Initialize instance.

// Dummy
// Initialize instance.

// Dummy

// Request sending data

Trigger
DoSendAndRcv
Stage
RcvSocketDat
WkSocket

SendSocketDat
SktUDPCreate_instance
SktUDPSend_instance
SktUDPRcv_instance
SktClose_instance

False
False
0
[2000(16#0)]
(Handle:=0, SrcAdr:=(PortNo:=0,
 IpAdr:=’’), DstAdr:=(PortNo:=0, IpAdr:=’’))
[2000(16#0)]

BOOL
BOOL
INT
ARRAY[0..1999] OF BYTE
_sSOCKET

ARRAY[0..1999] OF BYTE
SktUDPCreate
SktUDPSend
SktUDPRcv
SktClose

_EIP_EtnOnlineSta BOOL

Constant

Internal
Variables

External
Variables Variable Data type Comment

Online

2 Instruction Descriptions

2-758 NJ-series Instructions Reference Manual (W502)

Programming in the Remote Node
In this example, programming is also required in the remote node. The order of sending and receiv-
ing is reversed in comparison with the above procedure.

1 The SktUDPCreate instruction is used to request creating a UDP socket.

2 The SktUDPRcv instruction is used to request receiving data. The received data is stored in
RcvSocketDat[].

3 The SktUDPSend instruction is used to request sending data. The data in SendSocketDat[] is
sent.

4 The SktClose instruction is used to close the socket.

 3 :
 SktUDPRcv_instance(
 Execute :=TRUE,
 Socket :=WkSocket,
 TimeOut:=UINT#0,
 Size :=UINT#2000,
 RcvDat :=RcvSocketDat[0]);

 IF (SktUDPRcv_instance.Done=TRUE) THEN
 Stage:=INT#4;
 ELSIF (SktUDPRcv_instance.Error=TRUE) THEN
 Stage:=INT#30;
 END_IF;

 4 :
 SktClose_instance(
 Execute:=TRUE,
 Socket :=WkSocket);

 IF (SktClose_instance.Done=TRUE) THEN
 Stage:=INT#0;
 ELSIF (SktClose_instance.Error=TRUE) THEN
 Stage:=INT#40;
 END_IF;

 0 :
 DoSendAndRcv:=FALSE;
 Trigger :=FALSE;

 ELSE
 DoSendAndRcv:=FALSE;
 Trigger :=FALSE;
 END_CASE;

END_IF;

// Socket

// Normal end

// Error end

// Request closing.

// Normal end

// Interrupted by error.

// Socket
// Timeout time
// Receive data size
// Receive data

// Normal end

// Error end

// Request receiving data.

2-759

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

S
ktU

D
P

C
reate

Execution condition
Processing
Stage change
Receive data
Socket

Send data

Variable Data type Initial value Comment

ST

IF ((Trigger=TRUE) AND (DoSendAndRcv=FALSE) AND (_Eip_EtnOnlineSta=TRUE)) THEN
 DoSendAndRcv:=TRUE;
 Stage :=INT#1;
 SktUDPCreate_instance(Execute:=FALSE);
 SktUDPSend_instance(
 Execute :=FALSE,
 SendDat:=SendSocketDat[0]);
 SktUDPRcv_instance(
 Execute:=FALSE,
 RcvDat :=RcvSocketDat[0]);
 SktClose_instance(Execute:=FALSE);
END_IF;

IF (DoSendAndRcv=TRUE) THEN
 CASE Stage OF
 1 :
 SktUDPCreate_instance(
 Execute :=TRUE,
 SrcUdpPort:=UINT#6001,
 Socket =>WkSocket);

 IF (SktUDPCreate_instance.Done=TRUE) THEN
 Stage:=INT#2;
 ELSIF (SktUDPCreate_instance.Error=TRUE) THEN
 Stage:=INT#10;
 END_IF;

 2 :
 WkSocket.DstAdr.PortNo:=UINT#6000;
 WkSocket.DstAdr.IpAdr :=’192.168.250.1’;
 SktUDPRcv_instance(
 Execute :=TRUE,
 Socket :=WkSocket,
 TimeOut:=UINT#0,
 Size :=UINT#2000,
 RcvDat :=RcvSocketDat[0]);

 IF (SktUDPRcv_instance.Done=TRUE) THEN
 Stage:=INT#3;
 ELSIF (SktUDPRcv_instance.Error=TRUE) THEN
 Stage:=INT#20;
 END_IF;

// Start sequence when Trigger changes to TRUE.

// Request creating socket.

// Local UDP port number
// Socket

// Socket
// Timeout time
// Receive data size
// Receive data

// Normal end

// Error end

// Normal end

// Error end

// Initialize instance.
// Initialize instance.

// Initialize instance.

// Initialize instance.
// Dummy

// Request receiving data

Trigger
DoSendAndRcv
Stage
RcvSocketDat
WkSocket

SendSocketDat
SktUDPCreate_instance
SktUDPSend_instance
SktUDPRcv_instance
SktClose_instance

False
False
0
[2000(16#0)]
(Handle:=0, SrcAdr:=(PortNo:=0,
 IpAdr:=’’), DstAdr:=(PortNo:=0, IpAdr:=’’))
[2000(16#0)]

BOOL
BOOL
INT
ARRAY[0..1999] OF BYTE
_sSOCKET

ARRAY[0..1999] OF BYTE
SktUDPCreate
SktUDPSend
SktUDPRcv
SktClose

_EIP_EtnOnlineSta BOOL

Constant

Internal
Variables

External
Variables Variable Data type Comment

Online

// Dummy

2 Instruction Descriptions

2-760 NJ-series Instructions Reference Manual (W502)

 3 :
 SendSocketDat:=RcvSocketDat;
 SktUDPSend_instance(
 Execute :=TRUE,
 Socket :=WkSocket,
 SendDat:=SendSocketDat[0],
 Size :=UINT#2000);

 IF (SktUDPSend_instance.Done=TRUE) THEN
 Stage:=INT#4;
 ELSIF (SktUDPSend_instance.Error=TRUE) THEN
 Stage:=INT#30;
 END_IF;

 4 :
 SktClose_instance(
 Execute:=TRUE,
 Socket :=WkSocket);

 IF (SktClose_instance.Done=TRUE) THEN
 Stage:=INT#0;
 ELSIF (SktClose_instance.Error=TRUE) THEN
 Stage:=INT#40;
 END_IF;

 0 :
 DoSendAndRcv:=FALSE;
 Trigger :=FALSE;

 ELSE
 DoSendAndRcv:=FALSE;
 Trigger :=FALSE;
 END_CASE;

END_IF;

// Socket

// Normal end

// Error end

// Request closing.

// Normal end

// Interrupted by error.

// Socket
// Send data
// Send data size

// Normal end

// Error end

// Request sending data.

2-761

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

S
ktU

D
P

R
cv

SktUDPRcv

The SktUDPRcv instruction reads the data from the receive buffer for a UDP socket for the built-in Eth-
erNet/IP.

The SktUDPRcv instruction stores the data in the receive buffer for the socket that is specified with
Socket in receive data RcvDat[]. The number of bytes to store is specified with Size. The number of
bytes that is actually stored is assigned to RcvSize. The node address of the node that sent the data is
stored in SendNodeAdr.

If there is no data in the receive buffer, the instruction waits for data for the time that is set with timeout
time TimeOut. Storage of the data to RcvDat[] is completed when the instruction is completed normally
(i.e., when the value of Done changes to TRUE).

Instruction Name
FB/
FUN

Graphic expression ST expression

SktUDPRcv UDP Socket
Receive

FB None SktUDPRcv_instance(Execute,
Socket, TimeOut, Size, RcvDat,
Done, Busy, Error, ErrorID,
RcvSize, SendNodeAdr);

Variables

Name Meaning I/O Description Valid range Unit Default
Socket Socket

Input

Socket --- --- ---

TimeOut Timeout time 0: No timeouts

1 to 65535: 0.1 to 6553.5s

Depends on data
type.

0.1 s 0

Size Stored size The number of bytes to read
from the receive buffer

0 to 2000 Bytes 1

RcvDat[]
(array)

Receive data In-out Receive data Depends on data
type.

--- ---

RcvSize Receive data
size

Output

The number of bytes actually
stored in RcvDat[]

0 to 2000 Bytes

SendN-
odeAdr

Source node
address

Source node address --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

Socket Refer to Function for details on the structure _sSOCKET.

TimeOut OK

Size OK

RcvDat[]
(array)

OK

RcvSize OK

SendN-
odeAdr

Refer to Function for details on the structure _sSOCKET_ADDRESS.

Function

2 Instruction Descriptions

2-762 NJ-series Instructions Reference Manual (W502)

The data type of Socket is structure _sSOCKET. The specifications are as follows:

* These members are not used for this instruction.

The data type of SendNodeAdr is structure _sSOCKET_ADDRESS. The specifications are as follows:

Refer to the NJ-series CPU Unit Built-in EtherNet/IP Port User’s Manual (Cat. No. W506) for details on
socket services.

• Execution of this instruction is continued until processing is completed even if the value of Execute
changes to FALSE or the execution time exceeds the task period. The value of Done changes to
TRUE when processing is completed. Use this to confirm normal completion of processing.

• Refer to Using this Section on page 2-2 for a timing chart for Execute, Done, Busy, and Error.

• This instruction can be used only for the built-in EtherNet/IP on NJ-series CPU Units.

• This instruction must be used in ST. It cannot be used in a ladder diagram.

• Up to 2,000 bytes of data can be read from the receive buffer with one instruction.

Name Meaning Description Data type Valid range Unit Default
Socket Socket Socket _sSOCKET --- --- ---

Handle Handle Handle for data commu-
nications

UDINT Depends on
data type.

--- ---

SrcAdr* Local address Local IP address and
port number

sSOCKET
ADDRESS

--- --- ---

PortNo* Port number Port number UINT 1 to 65535

--- ---
IpAdr* IP address IP address or host

name. A DNS or Hosts
setting is required to use
a host name.

STRING Depends on
data type.

DstAdr* Destination
address

Destination IP address
and port number

sSOCKET
ADDRESS

--- --- ---

PortNo* Port number Port number UINT 1 to 65535

--- ---
IpAdr* IP address IP address or host

name. A DNS or Hosts
setting is required to use
a host name.

STRING Depends on
data type.

Name Meaning Description Data type Valid range Unit Default
SendNodeAdr Source node

address
Source node address _sSOCKET_

ADDRESS
--- --- ---

PortNo Port number UPD port number of the
source node

UINT 1 to 65535

--- ---
IpAdr IP address IP address of the source

node
STRING Depends on

data type.

Related System-defined Variables

Name Meaning
Data
type

Description

_EIP_EtnOnlineSta Online BOOL Status of built-in EtherNet/IP port communications

TRUE: Can be used.

FALSE: Cannot be used.

Additional Information

Precautions for Correct Use

2-763

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

S
ktU

D
P

R
cv

• If the size of data that was received by the specified socket is smaller than the value of Size, then all
of the received data is stored in RecDat[]. Then size of data that was stored is stored in RcvSize.

• If the size of data that was received by the specified socket is larger than the value of Size, then the
size of received data specified by Size is stored in RecDat[].

• The receive data is not read if the value of Size is 0.

• If the SktClose instruction closes the connection when there is no data in the receive buffer, a normal
end occurs without waiting to receive data even if a timeout has not occurred. The value of RcvSize is
0 in that case.

• You can execute a maximum of 32 of the following instructions at the same time: SktUDPCreate,
SktUDPRcv, SktUDPSend, SktTCPAccept, SktTCPConnect, SktTCPRcv, SktTCPSend, SktGetTCP-
Status, SktClose, and SktClearBuf.

• An error occurs in the following cases. Error will change to TRUE.

• There is a setting error for the local IP address.

• Data reception is in progress for the socket specified with Socket.

• The socket specified with Socket is not open.

• The handle specified by Socket.Handle does not exist.

Refer to the sample programming that is provided for the SktUDPCreate instruction (page 2-754).

Sample Programming

2 Instruction Descriptions

2-764 NJ-series Instructions Reference Manual (W502)

SktUDPSend

The SktUDPSend instruction sends data from a UDP port for the built-in EtherNet/IP.

The SktUDPSend instruction sends send data SendDat[] from the socket that is specified with Socket.
The number of bytes to send is specified with Size. The remote node is specified with Socket.DstAdr.
Transmission of SendDat[] to the send buffer is completed when the instruction is completed normally
(i.e., when the value of Done changes to TRUE).

Instruction Name
FB/
FUN

Graphic expression ST expression

SktUDPSend UDP Socket
Send

FB None SktUDPSend_instance(Execute,
Socket, SendDat, Size, Done,
Busy, Error, ErrorID);

Variables

Name Meaning I/O Description Valid range Unit Default
Socket Socket

Input

Socket ---

--- ---SendDat[]
(array)

Send data Send data Depends on data
type.

Size Send data
size

Send data size 0 to 2000 Bytes 1

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

Socket Refer to Function for details on the structure _sSOCKET.

SendDat[]
(array)

OK

Size OK

Function

2-765

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

S
ktU

D
P

S
end

The data type of Socket is structure _sSOCKET. The specifications are as follows:

* These members are not used for this instruction.

Refer to the NJ-series CPU Unit Built-in EtherNet/IP Port User’s Manual (Cat. No. W506) for details on
socket services.

• Execution of this instruction is continued until processing is completed even if the value of Execute
changes to FALSE or the execution time exceeds the task period. The value of Done changes to
TRUE when processing is completed. Use this to confirm normal completion of processing.

• Refer to Using this Section on page 2-2 for a timing chart for Execute, Done, Busy, and Error.

• This instruction can be used only for the built-in EtherNet/IP on NJ-series CPU Units.

• This instruction must be used in ST. It cannot be used in a ladder diagram.

• Up to 2,000 bytes of data can be sent with one instruction. A maximum of 2,000 bytes is sent even if
the SendDat[] array is larger than 2,000 bytes. Only 1,472 bytes can be sent if the broadcast address
is specified.

• If the value of Size is 0, then 0 bytes of send data is transmitted on the line.

• You can execute a maximum of 32 of the following instructions at the same time: SktUDPCreate,
SktUDPRcv, SktUDPSend, SktTCPAccept, SktTCPConnect, SktTCPRcv, SktTCPSend, SktGetTCP-
Status, SktClose, and SktClearBuf.

• An error occurs in the following cases. Error will change to TRUE.

• There is a setting error for the local IP address.

• The value of a member of Socket is outside of the valid range.

Name Meaning Description Data type Valid range Unit Default
Socket Socket Socket _sSOCKET --- --- ---

Handle Handle Handle for data commu-
nications

UDINT Depends on
data type.

--- ---

SrcAdr* Local address Local IP address and
port number

sSOCKET
ADDRESS

--- --- ---

PortNo* Port number Port number UINT 1 to 65535

--- ---
IpAdr* IP address IP address or host

name. A DNS or Hosts
setting is required to use
a host name.

STRING Depends on
data type.

DstAdr Destination
address

Destination IP address
and port number

sSOCKET
ADDRESS

--- --- ---

PortNo Port number Port number UINT 1 to 65535

--- ---
IpAdr IP address IP address or host

name. A DNS or Hosts
setting is required to use
a host name.

STRING Depends on
data type.

Related System-defined Variables

Name Meaning
Data
type

Description

_EIP_EtnOnlineSta Online BOOL Status of built-in EtherNet/IP port communications

TRUE: Can be used.

FALSE: Cannot be used.

Additional Information

Precautions for Correct Use

2 Instruction Descriptions

2-766 NJ-series Instructions Reference Manual (W502)

• Data transmission is in progress for the socket specified with Socket.

• The socket specified with Socket is not open.

• The remote node for Socket was specified with a domain name and address resolution failed.

• The handle specified by Socket.Handle does not exist.

• The value of Size exceeds the number of elements in SendDat[].

Refer to the sample programming that is provided for the SktUDPCreate instruction (page 2-754).

Sample Programming

2-767

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

S
ktT

C
PA

ccept

SktTCPAccept

The SktTCPAccept instruction requests accepting a TCP socket for the built-in EtherNet/IP.

The SktTCPAccept instruction requests accepting the port specified with the local TCP port number
ScrTcpPort. To do this, it executes the Socket(), Bind(), Listen(), and Accept() socket functions. The
instruction waits for the time set with timeout time TimeOut for a connection to be established with the
remote node. The connection is established when the instruction is completed normally (i.e., when the
value of Done changes to TRUE).

Instruction Name
FB/
FUN

Graphic expression ST expression

SktTCPAccept Accept TCP
Socket

FB None SktTCPAccept_instance(Execute,
SrcTcpPort, TimeOut, Done, Busy,
Error, ErrorID, Socket);

Variables

Name Meaning I/O Description Valid range Unit Default
SrcTcpPort Local TCP

port number
Input

Local TCP port number 1 to 65535 --- 1

TimeOut Timeout time 0: No timeouts

1 to 65535: 0.1 to 6553.5s

Depends on data
type.

0.1 s 0

Socket Socket Output Socket --- --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

SrcTcpPort OK

TimeOut OK

Socket Refer to Function for details on the structure _sSOCKET.

Function

2 Instruction Descriptions

2-768 NJ-series Instructions Reference Manual (W502)

The data type of Socket is structure _sSOCKET. The specifications are as follows:

* These members are not used for this instruction.

• Refer to the NJ-series CPU Unit Built-in EtherNet/IP Port User’s Manual (Cat. No. W506) for details
on socket services.

• You can execute this instruction more than once to open connections to more than one client with one
local port number. A different socket is returned for each connection.

• Execution of this instruction is continued until processing is completed even if the value of Execute
changes to FALSE or the execution time exceeds the task period. The value of Done changes to
TRUE when processing is completed. Use this to confirm normal completion of processing.

• Refer to Using this Section on page 2-2 for a timing chart for Execute, Done, Busy, and Error.

• This instruction can be used only for the built-in EtherNet/IP on NJ-series CPU Units.

• This instruction must be used in ST. It cannot be used in a ladder diagram.

• Use the SktClose instruction to close handles that are created with this instruction.

• Handles that are created with this instruction are disabled when you change to PROGRAM mode.

• You can execute a maximum of 32 of the following instructions at the same time: SktUDPCreate,
SktUDPRcv, SktUDPSend, SktTCPAccept, SktTCPConnect, SktTCPRcv, SktTCPSend, SktGetTCP-
Status, SktClose, and SktClearBuf.

• You can open a maximum of 16 sockets combined for UDP and TCP sockets.

• An error occurs in the following cases. Error will change to TRUE.

• There is a setting error for the local IP address.

Name Meaning Description Data type Valid range Unit Default
Socket Socket Socket _sSOCKET --- --- ---

Handle Handle Handle for data commu-
nications

UDINT Depends on
data type.

--- ---

SrcAdr* Local address Local IP address and
port number

sSOCKET
ADDRESS

--- --- ---

PortNo* Port number Port number UINT 1 to 65535

--- ---
IpAdr* IP address IP address or host

name. A DNS or Hosts
setting is required to use
a host name.

STRING Depends on
data type.

DstAdr Destination
address

Destination IP address
and port number

sSOCKET
ADDRESS

--- --- ---

PortNo Port number Port number UINT 1 to 65535

--- ---
IpAdr IP address IP address or host

name. A DNS or Hosts
setting is required to use
a host name.

STRING Depends on
data type.

Related System-defined Variables

Name Meaning
Data
type

Description

_EIP_EtnOnlineSta Online BOOL Status of built-in EtherNet/IP port communications

TRUE: Can be used.

FALSE: Cannot be used.

Additional Information

Precautions for Correct Use

2-769

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

S
ktT

C
PA

ccept

• The value of SrcTcpPort is outside of the valid range.

• Open processing is in progress for the socket specified with SrcTcpPort.

• Close processing is in progress for the socket specified with SrcTcpPort.

• A connection is not opened within the time that is specified with TimeOut.

Refer to the sample programming that is provided for the SktTCPConnect instruction (page 2-770).

Sample Programming

2 Instruction Descriptions

2-770 NJ-series Instructions Reference Manual (W502)

SktTCPConnect

The SktTCPConnect instruction connects to a remote TCP port from the built-in EtherNet/IP.

Instruction Name
FB/
FUN

Graphic expression ST expression

SktTCP
Connect

Connect TCP
Socket

FB None SktTCPConnect_instance(Execute,
SrcTcpPort, DstAdr, DstTcpPort,
Done, Busy, Error, ErrorID, Socket);

Variables

Name Meaning I/O Description Valid range Unit Default
SrcTcpPort Local TCP

port number

Input

Local TCP port number. If 0 is
specified, an available TCP
port that is 1024 or higher is
automatically assigned. Well-
known port numbers are not
assigned.

Depends on data
type.

0

DstAdr Destination
address

Destination IP address or host
name

200 bytes max. ---

DstTcpPort Destination
TCP port
number

Destination TCP port number 1 to 65,535 1

Socket Socket Output Socket --- --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

SrcTcpPort OK

DstAdr OK

DstTcpPort OK

Socket Refer to Function for details on the structure _sSOCKET.

2-771

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

S
ktT

C
P

C
onnect

The SktTCPConnect instruction requests a connection between local TCP port number SrcTcpPort and
destination TCP port number DstTcpPort at destination address DstAdr. To do this, it executes the Con-
nect() socket function. The connection is established when the instruction is completed normally (i.e.,
when the value of Done changes to TRUE).

The data type of Socket is structure _sSOCKET. The specifications are as follows:

* These members are not used for this instruction.

Refer to the NJ-series CPU Unit Built-in EtherNet/IP Port User’s Manual (Cat. No. W506) for details on
socket services.

• Execution of this instruction is continued until processing is completed even if the value of Execute
changes to FALSE or the execution time exceeds the task period. The value of Done changes to
TRUE when processing is completed. Use this to confirm normal completion of processing.

• Refer to Using this Section on page 2-2 for a timing chart for Execute, Done, Busy, and Error.

• This instruction can be used only for the built-in EtherNet/IP on NJ-series CPU Units.

• This instruction must be used in ST. It cannot be used in a ladder diagram.

• Use the SktClose instruction to close handles that are created with this instruction.

• Handles that are created with this instruction are disabled when you change to PROGRAM mode.

Function

Name Meaning Description Data type Valid range Unit Default
Socket Socket Socket _sSOCKET --- --- ---

Handle Handle Handle for data commu-
nications

UDINT Depends on
data type.

--- ---

SrcAdr Local address Local IP address and
port number

sSOCKET
ADDRESS

--- --- ---

PortNo Port number Port number UINT 1 to 65535

--- ---
IpAdr* IP address IP address or host

name. A DNS or Hosts
setting is required to use
a host name.

STRING Depends on
data type.

DstAdr* Destination
address

Destination IP address
and port number

sSOCKET
ADDRESS

--- --- ---

PortNo* Port number Port number UINT 1 to 65535

--- ---
IpAdr* IP address IP address or host

name. A DNS or Hosts
setting is required to use
a host name.

STRING Depends on
data type.

Related System-defined Variables

Name Meaning
Data
type

Description

_EIP_EtnOnlineSta Online BOOL Status of built-in EtherNet/IP port communications

TRUE: Can be used.

FALSE: Cannot be used.

Additional Information

Precautions for Correct Use

2 Instruction Descriptions

2-772 NJ-series Instructions Reference Manual (W502)

• You can execute a maximum of 32 of the following instructions at the same time: SktUDPCreate,
SktUDPRcv, SktUDPSend, SktTCPAccept, SktTCPConnect, SktTCPRcv, SktTCPSend, SktGetTCP-
Status, SktClose, and SktClearBuf.

• You can open a maximum of 16 sockets combined for UDP and TCP sockets.

• An error occurs in the following cases. Error will change to TRUE.

• There is a setting error for the local IP address.

• The value of DstAdr is outside of the valid range.

• The value of DstTcpPort is outside of the valid range.

• The TCP port that is specified with SrcTcpPort is already open.

• The remote node that is specified with DstAdr does not exist.

• The remote node that is specified with DstAdr and DstTcpPort is not waiting for a connection.

• Address resolution failed for the host name that is specified with DstAdr.

• A connection is already open for the same client (IP address and TCP port).

In this sample, the TCP socket service is used for data communications between the NJ-series Control-
ler and a remote node.

The processing procedure is as follows:

1 The SktTCPConnect instruction is used to request connecting to the TCP port on the remote
node.

2 The SktClearBuf instruction is used to clear the receive buffer for a TCP socket.

3 The SktGetTCPStatus instruction is used to read the status of a TCP socket.

4 The SktTCPSend instruction is used to request sending data. The data in SendSocketDat[] is
sent.

5 The SktTCPRcv instruction is used to request receiving data. The received data is stored in
RcvSocketDat[].

6 The SktClose instruction is used to close the socket.

Sample Programming

IP address: 192.168.250.1
TCP port number: Automatically assigned.

 Ethernet line

Built-in EtherNet/IP port

Data received.
Remote node

IP address: 192.168.250.2
TCP port number: 6000

Data sent.

2-773

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

S
ktT

C
P

C
onnect

Variable Data type Initial value Comment

Constant

Internal
Variables

External
Variables Variable Data type Comment

Online

ST

IF ((Trigger=TRUE) AND (DoTCP=FALSE) AND (_Eip_EtnOnlineSta=TRUE)) THEN
 DoTCP:=TRUE;
 Stage :=INT#1;
 SktTCPConnect_instance(Execute:=FALSE);
 SktClearBuf_instance(Execute:=FALSE);
 SktGetTCPStatus_instance(Execute:=FALSE);
 SktTCPSend_instance(
 Execute:=FALSE,
 SendDat:=SendSocketDat[0]);
 SktTCPRcv_instance(
 Execute:=FALSE,
 RcvDat :=RcvSocketDat[0]);
 SktClose_instance(Execute:=FALSE);
END_IF;

IF (DoTCP=TRUE) THEN
 CASE Stage OF
 1 :
 SktTCPConnect_instance(
 Execute :=TRUE,
 SrcTcpPort:=UINT#0,
 DstAdr :=’192.168.250.2’,
 DstTcpPort:=UINT#6000,
 Socket =>WkSocket);

 IF (SktTCPConnect_instance.Done=TRUE) THEN
 Stage:=INT#2;
 ELSIF (SktTCPConnect_instance.Error=TRUE) THEN
 Stage:=INT#10;
 END_IF;

 2 :
 SktClearBuf_instance(
 Execute:=TRUE,
 Socket :=WkSocket);

 IF (SktClearBuf_instance.Done=TRUE) THEN
 Stage:=INT#3;
 ELSIF (SktClearBuf_instance.Error=TRUE) THEN
 Stage:=INT#20;
 END_IF;

// Start sequence when Trigger changes to TRUE.

// Request a connection.

// Clear receive buffer.

// Local UDP port number: Automatically assigned.
// Remote IP address
// Destination TCP port number
// Socket

// Socket

// Normal end

// Error end

// Normal end

// Error end

// Initialize instance.
// Initialize instance.
// Initialize instance.
// Initialize instance.

// Initialize instance.

// Initialize instance.
// Dummy

// Dummy

Trigger
DoTCP
Stage
RcvSocketDat
WkSocket

SendSocketDat
SktTCPConnect_instance
SktClearBuf_instance
SktGetTCPStatus_instance
SktTCPSend_instance
SktTCPRcv_instance
SktClose_instance

False
False
0
[2000(16#0)]
(Handle:=0, SrcAdr:=(PortNo:=0,
 IpAdr:=’’), DstAdr:=(PortNo:=0, IpAdr:=’’))
[2000(16#0)]

BOOL
BOOL
INT
ARRAY[0..1999] OF BYTE
_sSOCKET

ARRAY[0..1999] OF BYTE
SktTCPConnect
SktClearBuf
SktGetTCPStatus
SktTCPSend
SktTCPRcv
SktClose

Execution condition
Processing
Stage change
Receive data
Socket

Send data

_EIP_EtnOnlineSta BOOL

2 Instruction Descriptions

2-774 NJ-series Instructions Reference Manual (W502)

Programming in the Remote Node
In this example, programming is also required in the remote node. The order of sending and receiv-
ing is reversed in comparison with the above procedure.

1 The SktTCPAccept instruction is used to request accepting a TCP socket.

2 The SktTCPRcv instruction is used to request receiving data. The received data is stored in
RcvSocketDat[].

3 The SktTCPSend instruction is used to request sending data. The data in SendSocketDat[] is
sent.

 3 :
 SktGetTCPStatus_instance(
 Execute:=TRUE,
 Socket :=WkSocket);

 IF (SktGetTCPStatus_instance.Done=TRUE) THEN
 Stage:=INT#4;
 ELSIF (SktGetTCPStatus_instance.Error=TRUE) THEN
 Stage:=INT#30;
 END_IF;

 4 :
 SktTCPSend_instance(
 Execute :=TRUE,
 Socket :=WkSocket,
 SendDat:=SendSocketDat[0],
 Size :=UINT#2000);

 IF (SktTCPSend_instance.Done=TRUE) THEN
 Stage:=INT#5;
 ELSIF (SktTCPSend_instance.Error=TRUE) THEN
 Stage:=INT#40;
 END_IF;

 5 :
 SktTCPRcv_instance(
 Execute :=TRUE,
 Socket :=WkSocket,
 TimeOut:=UINT#0,
 Size :=UINT#2000,
 RcvDat :=RcvSocketDat[0]);

 IF (SktTCPRcv_instance.Done=TRUE) THEN
 Stage:=INT#6;
 ELSIF (SktTCPRcv_instance.Error=TRUE) THEN
 Stage:=INT#50;
 END_IF;

 6 :
 SktClose_instance(
 Execute:=TRUE,
 Socket :=WkSocket);

 IF (SktClose_instance.Done=TRUE) THEN
 Stage:=INT#0;
 ELSIF (SktClose_instance.Error=TRUE) THEN
 Stage:=INT#40;
 END_IF;

 0 :
 DoTCP:=FALSE;
 Trigger :=FALSE;

 ELSE
 DoTCP:=FALSE;
 Trigger :=FALSE;
 END_CASE;

END_IF;

// Socket

// Normal end

// Error end

// Request closing.

// Normal end

// Interrupted by error.

// Socket
// Timeout time
// Receive data size
// Receive data

// Normal end

// Error end

// Request receiving data

// Socket
// Send data
// Send data size

// Normal end

// Error end

// Request sending data

// Request reading status.

// Socket

// Normal end

// Error end

2-775

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

S
ktT

C
P

C
onnect

4 The SktClose instruction is used to close the socket.

Execution condition
Processing
Stage change
Receive data
Socket

Send data

Variable Data type Initial value Comment

ST

IF ((Trigger=TRUE) AND (DoTCP=FALSE) AND (_Eip_EtnOnlineSta=TRUE)) THEN
 DoTCP:=TRUE;
 Stage :=INT#1;
 SktTCPConnect_instance(Execute:=FALSE);
 SktTCPSend_instance(
 Execute :=FALSE,
 SendDat :=SendSocketDat[0]);
 SktTCPRcv_instance(
 Execute:=FALSE,
 RcvDat :=RcvSocketDat[0]);
 SktClose_instance(Execute:=FALSE);
END_IF;

IF (DoTCP=TRUE) THEN
 CASE Stage OF
 1 :
 SktTCPAccept_instance(
 Execute :=TRUE,
 SrcTcpPort:=UINT#6000,
 TimeOut :=UINT#0
 Socket =>WkSocket);

 IF (SktTCPAccept_instance.Done=TRUE) THEN
 Stage:=INT#2;
 ELSIF (SktTCPAccept_instance.Error=TRUE) THEN
 Stage:=INT#10;
 END_IF;

 2 :
 SktTCPRcv_instance(
 Execute :=TRUE,
 Socket :=WkSocket,
 TimeOut:=UINT#0,
 Size :=UINT#2000,
 RcvDat :=RcvSocketDat[0]);

 IF (SktTCPRcv_instance.Done=TRUE) THEN
 Stage:=INT#3;
 ELSIF (SktTCPRcv_instance.Error=TRUE) THEN
 Stage:=INT#20;
 END_IF;

// Start sequence when Trigger changes to TRUE.

// Request accepting a socket connection.

// Local TCP port number
// Timeout time
// Socket

// Socket
// Timeout time
// Receive data size
// Receive data

// Normal end

// Error end

// Normal end

// Error end

// Initialize instance.
// Initialize instance.

// Initialize instance.

// Initialize instance.
// Dummy

// Request receiving data

Trigger
DoTCP
Stage
RcvSocketDat
WkSocket

SendSocketDat
SktTCPAccept_instance
SktTCPSend_instance
SktTCPRcv_instance
SktClose_instance

False
False
0
[2000(16#0)]
(Handle:=0, SrcAdr:=(PortNo:=0,
 IpAdr:=’’), DstAdr:=(PortNo:=0, IpAdr:=’’))
[2000(16#0)]

BOOL
BOOL
INT
ARRAY[0..1999] OF BYTE
_sSOCKET

ARRAY[0..1999] OF BYTE
SktTCPAccept
SktTCPSend
SktTCPRcv
SktClose

_EIP_EtnOnlineSta BOOL

Constant

Internal
Variables

External
Variables Variable Data type Comment

Online

// Dummy

2 Instruction Descriptions

2-776 NJ-series Instructions Reference Manual (W502)

 3 :
 SendSocketDat:=RcvSocketDat;
 SktTCPSend_instance(
 Execute :=TRUE,
 Socket :=WkSocket,
 SendDat:=SendSocketDat[0],
 Size :=UINT#2000);

 IF (SktTCPSend_instance.Done=TRUE) THEN
 Stage:=INT#4;
 ELSIF (SktTCPSend_instance.Error=TRUE) THEN
 Stage:=INT#30;
 END_IF;

 4 :
 SktClose_instance(
 Execute:=TRUE,
 Socket :=WkSocket);

 IF (SktClose_instance.Done=TRUE) THEN
 Stage:=INT#0;
 ELSIF (SktClose_instance.Error=TRUE) THEN
 Stage:=INT#40;
 END_IF;

 0 :
 DoTCP:=FALSE;
 Trigger:=FALSE;

ELSE
 DoTCP:=FALSE;
 Trigger:=FALSE;
 END_CASE

END_IF;

// Socket

// Normal end

// Error end

// Request closing.

// Normal end

// Interrupted by error.

// Socket
// Send data
// Send data size

// Normal end

// Error end

// Request sending data.

2-777

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

S
ktT

C
P

R
cv

SktTCPRcv

The SktTCPRcv instruction reads the data from the receive buffer for a TCP socket for the built-in Eth-
erNet/IP.

Instruction Name
FB/
FUN

Graphic expression ST expression

SktTCPRcv TCP Socket
Receive

FB None SktTCPRcv_instance(Execute,
Socket, TimeOut, Size, RcvDat,
Done, Busy, Error, ErrorID,
RcvSize);

Variables

Name Meaning I/O Description Valid range Unit Default
Socket Socket

Input

Socket --- --- ---

TimeOut Timeout time 0: No timeouts

1 to 65535: 0.1 to 6553.5s
Depends on data
type.

0.1 s 0

Size Stored size The number of bytes to read
from the receive buffer

0 to 2000 Bytes 1

RcvDat[]
(array)

Receive data In-out Receive data Depends on data
type.

--- ---

RcvSize Receive data
size

Output The number of bytes actually
stored in RcvDat[]

1 to 2000 Bytes ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

Socket Refer to Function for details on the structure _sSOCKET.

TimeOut OK

Size OK

RcvDat[]
(array)

OK

RcvSize OK

2 Instruction Descriptions

2-778 NJ-series Instructions Reference Manual (W502)

The SktTCPRcv instruction stores the data in the receive buffer for the socket that is specified with
Socket in receive data RcvDat[]. The number of bytes to store is specified with Size. The number of
bytes that is actually stored is assigned to RcvSize. If there is no data in the receive buffer, the instruc-
tion waits for data for the time that is set with timeout time TimeOut. Storage of the data to RcvDat[] is
completed when the instruction is completed normally (i.e., when the value of Done changes to TRUE).

The data type of Socket is structure _sSOCKET. The specifications are as follows:

* These members are not used for this instruction.

Refer to the NJ-series CPU Unit Built-in EtherNet/IP Port User’s Manual (Cat. No. W506) for details on
socket services.

• Execution of this instruction is continued until processing is completed even if the value of Execute
changes to FALSE or the execution time exceeds the task period. The value of Done changes to
TRUE when processing is completed. Use this to confirm normal completion of processing.

• Refer to Using this Section on page 2-2 for a timing chart for Execute, Done, Busy, and Error.

• This instruction can be used only for the built-in EtherNet/IP on NJ-series CPU Units.

• This instruction must be used in ST. It cannot be used in a ladder diagram.

• Up to 2,000 bytes of data can be read with one instruction. A maximum of 2,000 bytes is read even if
the RcvDat[] array is larger than 2,000 bytes.

Function

Name Meaning Description Data type Valid range Unit Default
Socket Socket Socket _sSOCKET --- --- ---

Handle Handle Handle for data commu-
nications

UDINT Depends on
data type.

--- ---

SrcAdr* Local address Local IP address and
port number

sSOCKET
ADDRESS

--- --- ---

PortNo* Port number Port number UINT 1 to 65535

--- ---
IpAdr* IP address IP address or host

name. A DNS or Hosts
setting is required to use
a host name.

STRING Depends on
data type.

DstAdr* Destination
address

Destination IP address
and port number

sSOCKET
ADDRESS

--- --- ---

PortNo* Port number Port number UINT 1 to 65535

--- ---
IpAdr* IP address IP address or host

name. A DNS or Hosts
setting is required to use
a host name.

STRING Depends on
data type.

Related System-defined Variables

Name Meaning
Data
type

Description

_EIP_EtnOnlineSta Online BOOL Status of built-in EtherNet/IP port communications

TRUE: Can be used.

FALSE: Cannot be used.

Additional Information

Precautions for Correct Use

2-779

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

S
ktT

C
P

R
cv

• If the size of data that was received by the specified socket is smaller than the value of Size, then all
of the received data is stored in RecDat[]. Then size of data that was stored is stored in RcvSize.

• If the size of data that was received by the specified socket is larger than the value of Size, then the
size of received data specified by Size is stored in RecDat[].

• The receive data is not read if the value of Size is 0.

• If the SktClose instruction closes the connection when there is no data in the receive buffer, an error
end occurs even if a timeout has not occurred.

• You can execute a maximum of 32 of the following instructions at the same time: SktUDPCreate,
SktUDPRcv, SktUDPSend, SktTCPAccept, SktTCPConnect, SktTCPRcv, SktTCPSend, SktGetTCP-
Status, SktClose, and SktClearBuf.

• An error occurs in the following cases. Error will change to TRUE.

• There is a setting error for the local IP address.

• The value of a member of Socket is outside of the valid range.

• Data reception is in progress for the socket specified with Socket.

• The socket specified with Socket is not connected.

• The handle specified by Socket.Handle does not exist.

• Data was not received before the time that is specified with TimeOut expired.

• The socket was closed with the SktClose instruction.

Refer to the sample programming that is provided for the SktTCPConnect instruction (page 2-770).

Sample Programming

2 Instruction Descriptions

2-780 NJ-series Instructions Reference Manual (W502)

SktTCPSend

The SktTCPSend instruction sends data from a TCP port for the built-in EtherNet/IP.

The SktTCPSend instruction sends send data SendDat[] from the socket that is specified with Socket.
The number of bytes to send is specified with Size.

Instruction Name
FB/
FUN

Graphic expression ST expression

SktTCPSend TCP Socket
Send

FB None SktTCPSend_instance(Execute,
Socket, SendDat, Size, Done,
Busy, Error, ErrorID);

Variables

Name Meaning I/O Description Valid range Unit Default
Socket Socket

Input

Socket ---

--- ---SendDat[]
(array)

Send data Send data Depends on data
type.

Size Send data
size

Send data size 0 to 2000 Bytes 1

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

Socket Refer to Function for details on the structure _sSOCKET.

SendDat[]
(array)

OK

Size OK

Function

2-781

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

S
ktT

C
P

S
end

The data type of Socket is structure _sSOCKET. The specifications are as follows:

* These members are not used for this instruction.

Refer to the NJ-series CPU Unit Built-in EtherNet/IP Port User’s Manual (Cat. No. W506) for details on
socket services.

• Execution of this instruction is continued until processing is completed even if the value of Execute
changes to FALSE or the execution time exceeds the task period. The value of Done changes to
TRUE when processing is completed. Use this to confirm normal completion of processing.

• Refer to Using this Section on page 2-2 for a timing chart for Execute, Done, Busy, and Error.

• This instruction can be used only for the built-in EtherNet/IP on NJ-series CPU Units.

• This instruction must be used in ST. It cannot be used in a ladder diagram.

• Up to 2,000 bytes of data can be sent with one instruction. A maximum of 2,000 bytes is sent even if
the SendDat[] array is larger than 2,000 bytes.

• Data is not sent if the value of Size is 0.

• You can execute a maximum of 32 of the following instructions at the same time: SktUDPCreate,
SktUDPRcv, SktUDPSend, SktTCPAccept, SktTCPConnect, SktTCPRcv, SktTCPSend, SktGetTCP-
Status, SktClose, and SktClearBuf.

• An error occurs in the following cases. Error will change to TRUE.

• There is a setting error for the local IP address.

• The value of a member of Socket is outside of the valid range.

• Data transmission is in progress for the socket specified with Socket.

Name Meaning Description Data type Valid range Unit Default
Socket Socket Socket _sSOCKET --- --- ---

Handle Handle Handle for data commu-
nications

UDINT Depends on
data type.

--- ---

SrcAdr* Local address Local IP address and
port number

sSOCKET
ADDRESS

--- --- ---

PortNo* Port number Port number UINT 1 to 65535

--- ---
IpAdr* IP address IP address or host

name. A DNS or Hosts
setting is required to use
a host name.

STRING Depends on
data type.

DstAdr* Destination
address

Destination IP address
and port number

sSOCKET
ADDRESS

--- --- ---

PortNo* Port number Port number UINT 1 to 65535

--- ---
IpAdr* IP address IP address or host

name. A DNS or Hosts
setting is required to use
a host name.

STRING Depends on
data type.

Related System-defined Variables

Name Meaning
Data
type

Description

_EIP_EtnOnlineSta Online BOOL Status of built-in EtherNet/IP port communications

TRUE: Can be used.

FALSE: Cannot be used.

Additional Information

Precautions for Correct Use

2 Instruction Descriptions

2-782 NJ-series Instructions Reference Manual (W502)

• The socket specified with Socket is not connected.

• The handle specified by Socket.Handle does not exist.

Refer to the sample programming that is provided for the SktTCPConnect instruction (page 2-770).

Sample Programming

2-783

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

S
ktG

etT
C

P
S

tatus

SktGetTCPStatus

The SktGetTCPStatus instruction reads the status of a TCP socket.

* _CLOSED, _LISTEN, _SYS_SENT, _SYN_RECEIVED, _ESTABLISHED, _CLOSE_WAIT, _FIN_WAIT1, _CLOSING,
_LAST_ACK, _FIN_WAIT2, or _TIME_WAIT

Instruction Name
FB/
FUN

Graphic expression ST expression

SktGetTCP
Status

Read TCP
Socket Status

FB None SktGetTCPStatus_instance(Execute,
Socket, Done, Busy, Error, ErrorID,
TcpStatus, DatRcvFlag);

Variables

Name Meaning I/O Description Valid range Unit Default
Socket Socket Input Socket --- --- ---

TcpStatus TCP connec-
tion status

Output

TCP connection status *

--- ---DatRcvFlag Data
Received Flag

TRUE: Data is received.

FALSE: Data is not received.

Depends on data
type.

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

Socket Refer to Function for details on the structure _sSOCKET.

TcpStatus Refer to Function for the enumerators of the enumerated type _eCONNECTION_STATE.

DatRcvFlag OK

2 Instruction Descriptions

2-784 NJ-series Instructions Reference Manual (W502)

The SktGetTCPStatus instruction gets the TCP connection status TcpStatus of the socket that is spec-
ified with Socket. If there is receive data in the receive buffer, the value of data received flag DatRecv-
Flag changes to TRUE. Storage of the data to TcpStatus and DatRcvFlag is completed when the
instruction is completed normally (i.e., when the value of Done changes to TRUE).

The data type of Socket is structure _sSOCKET. The specifications are as follows:

* These members are not used for this instruction.

The data type of TcpSta is enumerated type _eCONNECTION_STATE. The meanings of the enumera-
tors of enumerated type _eCONNECTION_STATE are as follows:

Function

Name Meaning Description Data type Valid range Unit Default
Socket Socket Socket _sSOCKET --- --- ---

Handle Handle Handle for data commu-
nications

UDINT Depends on
data type.

--- ---

SrcAdr* Local address Local IP address and
port number

sSOCKET
ADDRESS

--- --- ---

PortNo* Port number Port number UINT 1 to 65535

--- ---
IpAdr* IP address IP address or host

name. A DNS or Hosts
setting is required to use
a host name.

STRING Depends on
data type.

DstAdr* Destination
address

Destination IP address
and port number

sSOCKET
ADDRESS

--- --- ---

PortNo* Port number Port number UINT 1 to 65535

--- ---
IpAdr* IP address IP address or host

name. A DNS or Hosts
setting is required to use
a host name.

STRING Depends on
data type.

Enumerators Meaning
_CLOSED CLOSED status

_LISTEN LISTEN status

_SYN SENT SYN SENT status
_SYN RECEIVED SYN RECEIVED status

_ESTABLISHED ESTABLISHED status

_CLOSE WAIT CLOSE WAIT status
_FIN WAIT1 FIN WAIT1 status

_CLOSING CLOSING status

_LAST ACK LAST ACK status
_FIN WAIT2 FIN WAIT2 status

_TIME WAIT TIME WAIT status

Related System-defined Variables

Name Meaning
Data
type

Description

_EIP_EtnOnlineSta Online BOOL Status of built-in EtherNet/IP port communications

TRUE: Can be used.

FALSE: Cannot be used.

2-785

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

S
ktG

etT
C

P
S

tatus

Refer to the NJ-series CPU Unit Built-in EtherNet/IP Port User’s Manual (Cat. No. W506) for details on
socket services.

• Execution of this instruction is continued until processing is completed even if the value of Execute
changes to FALSE or the execution time exceeds the task period. The value of Done changes to
TRUE when processing is completed. Use this to confirm normal completion of processing.

• Refer to Using this Section on page 2-2 for a timing chart for Execute, Done, Busy, and Error.

• This instruction can be used only for the built-in EtherNet/IP on NJ-series CPU Units.

• This instruction must be used in ST. It cannot be used in a ladder diagram.

• You can execute a maximum of 32 of the following instructions at the same time: SktUDPCreate,
SktUDPRcv, SktUDPSend, SktTCPAccept, SktTCPConnect, SktTCPRcv, SktTCPSend, SktGetTCP-
Status, SktClose, and SktClearBuf.

• An error occurs in the following cases. Error will change to TRUE.

• The value of a member of Socket is outside of the valid range.

• The handle specified by Socket.Handle does not exist.

Refer to the sample programming that is provided for the SktTCPConnect instruction (page 2-770).

Additional Information

Precautions for Correct Use

Sample Programming

2 Instruction Descriptions

2-786 NJ-series Instructions Reference Manual (W502)

SktClose

The SktClose instruction closes the specified TCP or UDP socket for the built-in EtherNet/IP.

The SktClose instruction closes the socket that is specified with Socket. If a TCP socket is specified, the
socket is disconnected before it is closed. If the socket handle Socket.Handle is 0, all TCP and UDP
ports that currently use the socket service are closed. Close processing for the TCPUDP sockets is
completed when the instruction is completed normally (i.e., when the value of Done changes to TRUE).

Instruction Name
FB/
FUN

Graphic expression ST expression

SktClose Close
TCP/UDP
Socket

FB None SktClose_instance(Execute,
Socket, Done, Busy, Error,
ErrorID);

Variables

Name Meaning I/O Description Valid range Unit Default
Socket Socket Input Socket --- --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

Socket Refer to Function for details on the structure _sSOCKET.

Function

2-787

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

S
ktC

lose

The data type of Socket is structure _sSOCKET. The specifications are as follows:

* These members are not used for this instruction.

Refer to the NJ-series CPU Unit Built-in EtherNet/IP Port User’s Manual (Cat. No. W506) for details on
socket services.

• Execution of this instruction is continued until processing is completed even if the value of Execute
changes to FALSE or the execution time exceeds the task period. The value of Done changes to
TRUE when processing is completed. Use this to confirm normal completion of processing.

• Refer to Using this Section on page 2-2 for a timing chart for Execute, Done, Busy, and Error.

• This instruction can be used only for the built-in EtherNet/IP on NJ-series CPU Units.

• This instruction must be used in ST. It cannot be used in a ladder diagram.

• If the SktUDPRcv or SktTCPRcv instruction is executed and then the SktClose instruction is executed
while the socket for the specified handle is on standby to received data, the standby status is can-
celed.

• If more than one connection is open for the same local port number, only the connection for the spec-
ified socket is closed.

• If the value of the socket handle Socket.Handle is 0, all connections that are on standby for the Skt-
TCPAccept instruction are canceled.

Name Meaning Description Data type Valid range Unit Default
Socket Socket Socket _sSOCKET --- --- ---

Handle Handle Handle of the connec-
tion to close.

0: Closes all TCP con-
nections that currently
use the socket service.

UDINT Depends on
data type.

--- ---

SrcAdr* Local address Local IP address and
port number

sSOCKET
ADDRESS

--- --- ---

PortNo* Port number Port number UINT 1 to 65535

--- ---
IpAdr* IP address IP address or host

name. A DNS or Hosts
setting is required to use
a host name.

STRING Depends on
data type.

DstAdr* Destination
address

Destination IP address
and port number

sSOCKET
ADDRESS

--- --- ---

PortNo* Port number Port number UINT 1 to 65535

--- ---
IpAdr* IP address IP address or host

name. A DNS or Hosts
setting is required to use
a host name.

STRING Depends on
data type.

Related System-defined Variables

Name Meaning
Data
type

Description

_EIP_EtnOnlineSta Online BOOL Status of built-in EtherNet/IP port communications

TRUE: Can be used.

FALSE: Cannot be used.

Additional Information

Precautions for Correct Use

2 Instruction Descriptions

2-788 NJ-series Instructions Reference Manual (W502)

• You can execute a maximum of 32 of the following instructions at the same time: SktUDPCreate,
SktUDPRcv, SktUDPSend, SktTCPAccept, SktTCPConnect, SktTCPRcv, SktTCPSend, SktGetTCP-
Status, SktClose, and SktClearBuf.

• An error occurs in the following cases. Error will change to TRUE.

• There is a setting error for the local IP address.

• The value of a member of Socket is outside of the valid range.

• The handle specified by Socket.Handle does not exist.

Refer to the sample programming for the following instructions: SktUDPCreate (page 2-754) and Skt-
TCPConnect (page 2-770).

Sample Programming

2-789

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

S
ktC

learB
uf

SktClearBuf

The SktClearBuf instruction clears the receive buffer for the specified TCP or UDP socket for the built-in
EtherNet/IP.

The SktClearBuf instruction clears the receive buffer for the socket that is specified with Socket. Clear
processing of the receive buffer is completed when the instruction is completed normally (i.e., when the
value of Done changes to TRUE).

Instruction Name
FB/
FUN

Graphic expression ST expression

SktClearBuf Clear
TCP/UDP
Socket Receive
Buffer

FB None SktClearBuf_instance(Execute,
Socket, Done, Busy, Error,
ErrorID);

Variables

Name Meaning I/O Description Valid range Unit Default
Socket Socket Input Socket --- --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

Socket Refer to Function for details on the structure _sSOCKET.

Function

2 Instruction Descriptions

2-790 NJ-series Instructions Reference Manual (W502)

The data type of Socket is structure _sSOCKET. The specifications are as follows:

* These members are not used for this instruction.

Refer to the NJ-series CPU Unit Built-in EtherNet/IP Port User’s Manual (Cat. No. W506) for details on
socket services.

• Execution of this instruction is continued until processing is completed even if the value of Execute
changes to FALSE or the execution time exceeds the task period. The value of Done changes to
TRUE when processing is completed. Use this to confirm normal completion of processing.

• Refer to Using this Section on page 2-2 for a timing chart for Execute, Done, Busy, and Error.

• This instruction can be used only for the built-in EtherNet/IP on NJ-series CPU Units.

• This instruction must be used in ST. It cannot be used in a ladder diagram.

• You can execute a maximum of 32 of the following instructions at the same time: SktUDPCreate,
SktUDPRcv, SktUDPSend, SktTCPAccept, SktTCPConnect, SktTCPRcv, SktTCPSend, SktGetTCP-
Status, SktClose, and SktClearBuf.

• An error occurs in the following cases. Error will change to TRUE.

• The value of a member of Socket is outside of the valid range.

• The socket that is specified by Socket does not exist.

• The handle specified by Socket.Handle does not exist.

Name Meaning Description Data type Valid range Unit Default
Socket Socket Socket _sSOCKET --- --- ---

Handle Handle The handle of the socket
for which to clear the
receive buffer

UDINT Depends on
data type.

--- ---

SrcAdr* Local address Local IP address and
port number

sSOCKET
ADDRESS

--- --- ---

PortNo* Port number Port number UINT 1 to 65535

--- ---
IpAdr* IP address IP address or host

name. A DNS or Hosts
setting is required to use
a host name.

STRING Depends on
data type.

DstAdr* Destination
address

Destination IP address
and port number

sSOCKET
ADDRESS

--- --- ---

PortNo* Port number Port number UINT 1 to 65535

--- ---
IpAdr* IP address IP address or host

name. A DNS or Hosts
setting is required to use
a host name.

STRING Depends on
data type.

Related System-defined Variables

Name Meaning
Data
type

Description

_EIP_EtnOnlineSta Online BOOL Status of built-in EtherNet/IP port communications

TRUE: Can be used.

FALSE: Cannot be used.

Additional Information

Precautions for Correct Use

2-791

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

C
o

m
m

u
n

icatio
n

s In
stru

ctio
n

s

2

S
ktC

learB
uf

Refer to the sample programming that is provided for the SktTCPConnect instruction (page 2-770).

Sample Programming

2 Instruction Descriptions

2-792 NJ-series Instructions Reference Manual (W502)

S
D

 M
em

o
ry C

ard
 In

stru
ctio

n
s

2

2-793NJ-series Instructions Reference Manual (W502)

SD Memory Card Instructions

Instruction Name Page

FileWriteVar Write Variable to File 2-794

FileReadVar Read Variable from File 2-799

FileOpen Open File 2-803

FileClose Close File 2-806

FileSeek Seek File 2-809

FileRead Read File 2-812

FileWrite Write File 2-819

FileGets Get Text String 2-826

FilePuts Put Text String 2-833

FileCopy Copy File 2-840

FileRemove Delete File 2-848

FileRename Change File Name 2-852

DirCreate Create Directory 2-857

DirRemove Delete Directory 2-860

2 Instruction Descriptions

2-794 NJ-series Instructions Reference Manual (W502)

FileWriteVar

The FileWriteVar instruction writes the value of a variable to the specified file in the SD Memory Card.
The value is written in binary format.

* If you omit the input parameter, the default value is not applied. A building error will occur.

The FileWriteVar instruction writes the value of variable WriteVar to the file specified by FileName in the
SD Memory Card. The value is written in binary format. You can specify an enumeration, array, array
element, structure, or structure member for WriteVar.

If a file with the name FileName does not exist on the SD Memory Card, it is created. FileName
includes the path. If a specified directory does not exist in the SD Memory Card, it is created.

If a file with the name FileName already exists in the SD Memory Card, the following processing is per-
formed depending on the value of overwrite enable OverWrite.

Instruction Name FB/FUN Graphic expression ST expression

FileWriteVar Write Variable to
File

FB FileWriteVar_instance(Execute,
FileName, WriteVar, OverWrite,
Done, Busy, Error, ErrorID);

Variables

Name Meaning I/O Description Valid range Unit Default

FileName File name

Input

Name of file to which to
write variable

Depends on data type. ---

''

WriteVar Variable Variable to write *

OverWrite Overwrite
enable

TRUE: Enable overwrite.

FALSE: Prohibit overwrite.

FALSE

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

FileName OK

WriteVar
OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

An enumeration, array, array element, structure, or structure member can also be specified.

OverWrite OK

Function

Value of OverWrite Processing

TRUE (Enable overwrite.) The existing file is overwritten.

FALSE (Prohibit overwrite.) The file is not overwritten and an error occurs.

FileWriteVar

Execute Done
FileName Busy
WriteVar Error
OverWrite ErrorID

FileWriteVar_instance

2-795

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
D

 M
em

o
ry C

ard
 In

stru
ctio

n
s

2

F
ileW

riteV
ar

The following figure shows a programming example. The contents of array variable abc[0] is written to a
file named ‘Temp\f_name.bin.’

The root directory of the file name is the top level of the SD Memory Card.

Related System-defined Variables

Name Meaning Data type Description

_Card1Ready SD Memory Card
Ready Flag

BOOL This flag indicates if the SD Memory Card is physically
inserted and is mounted normally, i.e., if it can be
accessed by instructions and communications com-
mands.

TRUE: Can be used.

FALSE: Cannot be used.

_Card1Protect SD Memory Card Write
Protected Flag

BOOL This flag indicates if the SD Memory Card is write pro-
tected when it is inserted and ready to use.

TRUE: Write protected.

FALSE: Not write protected.

_Card1Err SD Memory Card Error
Flag

BOOL This flag indicates if an unspecified SD Memory Card
(e.g., an SDHC card) is mounted or if the format is
incorrect (i.e., not FAT16 or corrupted).

TRUE: Error.

FALSE: No error.

_Card1Access SD Memory Card
Access Flag

BOOL This flag indicates if the SD Memory Card is currently
being accessed.

TRUE: Being accessed.

FALSE: Not being accessed.

_Card1PowerFail SD Memory Card
Power Interruption Flag

BOOL This flag indicates if an error occurred in completing
processing when power was interrupted during SD
Memory Card access. This flag is not cleared automat-
ically.

TRUE: Error.

FALSE: No error.

Additional Information

FileWriteVar_instance(A, ‘Temp/f_name.bin’, abc,
 TRUE, def, ghi, jkl, mno);

LD ST

A

’Temp/f_name.bin’
abc

TRUE

FileWriteVar

Execute Done
FileName Busy
WriteVar Error
OverWrite ErrorID

FileWriteVar_instance

ghi
jkl
mno

def

2 Instruction Descriptions

2-796 NJ-series Instructions Reference Manual (W502)

• Execution of this instruction is continued until processing is completed even if the value of Execute
changes to FALSE or the execution time exceeds the task period. The value of Done changes to
TRUE when processing is completed. Use this to confirm normal completion of processing.

• Refer to Using this Section on page 2-2 for a timing chart for Execute, Done, Busy, and Error.

• If the specified file is larger than the size of WriteVar, an error does not occur and only data that cor-
responds to the size of WriteVar is written. Once this instruction is executed, the specified file is
reduced to the size of WriteVar.

• Data is written in byte increments. The lower bytes are written before the upper bytes (little endian).

• If WriteVar is a structure, adjustment areas between members may be inserted depending on the
composition.

• An error occurs in the following cases. Error will change to TRUE.

• The SD Memory Card is not in a usable condition.

• The SD Memory Card is write protected.

• There is insufficient space available on the SD Memory Card.

• The value of FileName is not a valid file name.

• The maximum number of files or directories is exceeded.

• A file with the name FileName already exits and the file is being accessed.

• A file with the name FileName already exits and the value of OverWrite is FALSE.

• A file with the name FileName already exits and the file is write protected.

• If more than four SD Memory Card instructions that do not have a FileID variable (i.e., FileWrite-
Var, FileReadVar, FileCopy, DirCreate, FileRemove, DirRemove, and FileRename) are executed
at the same time.

• The value of FileName exceeds the maximum number of bytes allowed in a file name.

• An error that prevents access occurs during SD Memory Card access.

Precautions for Correct Use

2-797

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
D

 M
em

o
ry C

ard
 In

stru
ctio

n
s

2

F
ileW

riteV
ar

This sample writes all of array variable Var1[] to the file ‘File1.dat.’

Sample Programming

Processing completed.
Execution condition
Processing
Write data

Variable Data type Initial value Comment

LD

OperatingEnd
Trigger
Operating
Var1
RS_instance
FileWriteVar_instance

False
False
False
[1000(0)]

BOOL
BOOL
BOOL
ARRAY[0..999] OF INT
RS
FileWriteVar

FileWriteVar_instance.Done

FileWriteVar_instance.Error

Determine if execution of the FileWriteVar instruction is completed.

Accept trigger.

Execute FileWriteVar instruction.

OperatingEnd

Operating

OperatingEnd

Trigger _Card1Ready RS
 Set Q1
 Reset1

RS_instance

Operating

 ‘File1.dat’
 Var1
 TRUE

Operating FileWriteVar_instance.Done

Processing after normal end.
Inline ST

Inline ST

1 // Processing after normal end.
2 ;

Operating FileWriteVar_instance.Error

Processing after error end.

1 // Processing after error end.
2 ;

FileWriteVar

Execute Done
FileName Busy
WriteVar Error
OverWrite ErrorID

FileWriteVar_instance

_Card1Ready BOOL

Variable Data type Comment

SD Memory Card Ready Flag

Internal Variables

External Variables

2 Instruction Descriptions

2-798 NJ-series Instructions Reference Manual (W502)

Execution condition
Value of Trigger from previous task period
Processing started.
Processing
Variable

Variable Data type Initial value Comment

ST

IF ((Trigger=TRUE) AND (LastTrigger=FALSE) AND (_Card1Ready=TRUE)) THEN
 OperatingStart:=TRUE;
 Operating :=TRUE;
END_IF;
LastTrigger:=Trigger;

IF (OperatingStart=TRUE) THEN
 FileWriteVar_instance(
 Execute :=FALSE,
 WriteVar :=Var1),
 OperatingStart :=FALSE;
END_IF;

IF (Operating=TRUE) THEN
 FileWriteVar_instance(
 Execute :=TRUE,
 FileName :=’File1.dat’,
 WriteVar :=Var1,
 OverWrite:=TRUE);

 IF (FileWriteVar_instance.Done=TRUE) THEN

 Operating:=FALSE;
 END_IF;

 IF (FileWriteVar_instance.Error=TRUE) THEN

 Operating:=FALSE;
 END_IF;
END_IF;

// Detect when Trigger changes to TRUE.

// Initialize FileWriteVar instruction.

// File name
// Variable
// Enable overwrite.

// Execute FileWriteVar instruction.

// Processing after normal end.

// Processing after error end.

Trigger
LastTrigger
OperatingStart
Operating
Var1
FileWriteVar_instance

False
False
False
False
[1000(0)]

BOOL
BOOL
BOOL
BOOL
ARRAY[0..999] OF INT
FileWriteVar

_Card1Ready BOOL

Variable Data type Comment

SD Memory Card Ready Flag

Internal Variables

External Variables

2-799

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
D

 M
em

o
ry C

ard
 In

stru
ctio

n
s

2

F
ileR

eadV
ar

FileReadVar

The FileReadVar instruction reads the contents of the specified file on the SD Memory Card as binary
data and writes it to a variable.

The FileReadVar instruction reads the contents of the file specified by FileName from the SD Memory
Card as binary data. The contents that is read is assigned to variable to write ReadVar. You can specify
an enumeration, array, array element, structure, or structure member for ReadVar.

The following figure shows a programming example. Here, the contents of the file called
‘Temp/f_name.bin’ is read and written to the array variable abc[].

Instruction Name FB/FUN Graphic expression ST expression

FileReadVar Read Variable from
File

FB FileReadVar_instance(Execute,
FileName, ReadVar, Done, Busy,
Error, ErrorID);

Variables

Name Meaning I/O Description Valid range Unit Default

FileName File name Input Name of file to read Depends on data type. --- ''

ReadVar Variable to
write

In-out Variable to which to write the
value that was read

Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

FileName OK

ReadVar
OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

An enumeration, array, array element, structure, or structure member can also be specified.

Function

FileReadVar

Execute Done
FileName Busy
ReadVar

 Error
 ErrorID

FileReadVar_instance

FileReadVar_instance(A, ‘Temp/f_name.bin’, abc,
 def, ghi, jkl, mno);

LD ST

A

’Temp/f_name.bin’

abc abc

def

ghi

jkl
mno

FileReadVar

Execute Done
FileName Busy
ReadVar

 Error
 ErrorID

FileReadVar_instance

2 Instruction Descriptions

2-800 NJ-series Instructions Reference Manual (W502)

The root directory of the file name is the top level of the SD Memory Card.

• Execution of this instruction is continued until processing is completed even if the value of Execute
changes to FALSE or the execution time exceeds the task period. The value of Done changes to
TRUE when processing is completed. Use this to confirm normal completion of processing.

• Refer to Using this Section on page 2-2 for a timing chart for Execute, Done, Busy, and Error.

• If the specified file is larger than the size of ReadVar, an error does not occur and only data that cor-
responds to the size of ReadVar is read.

• If the specified file is smaller than the size of ReadVar, an error does not occur and only data that cor-
responds to the size of the specified file is read. The remaining area in ReadVar will retain the values
from before execution of this instruction.

• Data is read in byte increments. The lower bytes are read before the upper bytes (little endian).

• If ReadVar is a structure, adjustment areas between members may be inserted depending on the
composition.

• An error occurs in the following cases. Error will change to TRUE.

• The SD Memory Card is not in a usable condition.

• The file specified by FileName does not exist.

• The value of FileName is not a valid file name.

• The file specified by FileName is being accessed.

Related System-defined Variables

Name Meaning Data type Description

_Card1Ready SD Memory Card
Ready Flag

BOOL This flag indicates if the SD Memory Card is physically
inserted and is mounted normally, i.e., if it can be accessed
by instructions and communications commands.

TRUE: Can be used.

FALSE: Cannot be used.

_Card1Protect SD Memory Card Write
Protected Flag

BOOL This flag indicates if the SD Memory Card is write protected
when it is inserted and ready to use.

TRUE: Write protected.

FALSE: Not write protected.

_Card1Err SD Memory Card Error
Flag

BOOL This flag indicates if an unspecified SD Memory Card (e.g.,
an SDHC card) is mounted or if the format is incorrect (i.e.,
not FAT16 or corrupted).

TRUE: Error.

FALSE: No error.

_Card1Access SD Memory Card
Access Flag

BOOL This flag indicates if the SD Memory Card is currently being
accessed.

TRUE: Being accessed.

FALSE: Not being accessed.

_Card1PowerFail SD Memory Card
Power Interruption Flag

BOOL This flag indicates if an error occurred in completing process-
ing when power was interrupted during SD Memory Card
access. This flag is not cleared automatically.

TRUE: Error.

FALSE: No error.

Additional Information

Precautions for Correct Use

2-801

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
D

 M
em

o
ry C

ard
 In

stru
ctio

n
s

2

F
ileR

eadV
ar

• If more than four SD Memory Card instructions that do not have a FileID variable (i.e., FileWrite-
Var, FileReadVar, FileCopy, DirCreate, FileRemove, DirRemove, and FileRename) are executed
at the same time.

• The value of FileName exceeds the maximum number of bytes allowed in a file name.

• An error that prevents access occurs during SD Memory Card access.

This sample reads the contents of the file ‘File1.dat’ and stores it in array variable Var1.

Sample Programming

Processing completed.
Execution condition
Processing
Read size

Variable Data type Initial value Comment

LD

OperatingEnd
Trigger
Operating
Var1
RS_instance
FileReadVar_instance

False
False
False
[1000(0)]

BOOL
BOOL
BOOL
ARRAY[0..999] OF INT
RS
FileReadVar

FileReadVar_instance.Done

FileReadVar_instance.Error

Determine if execution of the FileReadVar instruction is completed.

Accept trigger.

Execute FileReadVar instruction.

OperatingEnd

Operating

OperatingEnd

Trigger _Card1Ready RS
 Set Q1
 Reset1

RS_instance

Operating

 ‘File1.dat’

 Var1

Operating FileReadVar_instance.Done
Processing after normal end.

Inline ST

Inline ST

1 // Processing after normal end.
2 ;

Operating FileReadVar_instance.Error

Processing after error end.

1 // Processing after error end.
2 ;

FileReadVar

Execute Done
FileName Busy
ReadVar

 Error
 ErrorID

FileReadVar_instance

_Card1Ready BOOL SD Memory Card Ready Flag

Variable Data type Comment

Internal Variables

External Variables

2 Instruction Descriptions

2-802 NJ-series Instructions Reference Manual (W502)

Execution condition
Value of Trigger from previous task period
Processing started.
Processing
Variable to read

Variable Data type Initial value Comment

ST

IF ((Trigger=TRUE) AND (LastTrigger=FALSE) AND (_Card1Ready=TRUE)) THEN
 OperatingStart:=TRUE;
 Operating :=TRUE;
END_IF;
LastTrigger:=Trigger;

IF (OperatingStart=TRUE) THEN
 FileReadVar_instance(
 Execute :=FALSE,
 ReadVar:=Var1);
 OperatingStart :=FALSE;
END_IF;

IF (Operating=TRUE) THEN
 FileReadVar_instance(
 Execute :=TRUE,
 FileName :=’File1.dat’,
 ReadVar :=Var1);

 IF (FileReadVar_instance.Done=TRUE) THEN

 Operating:=FALSE;
 END_IF;

 IF (FileReadVar_instance.Error=TRUE) THEN

 Operating:=FALSE;
 END_IF;
END_IF;

// Detect when Trigger changes to TRUE.

// Initialize FileReadVar instruction.

// File name
// Variable to read

// Execute FileReadVar instruction.

// Processing after normal end.

// Processing after error end.

Trigger
LastTrigger
OperatingStart
Operating
Var1
FileReadVar_instance

False
False
False
False
[1000(0)]

BOOL
BOOL
BOOL
BOOL
ARRAY[0..999] OF INT
FileReadVar

_Card1Ready BOOL

Variable Data type Comment

SD Memory Card Ready Flag

Internal Variables

External Variables

2-803

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
D

 M
em

o
ry C

ard
 In

stru
ctio

n
s

2

F
ileO

pen

FileOpen

The FileOpen instruction opens the specified file in the SD Memory Card.

* _READ_EXIST, _RDWR_EXIST, _WRITE_CREATE, _RDWR_CREATE, _WRITE_APPEND and _RDWR_APPEND

The FileOpen instruction opens the file specified by FileName in the SD Memory Card in the mode
specified by Mode. The result is output to file ID FileID. FileID is used to specify the file in other instruc-
tions, such as FileRead and FileWrite.

The data type of Mode is enumerated type _eFOPEN_MODE. The meanings of the enumerators are as
follows:

Instruction Name FB/FUN Graphic expression ST expression

FileOpen Open File FB FileOpen_instance(Exe-
cute, FileName, Mode,
Done, Busy, Error, ErrorID,
FileID);

Variables

Name Meaning I/O Description Valid range Unit Default

FileName File name

Input
Name of file to open Depends on data type.

''

Mode Open mode Mode in which to open file * _READ_
EXIST

FileID File ID Output ID of file that was opened Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

FileName OK

Mode Refer to Function for the enumerators for the enumerated type _eFOPEN_MODE.

FileID OK

Function

Enumerator Meaning

_READ_EXIST Use this value to open a text file to read it. The file is read from the beginning.

_RDWR_EXIST Use this value to open a file to read and write it. The file is read and written from the
beginning.

_WRITE_CREATE Use this value to open a file to write it. If the file already exists, the contents is dis-
carded and the file size is set to 0. If the file does not exist, a new file is created. The
file is written from the beginning. However, if the file already exists and it is write-pro-
tected, an error occurs and the file is not opened.

FileOpen

Execute Done
FileName Busy
Mode Error
 ErrorID
 FileID

FileOpen_instance

2 Instruction Descriptions

2-804 NJ-series Instructions Reference Manual (W502)

The following figure shows a programming example. The file named ‘Temp/f_name’ is opened to
append data to it. The file ID is assigned to variable mno.

_RDWR_CREATE Use this value to open a file to read and write it. If the file already exists, the contents
is discarded and the file size is set to 0. If the file does not exist, a new file is created.
The file is read and written from the beginning.

_WRITE_APPEND Use this value to open a file to append data to it. If the file does not exist, a new file is
created. The data is appended to the end of the file. However, if the file already exists
and it is write-protected, an error occurs and the file is not opened.

_RDWR_APPEND Use this value to open a file to read and append data to it. If the file does not exist, a
new file is created. The file is read from the beginning. The data is appended to the
end of the file.

Related System-defined Variables

Name Meaning Data type Description

_Card1Ready SD Memory Card
Ready Flag

BOOL This flag indicates if the SD Memory Card is physi-
cally inserted and is mounted normally, i.e., if it can
be accessed by instructions and communications
commands.

TRUE: Can be used.

FALSE: Cannot be used.

_Card1Protect SD Memory Card Write
Protected Flag

BOOL This flag indicates if the SD Memory Card is write
protected when it is inserted and ready to use.

TRUE: Write protected.

FALSE: Not write protected.

_Card1Err SD Memory Card Error
Flag

BOOL This flag indicates if an unspecified SD Memory
Card (e.g., an SDHC card) is mounted or if the for-
mat is incorrect (i.e., not FAT16 or corrupted).

TRUE: Error.

FALSE: No error.

_Card1Access SD Memory Card
Access Flag

BOOL This flag indicates if the SD Memory Card is cur-
rently being accessed.

TRUE: Being accessed.

FALSE: Not being accessed.

_Card1PowerFail SD Memory Card
Power Interruption Flag

BOOL This flag indicates if an error occurred in completing
processing when power was interrupted during SD
Memory Card access. This flag is not cleared auto-
matically.

TRUE: Error.

FALSE: No error.

Enumerator Meaning

FileOpen_instance(A, ‘Temp/f_name.bin’,
 _WRITE_APPEND, abc,
 def, ghi, jkl, mno);

LD ST

A

’Temp/f_name.bin’
_WRITE_APPEND

FileOpen

Execute Done
FileName Busy
Mode Error
 ErrorID
 FileID

FileOpen_instance

def
ghi
jkl
mno

abc

2-805

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
D

 M
em

o
ry C

ard
 In

stru
ctio

n
s

2

F
ileO

pen

The root directory of the file name is the top level of the SD Memory Card.

• Execution of this instruction is continued until processing is completed even if the value of Execute
changes to FALSE or the execution time exceeds the task period. The value of Done changes to
TRUE when processing is completed. Use this to confirm normal completion of processing.

• Refer to Using this Section on page 2-2 for a timing chart for Execute, Done, Busy, and Error.

• This instruction must be executed before any of the following instructions: FileSeek, FileRead, File-
Write, FileGets, and FilePuts.

• You must use the FileClose instruction to close any file that is opened with this instruction after you
finish using it.

• A value is stored in FileID when the instruction is completed. Specifically, it is stored when the value
of Done changes from FALSE to TRUE.

• If a file is open when the operating mode of the CPU Unit is changed to PROGRAM mode or when a
major fault level Controller error occurs, the file is closed by the system. Any read/write operations
that are in progress are completed to the end.

• If a file is open when the power supply it stopped with the power switch, the file is not corrupted. The
file, however, will remain open. Use the FileClose instruction to close the file.

• If a file is open and the SD Memory Card is removed before the power switch is pressed, the contents
of the file will sometimes be corrupted. Always turn OFF the power supply before removing the SD
Memory Card.

• If a file is open and the SD Memory Card is removed before the power switch is pressed, the file will
remain open. Use the FileClose instruction to close the file.

• If a file is open when the power supply is stopped or the SD Memory Card is removed, the file will
remain open, but it will not be possible to read or write the file even if the SD Memory Card is inserted
again. To read/write the file, close the file and then open it again.

• An error occurs in the following cases. Error will change to TRUE.

• The SD Memory Card is not in a usable condition.

• The SD Memory Card is write protected.

• The value of Mode is _READ_EXIST or _RDWR_EXIST and the file specified with FileName does
not exist.

• The value of FileName is not a valid file name.

• The maximum number of files or directories is exceeded.

• The file specified by FileName is being accessed.

• The file specified by FileName is write protected.

• An attempt was made to open more than five files at the same time.

• The value of FileName exceeds the maximum number of bytes allowed in a file name.

• An error that prevents access occurs during SD Memory Card access.

• The value of Mode is outside of the valid range.

Refer to the sample programming for the following instructions: FileRead (page 2-812), FileWrite (page
2-819), FileGets (page 2-826), and FilePuts (page 2-833).

Additional Information

Precautions for Correct Use

Sample Programming

2 Instruction Descriptions

2-806 NJ-series Instructions Reference Manual (W502)

FileClose

The FileClose instruction closes the specified file in the SD Memory Card.

The FileClose instruction closes the file specified by FileID in the SD Memory Card.

The following figure shows a programming example. Here, the file whose file ID is the value of variable
abc is closed.

Instruction Name FB/FUN Graphic expression ST expression

FileClose Close File FB FileClose_instance(Execute,
FileID, Done, Busy, Error,
ErrorID);

Variables

Name Meaning I/O Description Valid range Unit Default

FileID File ID Input ID of file to close Depends on data type. --- 0

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

FileID OK

Function

Related System-defined Variables

Name Meaning Data type Description

_Card1Ready SD Memory Card
Ready Flag

BOOL This flag indicates if the SD Memory Card is physically
inserted and is mounted normally, i.e., if it can be
accessed by instructions and communications com-
mands.

TRUE: Can be used.

FALSE: Cannot be used.

FileClose

Execute Done
FileID Busy
 Error
 ErrorID

FileClose_instance

FileClose_instance(A, abc, def, ghi, jkl, mno);

LD ST

abc

A FileClose

Execute Done
FileID Busy
 Error
 ErrorID

FileClose_instance

ghi
jkl
mno

def

2-807

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
D

 M
em

o
ry C

ard
 In

stru
ctio

n
s

2

F
ileC

lose

You must open files with the FileOpen instruction for the following instructions: FileSeek, FileRead, File-
Write, FileGets, and FilePuts.

• Execution of this instruction is continued until processing is completed even if the value of Execute
changes to FALSE or the execution time exceeds the task period. The value of Done changes to
TRUE when processing is completed. Use this to confirm normal completion of processing.

• Refer to Using this Section on page 2-2 for a timing chart for Execute, Done, Busy, and Error.

• You must use the FileOpen instruction in advance to obtain the value for FileID.

• You must use this instruction to close any file that is opened with the FileOpen instruction after you
finish using it.

• If a file is open when the operating mode of the CPU Unit is changed to PROGRAM mode or when a
major fault level Controller error occurs, the file is closed by the system. Any read/write operations
that are in progress are completed to the end.

• If a file is open when the power supply it stopped with the power switch, the file is not corrupted. The
file, however, will remain open. Use the FileClose instruction to close the file.

• If a file is open and the SD Memory Card is removed before the power switch is pressed, the contents
of the file will sometimes be corrupted. Always turn OFF the power supply before removing the SD
Memory Card.

• If a file is open and the SD Memory Card is removed before the power switch is pressed, the file will
remain open. Use the FileClose instruction to close the file.

• If a file is open when the power supply is stopped or the SD Memory Card is removed, the file will
remain open, but it will not be possible to read or write the file even if the SD Memory Card is inserted
again. To read/write the file, close the file and then open it again.

• An error occurs in the following cases. Error will change to TRUE.

• The file specified by FileID does not exist.

• The file specified by FileID is already closed.

• The file specified by FileID is being accessed.

• An error that prevents access occurs during SD Memory Card access.

_Card1Protect SD Memory Card Write
Protected Flag

BOOL This flag indicates if the SD Memory Card is write pro-
tected when it is inserted and ready to use.

TRUE: Write protected.

FALSE: Not write protected.

_Card1Err SD Memory Card Error
Flag

BOOL This flag indicates if an unspecified SD Memory Card
(e.g., an SDHC card) is mounted or if the format is
incorrect (i.e., not FAT16 or corrupted).

TRUE: Error.

FALSE: No error.

_Card1Access SD Memory Card
Access Flag

BOOL This flag indicates if the SD Memory Card is currently
being accessed.

TRUE: Being accessed.

FALSE: Not being accessed.

_Card1PowerFail SD Memory Card
Power Interruption Flag

BOOL This flag indicates if an error occurred in completing
processing when power was interrupted during SD
Memory Card access. This flag is not cleared auto-
matically.

TRUE: Error.

FALSE: No error.

Additional Information

Precautions for Correct Use

Name Meaning Data type Description

2 Instruction Descriptions

2-808 NJ-series Instructions Reference Manual (W502)

Refer to the sample programming for the following instructions: FileRead (page 2-812), FileWrite (page
2-819), FileGets (page 2-826), and FilePuts (page 2-833).

Sample Programming

2-809

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
D

 M
em

o
ry C

ard
 In

stru
ctio

n
s

2

F
ileS

eek

FileSeek

The FileSeek instruction sets a file position indicator in the specified file in the SD Memory Card.

The FileSeek instruction sets a file position indicator in the file specified by file ID FileID in the SD Mem-
ory Card. A file position indicator is the position in a file at which to start reading or writing when an
instruction such as the FileRead or FileWrite instruction is executed. For example, to read from the
beginning of a file, set a file position indicator at the beginning of the file with the FileSeek instruction,
and then execute the FileRead instruction. The file position indicator is set at offset Offset from refer-
ence position Origin.

The data type of Origin is enumerated type _eFSEEK_ORIGIN. The meanings of the enumerators are
as follows:

Instruction Name FB/FUN Graphic expression ST expression

FileSeek Seek File FB FileSeek_instance(Exe-
cute, FileID, Offset, Origin,
Done, Busy, Error, ErrorID);

Variables

Name Meaning I/O Description Valid range Unit Default

FileID File ID

Input

ID of file in which to set file
position indicator Depends on data type.

0
Offset Offset Offset from Origin Bytes

Origin Reference
position

Reference position for file
position indicator

_SEEK_SET,
_SEEK_CUR, or
_SEEK_END

--- _SEEK
_SET

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

FileID OK

Offset OK

Origin Refer to Function for the enumerators for the enumerated type _eFSEEK_ORIGIN.

Function

Enumerator Meaning

_SEEK_SET Beginning of file

_SEEK_CUR Location of current file position indicator

_SEEK_END End of file

FileSeek

Execute Done
FileID Busy
Offset Error
Origin ErrorID

FileSeek_instance

2 Instruction Descriptions

2-810 NJ-series Instructions Reference Manual (W502)

The following figure shows a programming example. A file position indicator is set at 100 bytes from the
beginning of the file.

• Execution of this instruction is continued until processing is completed even if the value of Execute
changes to FALSE or the execution time exceeds the task period. The value of Done changes to
TRUE when processing is completed. Use this to confirm normal completion of processing.

• Refer to Using this Section on page 2-2 for a timing chart for Execute, Done, Busy, and Error.

• You must use the FileOpen instruction to obtain the value for FileID before you execute this instruc-
tion.

• An error occurs in the following cases. Error will change to TRUE.

• The value of Origin is outside of the valid range.

• The SD Memory Card is not in a usable condition.

Related System-defined Variables

Name Meaning Data type Description

_Card1Ready SD Memory Card
Ready Flag

BOOL This flag indicates if the SD Memory Card is
physically inserted and is mounted normally, i.e.,
if it can be accessed by instructions and commu-
nications commands.

TRUE: Can be used.

FALSE: Cannot be used.

_Card1Protect SD Memory Card Write
Protected Flag

BOOL This flag indicates if the SD Memory Card is write
protected when it is inserted and ready to use.

TRUE: Write protected.

FALSE: Not write protected.

_Card1Err SD Memory Card Error
Flag

BOOL This flag indicates if an unspecified SD Memory
Card (e.g., an SDHC card) is mounted or if the
format is incorrect (i.e., not FAT16 or corrupted).

TRUE: Error.

FALSE: No error.

_Card1Access SD Memory Card
Access Flag

BOOL This flag indicates if the SD Memory Card is cur-
rently being accessed.

TRUE: Being accessed.

FALSE: Not being accessed.

_Card1PowerFail SD Memory Card
Power Interruption Flag

BOOL This flag indicates if an error occurred in complet-
ing processing when power was interrupted dur-
ing SD Memory Card access. This flag is not
cleared automatically.

TRUE: Error.

FALSE: No error.

Precautions for Correct Use

FileSeek_instance(A, abc, DINT#100,
 _SEEK_SET, def,
 ghi, jkl, mno);

LD ST

abc
DINT#100

_SEEK_SET

A FileSeek

Execute Done
FileID Busy
Offset Error
Origin ErrorID

FileSeek_instance

ghi
jkl
mno

def

2-811

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
D

 M
em

o
ry C

ard
 In

stru
ctio

n
s

2

F
ileS

eek

• The file specified by FileID does not exist.

• The file specified by FileID is being accessed.

• The position specified by Origin and Offset exceeds the file size.

• An error that prevents access occurs during SD Memory Card access.

Refer to the sample programming for the following instructions: FileRead (page 2-812) and FileWrite
(page 2-819).

Sample Programming

2 Instruction Descriptions

2-812 NJ-series Instructions Reference Manual (W502)

FileRead

The FileRead instruction reads the data from the specified file in the SD Memory Card.

Instruction Name FB/FUN Graphic expression ST expression

FileRead Read File FB FileRead_instance(Exe-
cute, FileID, ReadBuf, Size,
Done, Busy, Error, ErrorID,
ReadSize, EOF);

Variables

Name Meaning I/O Description Valid range Unit Default

FileID File ID

Input

ID of file to read

Depends on data type. ---

0

Size Number of
elements to
read

Number of elements to read 1

ReadBuf[]
(array)

Read buffer In-out Buffer in which to write data
that was read

Depends on data type. --- ---

ReadSize Number of
read ele-
ments

Output

Number of elements that
were actually read

Depends on data type. --- ---EOF End of file Whether end of file was
reached

TRUE: Reached.

FALSE: Not reached.

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

FileID OK

Size OK

ReadBuf[]
(array)

OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

Arrays enumerations or structures can also be specified.

ReadSize OK

EOF OK

FileRead

Execute Done
FileID Busy
ReadBuf

Size Error
 ErrorID
 ReadSize
 EOF

FileRead_instance

2-813

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
D

 M
em

o
ry C

ard
 In

stru
ctio

n
s

2

F
ileR

ead

The FileRead instruction reads the data from position of the file position indicator in the file specified by
file ID FileID in the SD Memory Card. It then stores the data in read buffer ReadBuf[]. The file position
indicator is set at the desired location in advance with the FileSeek instruction. The amount of data that
is read is the size of the data type of ReadBuf[] times Size. You can specify an array of enumerations or
structures for ReadBuf[]. The actual number of elements that were read is stored in ReadSize. Nor-
mally, Size and ReadSize will have the same values. If the amount of data from the file position indicator
to the end of the file is smaller than Size, an error will not occur and the data to the end of the file is
stored in ReadBuf[]. If that occurs, the value of ReadSize will be smaller than the value of Size. If data is
read to the end of the file, end of file EOF changes to TRUE. Otherwise, the value of EOF will be
FALSE.

The following figure shows a programming example. If the read buffer def[] is a BYTE array, 100 bytes
of data is read from the file.

Function

Related System-defined Variables

Name Meaning Data type Description

_Card1Ready SD Memory Card
Ready Flag

BOOL This flag indicates if the SD Memory Card is
physically inserted and is mounted normally, i.e.,
if it can be accessed by instructions and commu-
nications commands.

TRUE: Can be used.

FALSE: Cannot be used.

_Card1Protect SD Memory Card Write
Protected Flag

BOOL This flag indicates if the SD Memory Card is write
protected when it is inserted and ready to use.

TRUE: Write protected.

FALSE: Not write protected.

_Card1Err SD Memory Card Error
Flag

BOOL This flag indicates if an unspecified SD Memory
Card (e.g., an SDHC card) is mounted or if the
format is incorrect (i.e., not FAT16 or corrupted).

TRUE: Error.

FALSE: No error.

_Card1Access SD Memory Card
Access Flag

BOOL This flag indicates if the SD Memory Card is cur-
rently being accessed.

TRUE: Being accessed.

FALSE: Not being accessed.

FileRead_instance(A, abc, def[0], UINT#100,
 ghi, jkl, mno, pqr, stu, vwx);

LD ST

abc

def[0] def[0]

ghi

jkl

mno
pqr
stu
vwx

UINT#100

A FileRead

Execute Done
FileID Busy
ReadBuf

Size Error
 ErrorID
 ReadSize
 EOF

FileRead_instance

2 Instruction Descriptions

2-814 NJ-series Instructions Reference Manual (W502)

• Execution of this instruction is continued until processing is completed even if the value of Execute
changes to FALSE or the execution time exceeds the task period. The value of Done changes to
TRUE when processing is completed. Use this to confirm normal completion of processing.

• Refer to Using this Section on page 2-2 for a timing chart for Execute, Done, Busy, and Error.

• If the data is read to the end of the file and the size of the data is not evenly divisible by the size of the
data type of ReadBuf[], the data that is insufficient for the data size of ReadBuf[] is discarded. The file
position indicator advances to the end of the file, and the value of EOF changes to TRUE.

• Elements beyond Size times ReadBuf[] (i.e., the elements not overwritten when data is read) will
retain the values from before execution of this instruction.

• You must use the FileOpen instruction to obtain the value for FileID before you execute this instruc-
tion.

• A value is stored in EOF when the instruction is completed. Specifically, it is stored when the value of
Done changes from FALSE to TRUE.

• If ReadBuf[] is an array of structures, adjustment areas between members may be inserted depend-
ing on the composition.

• If the operating mode of the CPU Unit is changed to PROGRAM mode or when a major fault level
Controller error occurs during instruction execution, the file is closed by the system. Any read/write
operations that are in progress are completed to the end.

• An error occurs in the following cases. Error will change to TRUE.

• The number of array elements in ReadBuf[] is smaller than the value of Size.

• The SD Memory Card is not in a usable condition.

• The file specified by FileID does not exist.

• The file specified by FileID is being accessed.

• The file specified by FileID was not opened in a reading mode.

• An error that prevents access occurs during SD Memory Card access.

In this sample, four bytes of data are read from the second byte from beginning of the file named
'ABC.bin.' The data is written to BYTE array variable InDat[]. The processing procedure is as follows:

1 The FileOpen instruction is used to open the file ‘ABC.bin.’

2 The FileSeek instruction is used to set a file position indicator at the second byte from the begin-

ning of the file.

3 The FileRead instruction is used to read four bytes of data from the position of the file position

indicator and store it in array variable InDat[].

4 The FileClose instruction is used to close the file ‘ABC.bin.’

_Card1PowerFail SD Memory Card
Power Interruption Flag

BOOL This flag indicates if an error occurred in complet-
ing processing when power was interrupted dur-
ing SD Memory Card access. This flag is not
cleared automatically.

TRUE: Error.

FALSE: No error.

Precautions for Correct Use

Sample Programming

Name Meaning Data type Description

2-815

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
D

 M
em

o
ry C

ard
 In

stru
ctio

n
s

2

F
ileR

ead

Processing completed.
Execution condition
Processing
File ID
Read data

Variable Data type Initial value Comment

LD

OperatingEnd
Trigger
Operating
Fid
InDat
RS_instance
FileOpen_instance
FileSeek_instance
FileRead_instance
FileClose_instance

False
False
False
16#0
[1000(16#0)]

BOOL
BOOL
BOOL
DWORD
ARRAY[0..999] OF BYTE
RS
FileOpen
FileSeek
FileRead
FileClose

FileClose_instance.Done

FileOpen_instance.Error

FileSeek_instance.Error

FileRead_instance.Error

FileClose_instance.Error

Determine if instruction execution is completed.

Accept trigger.

Execute FileOpen instruction.

Inline ST

OperatingEnd

Operating

OperatingEnd

Fid

Trigger _Card1Ready RS
 Set Q1
 Reset1

RS_instance

Operating

 ‘ABC.bin’
_READ_EXIST

FileOpen_instance.Error
1 // Processing after error end.
2 ;

FileOpen

Execute Done
FileName Busy
Mode Error
 ErrorID
 FileID

FileOpen_instance

_Card1Ready BOOL

Variable Data type Comment

SD Memory Card Ready Flag

Internal Variables

External Variables

2 Instruction Descriptions

2-816 NJ-series Instructions Reference Manual (W502)

Operating FileRead_instance.Done

Processing after normal end.

FileClose_instance.Done
1 // Processing after normal end.
2 ;

 Fid
 DINT#2
_SEEK_SET

Execute FileSeek instruction.

Inline ST

Inline ST

Inline ST

Inline ST

Operating

FileSeek_instance.Error
1 // Processing after error end.
2 ;

FileSeek

Execute Done
FileID Busy
Offset Error
Origin ErrorID

FileSeek_instance

 Fid

InDat[0]
UINT#4

 Fid

FileOpen_instance.Done

Execute FileClose instruction.
Operating

FileClose_instance.Error
1 // Processing after error end.
2 ;

FileRead_instance.Done

Execute FileRead instruction.
Operating

FileRead_instance.Error
1 // Processing after error end.
2 ;

FileSeek_instance.Done FileRead

Execute Done
FileID Busy
ReadBuf

Size Error
 ErrorID
 ReadSize
 EOF

FileRead_instance

FileClose

Execute Done
FileID Busy
 Error
 ErrorID

FileClose_instance

2-817

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
D

 M
em

o
ry C

ard
 In

stru
ctio

n
s

2

F
ileR

ead

Execution condition
Value of Trigger from previous task period
Processing started.
Processing
Read data
Stage change
File ID

Variable Data type Initial value Comment

ST

IF ((Trigger=TRUE) AND (LastTrigger=FALSE) AND (_Card1Ready=TRUE)) THEN
 OperatingStart:=TRUE;
 Operating :=TRUE;
END_IF;
LastTrigger:=Trigger;

IF (OperatingStart=TRUE) THEN
 FileOpen_instance(Execute:=FALSE);
 FileSeek_instance(Execute:=FALSE);
 FIleRead_instance(
 Execute:=FALSE,
 ReadBuf:=InDat[0]);
 FileClose_instance(Execute:=FALSE);
 Stage :=INT#1;
 OperatingStart:=FALSE;
END_IF;

IF (Operating=TRUE) THEN
 CASE Stage OF
 1 :
 FileOpen_instance(
 Execute :=TRUE,
 FileName:=’ABC.bin’,
 Mode :=_READ_EXIST,
 FileID =>Fid);

 IF (FIleOpen_instance.Done=TRUE) THEN
 Stage:=INT#2;
 END_IF;

 IF (FileOpen_instance.Error=TRUE) THEN
 Stage:=INT#99;
 END_IF;

 2 :
 FileSeek_instance(
 Execute:=TRUE,
 FileID :=Fid,
 Offset :=DINT#2,
 Origin :=_SEEK_SET);

 IF (FileSeek_instance.Done=TRUE) THEN
 Stage:=INT#3;
 END_IF;

 IF (FileSeek_instance.Error=TRUE) THEN
 Stage:=INT#99;
 END_IF;

// Start sequence when Trigger changes to TRUE.

// Execute instructions.

// File name
// Read file.
// File ID

/// File ID
// File position indicator goes to second byte from the beginning.
//

// Normal end

// Error end

// Normal end

// Error end

// Initialize instance.
// Dummy

// Initialize instance.

// Initialize instance.

// Initialize instance.

// Initialize instance.

// Open file.

// Seek file.

Trigger
LastTrigger
OperatingStart
Operating
InDat
Stage
Fid
FileOpen_instance
FileSeek_instance
FileRead_instance
FileClose_instance

False
False
False
False
[1000(16#0)]
0
16#0

BOOL
BOOL
BOOL
BOOL
ARRAY[0..999] OF BYTE
INT
DWORD
FileOpen
FileSeek
FileRead
FileClose

_Card1Ready BOOL SD Memory Card Ready Flag

Variable Data type Comment

Internal Variables

External Variables

2 Instruction Descriptions

2-818 NJ-series Instructions Reference Manual (W502)

 3 :
 FileRead_instance(
 Execute :=TRUE,
 FileID :=Fid,
 ReadBuf:=InDat[0],
 Size :=UINT#4);

 IF (FIleRead_instance.Done=TRUE) THEN
 Stage:=INT#4;
 END_IF;

 IF (FileRead_instance.Error=TRUE) THEN
 Stage:=INT#99;
 END_IF;

 4 :
 FileClose_instance(
 Execute:=TRUE,
 FileID :=Fid);

 IF (FileClose_instance.Done=TRUE) THEN
 Operating:=FALSE;
 END_IF;

 IF (FileClose_instance.Error=TRUE) THEN
 Stage:=INT#99;
 END_IF;

 99 :
 Operating:=FALSE;
 END_CASE;
END_IF;

// File ID

// File ID
// Read buffer
// Number of elements to read: 4 bytes

// Normal end

// Error end

// Normal end

// Error end

// Processing after error end.

// Close file.

// Read file.

2-819

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
D

 M
em

o
ry C

ard
 In

stru
ctio

n
s

2

F
ileW

rite

FileWrite

The FileWrite instruction writes data to the specified file in the SD Memory Card.

* If you omit the input parameter, the default value is not applied. A compiling error will occur.

The FileWrite instruction writes data to the position of the file position indicator in the file specified by
file ID FileID in the SD Memory Card. The file position indicator is set at the desired location in advance
with the FileSeek instruction. The contents of the write buffer WriteBuf[] is written to the file. The
amount of data that is written is the size of the data type of WriteBuf[] times Size. You can specify an
array of enumerations or structures for WriteBuf[]. The data size that is actually written is output to
WriteSize.

Instruction Name FB/FUN Graphic expression ST expression

FileWrite Write File FB FileWrite_instance(Exe-
cute, FileID, WriteBuf, Size,
Done, Busy, Error, ErrorID,
WriteSize);

Variables

Name Meaning I/O Description Valid range Unit Default

FileID File ID

Input

ID of file to write

Depends on data type. ---

0

WriteBuf[]
(array)

Write buffer Write data *

Size Number of
elements to
write

Number of elements to write 1

WriteSize Number of
written ele-
ments

Output Number of elements that
were actually written

Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

FileID OK

WriteBuf[]
(array)

OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK

Arrays of enumerations or structures can also be specified.

Size OK

WriteSize OK

Function

FileWrite

Execute Done
FileID Busy
WriteBuf Error
Size ErrorID
 WriteSize

FileWrite_instance

2 Instruction Descriptions

2-820 NJ-series Instructions Reference Manual (W502)

The following figure shows a programming example. If the write buffer def[] is BYTE data, 100 bytes of
data is written to the file.

• Execution of this instruction is continued until processing is completed even if the value of Execute
changes to FALSE or the execution time exceeds the task period. The value of Done changes to
TRUE when processing is completed. Use this to confirm normal completion of processing.

• Refer to Using this Section on page 2-2 for a timing chart for Execute, Done, Busy, and Error.

• You must use the FileOpen instruction to obtain the value for FileID before you execute this instruc-
tion.

• Data is written in byte increments. The lower bytes are written before the upper bytes (little endian).

Related System-defined Variables

Name Meaning Data type Description

_Card1Ready SD Memory Card
Ready Flag

BOOL This flag indicates if the SD Memory Card is
physically inserted and is mounted normally,
i.e., if it can be accessed by instructions and
communications commands.

TRUE: Can be used.

FALSE: Cannot be used.

_Card1Protect SD Memory Card Write
Protected Flag

BOOL This flag indicates if the SD Memory Card is
write protected when it is inserted and ready to
use.

TRUE: Write protected.

FALSE: Not write protected.

_Card1Err SD Memory Card Error
Flag

BOOL This flag indicates if an unspecified SD Mem-
ory Card (e.g., an SDHC card) is mounted or if
the format is incorrect (i.e., not FAT16 or cor-
rupted).

TRUE: Error.

FALSE: No error.

_Card1Access SD Memory Card
Access Flag

BOOL This flag indicates if the SD Memory Card is
currently being accessed.

TRUE: Being accessed.

FALSE: Not being accessed.

_Card1PowerFail SD Memory Card
Power Interruption Flag

BOOL This flag indicates if an error occurred in com-
pleting processing when power was interrupted
during SD Memory Card access. This flag is
not cleared automatically.

TRUE: Error.

FALSE: No error.

Precautions for Correct Use

FileWrite_instance(A, abc, def[0], UINT#100, ghi,
 jkl, mno, pqr, stu);

LD ST

abc
def[0]

jkl
mno
pqr
stu

ghi

UINT#100

A FileWrite

Execute Done
FileID Busy
WriteBuf Error
Size ErrorID
 WriteSize

FileWrite_instance

2-821

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
D

 M
em

o
ry C

ard
 In

stru
ctio

n
s

2

F
ileW

rite

• If WriteBuf[] is an array of structures, adjustment areas between members may be inserted depend-
ing on the composition.

• If the operating mode of the CPU Unit is changed to PROGRAM mode or when a major fault level
Controller error occurs during instruction execution, the file is closed by the system. Any read/write
operations that are in progress are completed to the end.

• An error occurs in the following cases. Error will change to TRUE.

• The number of array elements in WriteBuf[] is smaller than the value of Size.

• The SD Memory Card is not in a usable condition.

• The SD Memory Card is write protected.

• There is insufficient space available on the SD Memory Card.

• The file specified by FileID does not exist.

• The file specified by FileID is being accessed.

• The file specified by FileID was not opened in a writing mode.

• An error that prevents access occurs during SD Memory Card access.

Here, four bytes of data are written from the second byte from the beginning of the file 'ABC.bin.' The
contents of the BYTE array variable OutDat[] is written to the file. The processing procedure is as fol-
lows:

1 The FileOpen instruction is used to open the file ‘ABC.bin.’

2 The FileSeek instruction is used to set a file position indicator at the second byte from the begin-

ning of the file.

3 The FileWrite instruction is used to write four bytes from array variable OutDat[] to the position of

the file position indicator.

4 The FileClose instruction is used to close the file ‘ABC.bin.’

Sample Programming

2 Instruction Descriptions

2-822 NJ-series Instructions Reference Manual (W502)

Processing completed.
Execution condition
Processing
File ID
Write data

Variable Data type Initial value Comment

LD

OperatingEnd
Trigger
Operating
Fid
OutDat
RS_instance
FileOpen_instance
FileSeek_instance
FileWrite_instance
FileClose_instance

False
False
False
16#0
[1000(16#0)]

BOOL
BOOL
BOOL
DWORD
ARRAY[0..999] OF BYTE
RS
FileOpen
FileSeek
FileWrite
FileClose

FileClose_instance.Done

FileOpen_instance.Error

FileSeek_instance.Error

FileWrite_instance.Error

FileClose_instance.Error

Determine if instruction execution is completed.

Accept trigger.

Execute FileOpen instruction.

Inline ST

OperatingEnd

Operating

OperatingEnd

Fid

Trigger _Card1Ready RS
 Set Q1
 Reset1

RS_instance

Operating

 ‘ABC.bin’
_RDWR_CREATE

FileOpen_instance.Error
1 // Processing after error end.
2 ;

FileOpen

Execute Done
FileName Busy
Mode Error
 ErrorID
 FileID

FileOpen_instance

_Card1Ready BOOL SD Memory Card Ready Flag

Variable Data type Comment

Internal Variables

External Variables

2-823

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
D

 M
em

o
ry C

ard
 In

stru
ctio

n
s

2

F
ileW

rite

Operating FileWrite_instance.Done

Processing after normal end.

FileClose_instance.Done
1 // Processing after normal end.
2 ;

 Fid
 DINT#2
_SEEK_SET

Execute FileSeek instruction.

Inline ST

Inline ST

Inline ST

Inline ST

Operating

FileSeek_instance.Error
1 // Processing after error end.
2 ;

FileSeek

Execute Done
FileID Busy
Offset Error
Origin ErrorID

FileSeek_instance

 Fid
 OutDat[0]
 UINT#4

 Fid

FileOpen_instance.Done

Execute FileClose instruction.
Operating

FileClose_instance.Error
1 // Processing after error end.
2 ;

FileWrite_instance.Done

Execute FileWrite instruction.
Operating

FileWrite_instance.Error
1 // Processing after error end.
2 ;

FileSeek_instance.Done

FileClose

Execute Done
FileID Busy
 Error
 ErrorID

FileClose_instance

FileWrite

Execute Done
FileID Busy
WriteBuf Error
Size ErrorID
 WriteSize

FileWrite_instance

2 Instruction Descriptions

2-824 NJ-series Instructions Reference Manual (W502)

Execution condition
Value of Trigger from previous task period
Processing started.
Processing
Source data
Stage change
File ID

Variable Data type Initial value Comment

ST

IF ((Trigger=TRUE) AND (LastTrigger=FALSE) AND (_Card1Ready=TRUE)) THEN
 OperatingStart:=TRUE;
 Operating :=TRUE;
END_IF;
LastTrigger:=Trigger;

IF (OperatingStart=TRUE) THEN
 FileOpen_instance(Execute:=FALSE);
 FileSeek_instance(Execute:=FALSE);
 FileWrite_instance(
 Execute :=FALSE,
 WriteBuf :=OutDat[0]);
 FileClose_instance(Execute:=FALSE);
 Stage :=INT#1;
 OperatingStart:=FALSE;
END_IF;

IF (Operating=TRUE) THEN
 CASE Stage OF
 1 :
 FileOpen_instance(
 Execute :=TRUE,
 FileName:=’ABC.bin’,
 Mode :=_RDWR_CREATE,
 FileID =>Fid);

 IF (FIleOpen_instance.Done=TRUE) THEN
 Stage:=INT#2;
 END_IF;

 IF (FileOpen_instance.Error=TRUE) THEN
 Stage:=INT#99;
 END_IF;

 2 :
 FileSeek_instance(
 Execute:=TRUE,
 FileID :=Fid,
 Offset :=DINT#2,
 Origin :=_SEEK_SET);

 IF (FileSeek_instance.Done=TRUE) THEN
 Stage:=INT#3;
 END_IF;

 IF (FileSeek_instance.Error=TRUE) THEN
 Stage:=INT#99;
 END_IF;

// Start sequence when Trigger changes to TRUE.

// Execute instructions.

// File name
// Read file and write.
// File ID

// File ID
// File position indicator goes to second byte from the beginning.
//

// Normal end

// Error end

// Normal end

// Error end

// Initialize instance.

// Open file.

// Seek file.

Trigger
LastTrigger
OperatingStart
Operating
OutDat
Stage
Fid
FileOpen_instance
FileSeek_instance
FileWrite_instance
FileClose_instance

False
False
False
False
[1000(16#0)]
0
16#0

BOOL
BOOL
BOOL
BOOL
ARRAY[0..999] OF BYTE
INT
DWORD
FileOpen
FileSeek
FileWrite
FileClose

_Card1Ready BOOL

Variable Data type Comment

SD Memory Card Ready Flag

Internal Variables

External Variables

2-825

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
D

 M
em

o
ry C

ard
 In

stru
ctio

n
s

2

F
ileW

rite

 3 :
 FileWrite_instance(
 Execute :=TRUE,
 FileID :=Fid,
 WriteBuf:=OutDat[0],
 Size :=UINT#4);

 IF (FIleWrite_instance.Done=TRUE) THEN
 Stage:=INT#4;
 END_IF;

 IF (FileWrite_instance.Error=TRUE) THEN
 Stage:=INT#99;
 END_IF;

 4 :
 FileClose_instance(
 Execute:=TRUE,
 FileID :=Fid);

 IF (FileClose_instance.Done=TRUE) THEN
 Operating:=FALSE;
 END_IF;

 IF (FileClose_instance.Error=TRUE) THEN
 Stage:=INT#99;
 END_IF;

 99 :
 Operating:=FALSE;
 END_CASE;
END_IF;

// File ID

// File ID
// Write buffer
// Number of elements to write: 4 bytes

// Normal end

// Error end

// Normal end

// Error end

// Processing after error end.

// Close file.

// Write file.

2 Instruction Descriptions

2-826 NJ-series Instructions Reference Manual (W502)

FileGets

The FileGets instruction reads a text string of one line from the specified file in the SD Memory Card.

The FileGets instruction reads a text string of one line from the file position indicator in the file specified
by file ID FileID in the SD Memory Card. The file position indicator is set at the desired location in
advance with the FileSeek instruction. Line endings are determined by a line feed code. The text string
that is read is written to read text string Out. The following three line feeds are automatically detected:
CR, LF, and CR+LF. If line feed designation TrimLF is TRUE, the line feed code is deleted from the text
string before it is written to Out. If data is read to the end of the file, end of file EOF changes to TRUE.
Otherwise, the value of EOF will be FALSE.

Instruction Name FB/FUN Graphic expression ST expression

FileGets Get Text String FB FileGets_instance(Execute,
FileID, TrimLF, Done, Busy,
Error, ErrorID, Out, EOF);

Variables

Name Meaning I/O Description Valid range Unit Default

FileID File ID

Input

ID of file to read

Depends on data type. ---

0

TrimLF Line feed
designation

Handling of the line feed
code of text string that was
read

TRUE: Delete.

FALSE: Do not delete.

FALSE

Out Read text
string

Output

Text string that was read

Depends on data type. --- ---
EOF End of file Whether end of file was

reached

TRUE: Reached.

FALSE: Not reached.
B

o
o

lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

FileID OK

TrimLF OK

Out OK

EOF OK

Function

FileGets

Execute Done
FileID Busy
TrimLF Error
 ErrorID
 Out
 EOF

FileGets_instance

2-827

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
D

 M
em

o
ry C

ard
 In

stru
ctio

n
s

2

F
ileG

ets

The following figure shows a programming example. Here, a text string of one line is read from a file, the
line feed code is deleted, and the result is written to pqr.

• Execution of this instruction is continued until processing is completed even if the value of Execute
changes to FALSE or the execution time exceeds the task period. The value of Done changes to
TRUE when processing is completed. Use this to confirm normal completion of processing.

• Refer to Using this Section on page 2-2 for a timing chart for Execute, Done, Busy, and Error.

• If the length of the one-line text string exceeds 1,986 bytes (with UTF-8 character codes, including
the final NULL character), the first 1,985 bytes of the text string are stored in Out with a NULL charac-
ter attached.

Related System-defined Variables

Name Meaning Data type Description

_Card1Ready SD Memory Card
Ready Flag

BOOL This flag indicates if the SD Memory Card is
physically inserted and is mounted normally,
i.e., if it can be accessed by instructions and
communications commands.

TRUE: Can be used.

FALSE: Cannot be used.

_Card1Protect SD Memory Card Write
Protected Flag

BOOL This flag indicates if the SD Memory Card is
write protected when it is inserted and ready to
use.

TRUE: Write protected.

FALSE: Not write protected.

_Card1Err SD Memory Card Error
Flag

BOOL This flag indicates if an unspecified SD Memory
Card (e.g., an SDHC card) is mounted or if the
format is incorrect (i.e., not FAT16 or cor-
rupted).

TRUE: Error.

FALSE: No error.

_Card1Access SD Memory Card
Access Flag

BOOL This flag indicates if the SD Memory Card is
currently being accessed.

TRUE: Being accessed.

FALSE: Not being accessed.

_Card1PowerFail SD Memory Card
Power Interruption Flag

BOOL This flag indicates if an error occurred in com-
pleting processing when power was interrupted
during SD Memory Card access. This flag is
not cleared automatically.

TRUE: Error.

FALSE: No error.

Precautions for Correct Use

FileGets_instance(A, abc, TRUE, def, ghi,
 jkl, mno, pqr, stu);

LD ST

abc ghi
jkl
mno
pqr
stu

def

TRUE

A FileGets

Execute Done
FileID Busy
TrimLF Error
 ErrorID
 Out
 EOF

FileGets_instance

2 Instruction Descriptions

2-828 NJ-series Instructions Reference Manual (W502)

• You must use the FileOpen instruction to obtain the value for FileID before you execute this instruc-
tion.

• If the operating mode of the CPU Unit is changed to PROGRAM mode or when a major fault level
Controller error occurs during instruction execution, the file is closed by the system. Any read/write
operations that are in progress are completed to the end.

• An error occurs in the following cases. Error will change to TRUE.

• The SD Memory Card is not in a usable condition.

• The file specified by FileID does not exist.

• The file specified by FileID is being accessed.

• The file specified by FileID was not opened in a reading mode.

• An error that prevents access occurs during SD Memory Card access.

Here, multiple text strings that are separated by CR codes are stored in a file named ‘ABC.csv.’ All of
them are text strings of numbers. One line at a time is read from the file, the text strings are converted
to integers, and the results are stored in INT array variable InDat[]. Processing is ended when all of the
data to the end of the file is read.
It is assumed that this sample programming is in a periodic task.

The processing procedure is as follows:

1 The FileOpen instruction is used to open the file ‘ABC.csv.’

2 The FileGets instruction is used to read one line from the file.

3 The STRING_TO_INT instruction is used to convert the text string that was read to an integer

and store it in InDat[].

4 Steps 2 and 3 are repeated until the EOF (end of file).

5 The FileClose instruction is used to close the file.

Sample Programming

 .
 .
 .
 .
 .
 .
 .

in_data[0] 1234
9876
5678

in_data[1]
in_data[2]

1234 CR
9876 CR
5678 CR
.
.
.
.
.
.
EOF

‘ABC.csv’ file One line read at a time and
converted to a number.

2-829

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
D

 M
em

o
ry C

ard
 In

stru
ctio

n
s

2

F
ileG

ets

Processing completed.
Execution condition
Processing
InDat[] element index
File ID
Integer data

Variable Data type Initial value Comment

Variable Data type Comment

SD Memory Card Ready Flag

Internal Variables

External Variables

LD

OperatingEnd
Trigger
Operating
Index
Fid
InDat
RS_instance
FileOpen_instance
FileGets_instance
FileClose_instance

False
False
False
0
16#0
[1000(0)]

BOOL
BOOL
BOOL
INT
DWORD
ARRAY[0..999] OF INT
RS
FileOpen
FileGets
FileClose

FileClose_instance.Done

FileOpen_instance.Error

FileGets_instance.Error

FileClose_instance.Error

Determine if instruction execution is completed.

Accept trigger.

Execute FileOpen instruction.

Inline ST

Inline ST

OperatingEnd

Operating

OperatingEnd

Fid

Trigger _Card1Ready RS
 Set Q1
 Reset1

RS_instance

Operating

Operating

Initialize InDat[] element index.

 ‘ABC.csv’
_READ_EXIST

FileOpen_instance.Error
1 // Processing after error end.
2 ;

1 Index:=INT#0;

FileOpen

Execute Done
FileName Busy
Mode Error
 ErrorID
 FileID

FileOpen_instance

_Card1Ready BOOL

2 Instruction Descriptions

2-830 NJ-series Instructions Reference Manual (W502)

Operating FileGets_instance.Done

Processing after normal end.
Inline ST

Inline ST

Inline ST

FileClose_instance.Done
1 // Processing after normal end.
2 ;

 Fid
TRUE

Execute FileGets instruction.
Operating

FileGets_instance.Error
1 // Processing after error end.
2 ;

 Fid

FileOpen_instance.Done FileGets_instance.Busy

Execute FileClose when EOF is detected.
Operating

FileClose_instance.Error
1 // Processing after error end.
2 ;

FileGets_instance.EOF

Execute STRING_TO_INT instruction.
Operating FileGets_instance.Done

FileGets_instance.Out InDat[Index]

Index

FileClose

Execute Done
FileID Busy
 Error
 ErrorID

FileClose_instance

FileGets

Execute Done
FileID Busy
TrimLF Error
 ErrorID
 Out
 EOF

FileGets_instance
FileGets_instance.EOF

STRING_TO_INT

EN ENO
In

Inc
EN ENO
InOut

2-831

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
D

 M
em

o
ry C

ard
 In

stru
ctio

n
s

2

F
ileG

ets

Execution condition
Value of Trigger from previous task period
Processing started.
Processing
Integer data
Stage change
InDat[] element index
File ID

Variable Data type Initial value Comment

ST

IF ((Trigger=TRUE) AND (LastTrigger=FALSE) AND (_Card1Ready=TRUE)) THEN
 OperatingStart:=TRUE;
 Operating :=TRUE;
END_IF;
LastTrigger:=Trigger;

IF (OperatingStart=TRUE) THEN
 FileOpen_instance(Execute:=FALSE);
 FileGets_instance(Execute:=FALSE);
 FileClose_instance(Execute:=FALSE);
 Stage :=INT#1;
 Index :=INT#0;
 OperatingStart:=FALSE;
END_IF;

IF (Operating=TRUE) THEN
 CASE Stage OF
 1 :
 FileOpen_instance(
 Execute :=TRUE,
 FileName:=’ABC.csv’,
 Mode :=_READ_EXIST,
 FileID =>Fid);

 IF (FIleOpen_instance.Done=TRUE) THEN
 Stage:=INT#2;
 END_IF;

 IF (FileOpen_instance.Error=TRUE) THEN
 Stage:=INT#99;
 END_IF;

// Start sequence when Trigger changes to TRUE.

// Execute instructions.

// File name
// Read file.
// File ID

// Normal end

// Error end

// Initialize instance.

// Open file.

Trigger
LastTrigger
OperatingStart
Operating
InDat
Stage
Index
Fid
FileOpen_instance
FileGets_instance
FileClose_instance

False
False
False
False
[1000(0)]
0
0
16#0

BOOL
BOOL
BOOL
BOOL
ARRAY[0..999] OF INT
INT
INT
DWORD
FileOpen
FileGets
FileClose

_Card1Ready BOOL SD Memory Card Ready Flag

Variable Data type Comment

Internal Variables

External Variables

2 Instruction Descriptions

2-832 NJ-series Instructions Reference Manual (W502)

 2 :
 FileGets_instance(
 Execute:=TRUE,
 FileID :=Fid,
 TrimLF :=TRUE);

 IF (FileGets_instance.Done=TRUE) THEN

 InDat[Index]:=STRING_TO_INT(FileGets_instance.Out);
 Index:=Index+INT#1;

 IF (FileGets_instance.EOF=TRUE) THEN
 Stage:=INT#3;
 ELSE
 FileGets_instance(Execute:=FALSE);
 END_IF;
 END_IF;

 IF (FileGets_instance.Error=TRUE) THEN
 Stage:=INT#99;
 END_IF;

 3 :
 FileClose_instance(
 Execute:=TRUE,
 FileID :=Fid);

 IF (FileClose_instance.Done=TRUE) THEN
 Operating:=FALSE;
 END_IF;

 IF (FileClose_instance.Error=TRUE) THEN
 Stage:=INT#99;
 END_IF;

 99 :
 Operating:=FALSE;
 END_CASE;
END_IF;

// File ID

// Normal end

// Normal end

// Error end

// Processing after error end.

// Error end

// Read text string.

// Close file.

// Convert the text string that was read to an integer.

// Reached end of file.

2-833

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
D

 M
em

o
ry C

ard
 In

stru
ctio

n
s

2

F
ileP

uts

FilePuts

The FilePuts instruction writes a text string to the specified file in the SD Memory Card.

The FilePuts instruction writes a text string to the position of the file position indicator in the file speci-
fied by file ID FileID in the SD Memory Card. The file position indicator is set at the desired location in
advance with the FileSeek instruction. The contents of write text string In is written to the file.

The following figure shows a programming example. Here, the contents of array element def[0] is writ-
ten to the file.

Instruction Name FB/FUN Graphic expression ST expression

FilePuts Put Text String FB FilePuts_instance(Execute,
FileID, In, Done, Busy, Error,
ErrorID);

Variables

Name Meaning I/O Description Valid range Unit Default

FileID File ID

Input

ID of file to write

Depends on data type. ---

0

In Write text
string

Text string to write ''

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

FileID OK

In OK

Function

FilePuts

Execute Done
FileID Busy
In Error
 ErrorID

FilePuts_instance

FilePuts_instance(A, abc, def[0], ghi, jkl, mno, pqr);

LD ST

abc
def[0]

A FilePuts

Execute Done
FileID Busy
In Error
 ErrorID

FilePuts_instance

jkl
mno
pqr

ghi

2 Instruction Descriptions

2-834 NJ-series Instructions Reference Manual (W502)

To create a line feed after you write the text sting, add a line feed code to the end of In.

• Execution of this instruction is continued until processing is completed even if the value of Execute
changes to FALSE or the execution time exceeds the task period. The value of Done changes to
TRUE when processing is completed. Use this to confirm normal completion of processing.

• Refer to Using this Section on page 2-2 for a timing chart for Execute, Done, Busy, and Error.

• You must use the FileOpen instruction to obtain the value for FileID before you execute this instruc-
tion.

• If the operating mode of the CPU Unit is changed to PROGRAM mode or when a major fault level
Controller error occurs during instruction execution, the file is closed by the system. Any read/write
operations that are in progress are completed to the end.

• An error occurs in the following cases. Error will change to TRUE.

• The SD Memory Card is not in a usable condition.

• The SD Memory Card is write protected.

• There is insufficient space available on the SD Memory Card.

• The file specified by FileID does not exist.

• The file specified by FileID is being accessed.

• The file specified by FileID was not opened in a writing mode.

• An error that prevents access occurs during SD Memory Card access.

Related System-defined Variables

Name Meaning Data type Description

_Card1Ready SD Memory Card
Ready Flag

BOOL This flag indicates if the SD Memory Card is physically
inserted and is mounted normally, i.e., if it can be
accessed by instructions and communications com-
mands.

TRUE: Can be used.

FALSE: Cannot be used.

_Card1Protect SD Memory Card Write
Protected Flag

BOOL This flag indicates if the SD Memory Card is write pro-
tected when it is inserted and ready to use.

TRUE: Write protected.

FALSE: Not write protected.

_Card1Err SD Memory Card Error
Flag

BOOL This flag indicates if an unspecified SD Memory Card
(e.g., an SDHC card) is mounted or if the format is incor-
rect (i.e., not FAT16 or corrupted).

TRUE: Error.

FALSE: No error.

_Card1Access SD Memory Card
Access Flag

BOOL This flag indicates if the SD Memory Card is currently
being accessed.

TRUE: Being accessed.

FALSE: Not being accessed.

_Card1PowerFail SD Memory Card
Power Interruption Flag

BOOL This flag indicates if an error occurred in completing pro-
cessing when power was interrupted during SD Memory
Card access. This flag is not cleared automatically.

TRUE: Error.

FALSE: No error.

Additional Information

Precautions for Correct Use

2-835

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
D

 M
em

o
ry C

ard
 In

stru
ctio

n
s

2

F
ileP

uts

Here, 100 lines of the contents of INT array variable Dat[0..9,0..99] are stored in a file named 'ABC.csv'
in CSV file format. Each line contains ten text strings of numbers. Commas are inserted between them.
A CR+LF code is added to the end of the line. The procedure is as follows:

1 One element of Dat[] is converted to one text string and stored in the STRING variable Temp.

2 Except at the end of a line, a comma is added to the end of Temp. At the end of the line, a

CR+LF code is added to the end of Temp. These are joined in the STRING variable StrDat.

3 When the end of the line is reached, StrDat is written to the file.

4 Steps 1 to 3 are repeated for 100 lines.

Sample Programming

 .
 .
 .
 .
 .
 .
 .

The line is written to the file when
the end of the line is reached.

Commas are added between text
strings, a CR code is added to the end,
and the results are joined.

Dat[0,0] Dat[1,0] Dat[9,0]
Dat[0,1] Dat[1,1] Dat[9,1]

Dat[0,99]

16#1234

Dat[1,99] Dat[9,99]

100 lines

Converted to STRING data one at a time.

INT array

STRING variable

STRING variable

16#8487

1234,08B4,. 3966 CR
.
.
.
.
.
.
.
.

 .
 .
 .
 .
 .
 .
 .

 .
 .
 .
 .
 .
 .
 .

 .
 .
 .
 .
 .
 .
 .

StrDat

‘ABC.csv’ file

16#F596

16#08B4

16#9256

16#A511

16#3966

16#1211

16#22AB

Temp 9256

8487,9256

2 Instruction Descriptions

2-836 NJ-series Instructions Reference Manual (W502)

Processing completed.
Execution condition
Processing
Column index
Row index
File ID
Text string data
Numeric data
Temporary data

Variable Data type Initial value Comment

LD

OperatingEnd
Trigger
Operating
Index0
Index1
Fid
StrDat
Dat
Temp
RS_instance
FileOpen_instance
FilePuts_instance
FileClose_instance

False
False
False
0
0
16#0
‘’
[1000(0)]
’’

BOOL
BOOL
BOOL
INT
INT
DWORD
STRING[255]
ARRAY[0..99,0..9] OF INT
STRING[255]
RS
FileOpen
FilePuts
FileClose

FileClose_instance.Done

FileOpen_instance.Error

FilePuts_instance.Error

FileClose_instance.Error

Determine if instruction execution is completed.

Accept trigger.

Execute FileOpen instruction.

Inline ST

OperatingEnd

Operating

OperatingEnd

Fid

Trigger _Card1Ready RS
 Set Q1
 Reset1

RS_instance

Operating

Operating

Initialize row index.

Inline ST

 ‘ABC.csv’
_RDWR_CREATE

FileOpen_instance.Error
1 // Processing after error end.
2 ;

1 Index1:=INT#0;

FileOpen

Execute Done
FileName Busy
Mode Error
 ErrorID
 FileID

FileOpen_instance

_Card1Ready BOOL SD Memory Card Ready Flag

Variable Data type Comment

Internal Variables

External Variables

2-837

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
D

 M
em

o
ry C

ard
 In

stru
ctio

n
s

2

F
ileP

uts

Create a text string for one line.

Write a text string for one line to the file.

Execute the FileClose instruction after 100 lines are written.

Inline ST

1 // Processing after error end.
2 ;

Inline ST

1 // Processing after normal end.
2 ;

Inline ST

1 // Processing after error end.
2 ;

Inline ST

Increment the line index.

Operating FileOpen_instance.Done FilePuts_instance.Busy

 Fid
StrDat

Operating

FileClose_instance.Error

// Concatenate text strings 0 to 8.

// Concatenate text string 9 and add CR+LF.

// CR+LF

 1 StrDat:=’‘;
 2
 3
 4 FOR Index0:=INT#0 TO INT#8 BY INT#1 DO
 5 Temp :=INT_TO_STRING(Dat[Index1, Index0]);
 6 Temp :=CONCAT(In1:=Temp, In2:=’,’);
 7 StrDat:=CONCAT(IN1:=StrDat, In2:=Temp);
 8 END_FOR;
 9
10
11 Temp :=INT_TO_STRING(Dat[Index1, Index0]);
12 Temp :=CONCAT(In1:=Temp, In2:=’rl’);
13 StrDat:=CONCAT(In1:=StrDat, In2:=Temp);

Operating FileOpen_instance.Done FilePuts_instance.Busy

Operating FilePuts_instance.Done

Operating FileClose_instance.Done

FilePuts_instance.Error

Index1

Index1
INT#99

Fid

FileClose_instance.Busy

FileClose_instance.Busy FilePuts

Execute Done
FileID Busy
In Error
 ErrorID

FilePuts_instance

Inc
EN ENO
InOut

>
EN
In1
In2

FileClose

Execute Done
FileID Busy
 Error
 ErrorID

FileClose_instance

1

1

2 Instruction Descriptions

2-838 NJ-series Instructions Reference Manual (W502)

Execution condition
Value of Trigger from previous task period
Processing started.
Processing
Stage change
Column index
Row index
File ID
Text string data
Numeric data
Temporary data

Variable Data type Initial value Comment

ST

IF ((Trigger=TRUE) AND (LastTrigger=FALSE) AND (_Card1Ready=TRUE)) THEN
 OperatingStart:=TRUE;
 Operating :=TRUE;
END_IF;
LastTrigger:=Trigger;

IF (OperatingStart=TRUE) THEN
 FileOpen_instance(Execute:=FALSE);
 FilePuts_instance(Execute:=FALSE);
 FileClose_instance(Execute:=FALSE);
 Stage :=INT#1;
 Index1 :=INT#0;
 OperatingStart:=FALSE;
END_IF;

IF (Operating=TRUE) THEN
 CASE Stage OF
 1 :
 FileOpen_instance(
 Execute :=TRUE,
 FileName:=’ABC.csv’,
 Mode :=_RDWR_CREATE,
 FileID =>Fid);

 IF (FIleOpen_instance.Done=TRUE) THEN
 Stage:=INT#2;
 END_IF;

 IF (FileOpen_instance.Error=TRUE) THEN
 Stage:=INT#99;
 END_IF;

 2 :
 StrDat:=’’;

 FOR Index0:=INT#0 TO INT#8 BY INT#1 DO
 Temp :=INT_TO_STRING(Dat[Index1, Index0]);
 Temp :=CONCAT(In1:=Temp, In2:=’,’);
 StrDat:=CONCAT(IN1:=StrDat, In2:=Temp);
 END_FOR;

 Temp :=INT_TO_STRING(Dat[Index1, Index0]);
 Temp :=CONCAT(In1:=Temp, In2:=’rl’);
 StrDat:=CONCAT(In1:=StrDat, In2:=Temp);

 Stage:=INT#3;

// Start sequence when Trigger changes to TRUE.

// Execute instructions.

// File name
// Read file
// File ID

// Normal end

// Error end

// Initialize instance.

// Initialize row index.

// Open file.

// Create a text string for one line.

// Concatenate text strings 0 to 8.

// Concatenate text string 9 and add CR+LF.

Trigger
LastTrigger
OperatingStart
Operating
Stage
Index0
Index1
Fid
StrDat
Dat
Temp
FileOpen_instance
FilePuts_instance
FileClose_instance

False
False
False
False
0
0
0
16#0
‘’
[1000(0)]
‘’

BOOL
BOOL
BOOL
BOOL
INT
INT
INT
DWORD
STRING[255]
ARRAY[0..99,0..9] OF INT
STRING[255]
FileOpen
FilePuts
FileClose

_Card1Ready BOOL

Variable Data type Comment

SD Memory Card Ready Flag

Internal Variables

External Variables

2-839

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
D

 M
em

o
ry C

ard
 In

stru
ctio

n
s

2

F
ileP

uts

 3 :
 FilePuts_instance(
 Execute:=TRUE,
 FileID :=Fid,
 In :=StrDat);

 IF (FilePuts_instance.Done=TRUE) THEN
 Index1:=Index1+INT#1;

 IF (Index1>INT#99) THEN
 Stage:=INT#4;
 ELSE
 FilePuts_instance(Execute:=FALSE);
 Stage:=INT#2;
 END_IF;
 END_IF;

 IF (FilePuts_instance.Error=TRUE) THEN
 Stage:=INT#99;
 END_IF;

 4 :
 FileClose_instance(
 Execute:=TRUE,
 FileID :=Fid);

 IF (FileClose_instance.Done=TRUE) THEN
 Operating:=FALSE;
 END_IF;

 IF (FileClose_instance.Error=TRUE) THEN
 Stage:=INT#99;
 END_IF;

 99 :
 Operating:=FALSE;
 END_CASE;
END_IF;

// File ID

// If 100 lines were written...

// Normal end

// Error end

// Processing after error end.

// Error end

// Write text string.

// Close file.

2 Instruction Descriptions

2-840 NJ-series Instructions Reference Manual (W502)

FileCopy

The FileCopy instruction copies the specified file in the SD Memory Card.

The FileCopy instruction copies the file specified by source file SrcFileName to designation file DstFile-
Name in the SD Memory Card.

If a file with the name DstFileName already exists in the SD Memory Card, the following processing is
performed depending on the value of overwrite enable OverWrite.

Instruction Name FB/FUN Graphic expression ST expression

FileCopy Copy File FB FileCopy_instance(Exe-
cute, SrcFileName, DstFile-
Name, OverWrite, Done,
Busy, Error, ErrorID);

Variables

Name Meaning I/O Description Valid range Unit Default

SrcFile
Name

Source file

Input

Name of file to copy

Depends on data type. ---

''

DstFile
Name

Destina-
tion file

Name of destination file

OverWrite Overwrite
enable

TRUE: Enable overwrite.

FALSE: Prohibit overwrite.

FALSE

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

SrcFile
Name

OK

DstFile
Name

OK

OverWrite OK

Function

Value of OverWrite Treatment

TRUE (Enable overwrite.) The existing file is overwritten.

FALSE (Prohibit overwrite.) The file is not overwritten and an error occurs.

FileCopy

Execute Done
SrcFileName Busy
DstFileName Error
OverWrite ErrorID

FileCopy_instance

2-841

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
D

 M
em

o
ry C

ard
 In

stru
ctio

n
s

2

F
ileC

opy

The following figure shows a programming example. Here, the file ‘DEF.bin’ is overwritten with the file
‘ABC.bin.’

The root directory of the file name is the top level of the SD Memory Card.

• Execution of this instruction is continued until processing is completed even if the value of Execute
changes to FALSE or the execution time exceeds the task period. The value of Done changes to
TRUE when processing is completed. Use this to confirm normal completion of processing.

• Refer to Using this Section on page 2-2 for a timing chart for Execute, Done, Busy, and Error.

• If the copy operation fails, the file specified by DstFileName may remain in an incomplete state in the
SD Memory Card.

Related System-defined Variables

Name Meaning Data type Description

_Card1Ready SD Memory Card
Ready Flag

BOOL This flag indicates if the SD Memory Card is physically
inserted and is mounted normally, i.e., if it can be
accessed by instructions and communications com-
mands.

TRUE: Can be used.

FALSE: Cannot be used.

_Card1Protect SD Memory Card Write
Protected Flag

BOOL This flag indicates if the SD Memory Card is write pro-
tected when it is inserted and ready to use.

TRUE: Write protected.

FALSE: Not write protected.

_Card1Err SD Memory Card Error
Flag

BOOL This flag indicates if an unspecified SD Memory Card
(e.g., an SDHC card) is mounted or if the format is incor-
rect (i.e., not FAT16 or corrupted).

TRUE: Error.

FALSE: No error.

_Card1Access SD Memory Card
Access Flag

BOOL This flag indicates if the SD Memory Card is currently
being accessed.

TRUE: Being accessed.

FALSE: Not being accessed.

_Card1PowerFail SD Memory Card
Power Interruption Flag

BOOL This flag indicates if an error occurred in completing pro-
cessing when power was interrupted during SD Memory
Card access. This flag is not cleared automatically.

TRUE: Error.

FALSE: No error.

Additional Information

Precautions for Correct Use

FileCopy_instance(A, ’ABC.bin’, ‘DEF.bin’,
 TRUE, abc, def, ghi, jkl);

LD ST

‘ABC.bin’
‘DEF.bin’
 TRUE

A FileCopy

Execute Done
SrcFileName Busy
DstFileName Error
OverWrite ErrorID

FileCopy_instance

def
ghi
jkl

abc

2 Instruction Descriptions

2-842 NJ-series Instructions Reference Manual (W502)

• If a file is open when the operating mode of the CPU Unit is changed to PROGRAM mode or when a
major fault level Controller error occurs, the file is closed by the system. Any read/write operations
that are in progress are completed to the end.

• If a file is open when the power supply it stopped with the power switch, the file is not corrupted.

• If a file is open and the SD Memory Card is removed before the power switch is pressed, the contents
of the file will sometimes be corrupted. Always turn OFF the power supply before removing the SD
Memory Card.

• If a file is open when the power supply is stopped or the SD Memory Card is removed, it will not be
possible to read or write the file even if the SD Memory Card is inserted again.

• An error occurs in the following cases. Error will change to TRUE.

• The SD Memory Card is not in a usable condition.

• The SD Memory Card is write protected.

• There is insufficient space available on the SD Memory Card.

• The file specified by SrcFileName does not exist.

• The value of SrcFileName is not a valid file name.

• The value of DstFileName is not a valid file name.

• The maximum number of files or directories is exceeded.

• The file specified by SrcFileName or DstFileName is already being accessed.

• A file with the name DstFileName already exits and the value of OverWrite is FALSE.

• A file with the name DstFileName already exits and the file is write protected.

• If more than four SD Memory Card instructions that do not have a FileID variable (i.e., FileWrite-
Var, FileReadVar, FileCopy, DirCreate, FileRemove, DirRemove, and FileRename) are executed
at the same time.

• The value of DstFileName exceeds the maximum number of bytes allowed in a file name.

• An error that prevents access occurs during SD Memory Card access.

2-843

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
D

 M
em

o
ry C

ard
 In

stru
ctio

n
s

2

F
ileC

opy

The following procedure is used to move a file.

1 The DirCreate instruction is used to create a directory called 'Dir1' in the SD Memory Card.

2 The FileCopy instruction is used to copy the file named 'ABC.bin' in the existing directory 'Dir0'

to the directory 'Dir1.'

3 The DirRemove instruction is used to delete the directory ‘Dir0’ (the source of the copy).

Sample Programming

1. Create directory.

2. Copy file.

’Dir1’

’Dir1’

ABC.bin

’Dir0’

ABC.bin

ABC.bin

’Dir1’

ABC.bin

’Dir0’

3. Delete directory.

2 Instruction Descriptions

2-844 NJ-series Instructions Reference Manual (W502)

Processing completed.
Execution condition
Processing

Variable Data type Initial value Comment

LD

OperatingEnd
Trigger
Operating
RS_instance
DirCreate_instance
FileCopy_instance
DirRemove_instance

False
False
False

BOOL
BOOL
BOOL
RS
DirCreate
FileCopy
DirRemove

DirRemove_instance.Done

DirCreate_instance.Error

FileCopy_instance.Error

DirRemove_instance.Error

Determine if instruction execution is completed.

Accept trigger.

Execute DirCreate instruction.

Inline ST

Inline ST

OperatingEnd

Operating

OperatingEnd

Trigger _Card1Ready RS
 Set Q1
 Reset1

RS_instance

Operating

‘Dir1’

DirCreate_instance.Error
1 // Processing after error end.
2 ;

DirCreate

Execute Done
DirName Busy
 Error
 ErrorID

DirCreate_instance

Execute FileCopy instruction.
Operating

‘Dir0/ABC.bin’
‘Dir1/ABC.bin’
 FALSE

FileCopy_instance.Error
1 // Processing after error end.
2 ;

FileCopy

Execute Done
SrcFileName Busy
DstFileName Error
OverWrite ErrorID

FileCopy_instance

_Card1Ready BOOL SD Memory Card Ready Flag

Variable Data type Comment

Internal Variables

External Variables

DirCreate_instance.Done

2-845

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
D

 M
em

o
ry C

ard
 In

stru
ctio

n
s

2

F
ileC

opy

Operating FileCopy_instance.Done

Processing after normal end.

DirRemove_instance.Done
1 // Processing after normal end.
2 ;

 ‘Dir0’
TRUE

Execute DirRemove instruction.

Inline ST

Inline ST

Operating

DirRemove_instance.Error
1 // Processing after error end.
2 ;

FileCopy_instance.Done DirRemove

Execute Done
DirName Busy
All Error
 ErrorID

DirRemove_instance

2 Instruction Descriptions

2-846 NJ-series Instructions Reference Manual (W502)

Execution condition
Value of Trigger from previous task period
Processing started.
Processing
Stage change

Variable Data type Initial value Comment

ST

IF ((Trigger=TRUE) AND (LastTrigger=FALSE) AND (_Card1Ready=TRUE)) THEN
 OperatingStart:=TRUE;
 Operating :=TRUE;
END_IF;
LastTrigger:=Trigger;

IF (OperatingStart=TRUE) THEN
 DirCreate_instance(Execute:=FALSE);
 FileCopy_instance(Execute:=FALSE);
 DirRemove_instance(Execute:=FALSE);
 Stage :=INT#1;
 OperatingStart:=FALSE;
END_IF;

IF (Operating=TRUE) THEN
 CASE Stage OF
 1 :
 DirCreate_instance(
 Execute :=TRUE,
 DirName:=’Dir1’);

 IF (DirCreate_instance.Done=TRUE) THEN
 Stage:=INT#2;
 END_IF;

 IF (DirCreate_instance.Error=TRUE) THEN
 Stage:=INT#99;
 END_IF;

 2 :
 FileCopy_instance(
 Execute :=TRUE,
 SrcFileName:=’Dir0/ABC.bin’,
 DstFileName:=’Dir1/ABC.bin’,
 OverWrite :=FALSE);

 IF (FileCopy_instance.Done=TRUE) THEN
 Stage:=INT#3;
 END_IF;

 IF (FileCopy_instance.Error=TRUE) THEN
 Stage:=INT#99;
 END_IF;

// Start sequence when Trigger changes to TRUE.

// Execute instructions.

// Directory name

// Name of file to copy
// Name of destination file
// Prohibit overwrite.

// Normal end

// Error end

// Initialize instance.

// Create directory.

// Copy file.

Trigger
LastTrigger
OperatingStart
Operating
Stage
DirCreate_instance
FileCopy_instance
DirRemove_instance

False
False
False
False
0

BOOL
BOOL
BOOL
BOOL
INT
DirCreate
FileCopy
DirRemove

_Card1Ready BOOL

Variable Data type Comment

SD Memory Card Ready Flag

Internal Variables

External Variables

2-847

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
D

 M
em

o
ry C

ard
 In

stru
ctio

n
s

2

F
ileC

opy

 3 :
 DirRemove_instance(
 Execute :=TRUE,
 DirName:=’Dir0’,
 All :=TRUE);

 IF (DirRemove_instance.Done=TRUE) THEN
 Operating:=FALSE;
 END_IF;

 IF (DirRemove_instance.Error=TRUE) THEN
 Stage:=INT#99;
 END_IF;

 99 :
 Operating:=FALSE;
 END_CASE;
END_IF;

// Processing after error end.

// Error end

// Normal end

// Delete directory.

// Directory name
// Delete files and subdirectories.

2 Instruction Descriptions

2-848 NJ-series Instructions Reference Manual (W502)

FileRemove

The FileRemove instruction deletes the specified file from the SD Memory Card.

The FileRemove instruction deletes the file specified by file name FileName from the SD Memory Card.

The following figure shows a programming example. Here, the file named ‘ABC.bin’ is deleted.

Instruction Name FB/FUN Graphic expression ST expression

FileRemove Delete File FB FileRemove_instance(Execute,
FileName, Done, Busy, Error,
ErrorID);

Variables

Name Meaning I/O Description Valid range Unit Default

FileName File name Input Name of file to delete Depends on data type. --- ''

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

FileName OK

Function

Related System-defined Variables

Name Meaning Data type Description

_Card1Ready SD Memory Card
Ready Flag

BOOL This flag indicates if the SD Memory Card is physically
inserted and is mounted normally, i.e., if it can be
accessed by instructions and communications com-
mands.

TRUE: Can be used.

FALSE: Cannot be used.

FileRemove

Execute Done
FileName Busy
 Error
 ErrorID

FileRemove_instance

FileRemove_instance(A, ’ABC.bin’, abc,
 def, ghi, jkl);

LD ST

‘ABC.bin’

A FileRemove

Execute Done
FileName Busy
 Error
 ErrorID

FileRemove_instance

def
ghi
jkl

abc

2-849

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
D

 M
em

o
ry C

ard
 In

stru
ctio

n
s

2

F
ileR

em
ove

The root directory of the file name is the top level of the SD Memory Card.

• Execution of this instruction is continued until processing is completed even if the value of Execute
changes to FALSE or the execution time exceeds the task period. The value of Done changes to
TRUE when processing is completed. Use this to confirm normal completion of processing.

• Refer to Using this Section on page 2-2 for a timing chart for Execute, Done, Busy, and Error.

• If a file is open when the operating mode of the CPU Unit is changed to PROGRAM mode or when a
major fault level Controller error occurs, the file is closed by the system. Any read/write operations
that are in progress are completed to the end.

• If a file is open when the power supply it stopped with the power switch, the file is not corrupted.

• If a file is open and the SD Memory Card is removed before the power switch is pressed, the contents
of the file will sometimes be corrupted. Always turn OFF the power supply before removing the SD
Memory Card.

• If a file is open when the power supply is stopped or the SD Memory Card is removed, it will not be
possible to read or write the file even if the SD Memory Card is inserted again.

• An error occurs in the following cases. Error will change to TRUE.

• The SD Memory Card is not in a usable condition.

• The SD Memory Card is write protected.

• The file specified by FileName does not exist.

• The file specified by FileName is being accessed.

• A file with the name FileName already exits and the file is write protected.

• If more than four SD Memory Card instructions that do not have a FileID variable (i.e., FileWrite-
Var, FileReadVar, FileCopy, DirCreate, FileRemove, DirRemove, and FileRename) are executed
at the same time.

• The value of FileName exceeds the maximum number of characters allowed in a file name.

• An error that prevents access occurs during SD Memory Card access.

_Card1Protect SD Memory Card Write
Protected Flag

BOOL This flag indicates if the SD Memory Card is write pro-
tected when it is inserted and ready to use.

TRUE: Write protected.

FALSE: Not write protected.

_Card1Err SD Memory Card Error
Flag

BOOL This flag indicates if an unspecified SD Memory Card
(e.g., an SDHC card) is mounted or if the format is
incorrect (i.e., not FAT16 or corrupted).

TRUE: Error.

FALSE: No error.

_Card1Access SD Memory Card
Access Flag

BOOL This flag indicates if the SD Memory Card is currently
being accessed.

TRUE: Being accessed.

FALSE: Not being accessed.

_Card1PowerFail SD Memory Card
Power Interruption Flag

BOOL This flag indicates if an error occurred in completing
processing when power was interrupted during SD
Memory Card access. This flag is not cleared automat-
ically.

TRUE: Error.

FALSE: No error.

Additional Information

Precautions for Correct Use

Name Meaning Data type Description

2 Instruction Descriptions

2-850 NJ-series Instructions Reference Manual (W502)

In this sample, the file named 'ABC.bin' is deleted from the SD Memory Card.

Sample Programming

Processing completed.
Execution condition
Processing

Variable Data type Initial value Comment

LD

OperatingEnd
Trigger
Operating
RS_instance
FileRemove_instance

False
False
False

BOOL
BOOL
BOOL
RS
FileRemove

FileRemove_instance.Done

FileRemove_instance.Error

Determine if execution of the FileRemove instruction is completed.

Accept trigger.

Execute FileRemove instruction.

OperatingEnd

Operating

OperatingEnd

Trigger _Card1Ready RS
 Set Q1
 Reset1

RS_instance

Operating

‘ABC.bin’

Operating FileRemove_instance.Done

Processing after normal end.
Inline ST

Inline ST

1 // Processing after normal end.
2 ;

Operating FileRemove_instance.Error

Processing after error end.

1 // Processing after normal end.
2 ;

FileRemove

Execute Done
FileName Busy
 Error
 ErrorID

FileRemove_instance

_Card1Ready BOOL

Variable Data type Comment

SD Memory Card Ready Flag

Internal Variables

External Variables

2-851

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
D

 M
em

o
ry C

ard
 In

stru
ctio

n
s

2

F
ileR

em
ove

Execution condition
Value of Trigger from previous task period
Processing started.
Processing

Variable Data type Initial value Comment

ST

IF ((Trigger=TRUE) AND (LastTrigger=FALSE) AND (_Card1Ready=TRUE)) THEN
 OperatingStart:=TRUE;
 Operating :=TRUE;
END_IF;
LastTrigger:=Trigger;

IF (OperatingStart=TRUE) THEN
 FileRemove_instance(Execute:=FALSE);
 OperatingStart:=FALSE;
END_IF;

IF (Operating=TRUE) THEN
 FileRemove_instance(
 Execute :=TRUE,
 FileName:=’ABC.bin’);

 IF (FileRemove_instance.Done=TRUE) THEN
 Operating:=FALSE;
 END_IF;

 IF (FileRemove_instance.Error=TRUE) THEN
 Operating:=FALSE;
 END_IF;
END_IF;

// Start sequence when Trigger changes to TRUE.

// Normal end

// File name

// Execute FileRemove instruction.

// Error end

// Initialize instance.

Trigger
LastTrigger
OperatingStart
Operating
FileRemove_instance

False
False
False
False

BOOL
BOOL
BOOL
BOOL
FileRemove

_Card1Ready BOOL

Variable Data type Comment

SD Memory Card Ready Flag

Internal Variables

External Variables

2 Instruction Descriptions

2-852 NJ-series Instructions Reference Manual (W502)

FileRename

The FileRename instruction changes the name of the specified file or directory in the SD Memory Card.

The FileRename instruction changes the name of the file or directory specified by original file name
FileName to new file name NewName in the SD Memory Card.

If a file or directory with the name NewName already exists in the SD Memory Card, the following pro-
cessing is performed depending on the value of overwrite enable OverWrite.

Instruction Name FB/FUN Graphic expression ST expression

FileRename Change File Name FB FileRename_instance(Execute,
FileName, NewName, OverWrite,
Done, Busy, Error, ErrorID);

Variables

Name Meaning I/O Description Valid range Unit Default

FileName Original file
name

Input

Original file name

Depends on data type. ---

''
NewName New file

name
New file name

OverWrite Overwrite
enable

TRUE: Enable overwrite.

FALSE: Prohibit overwrite.

FALSE

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

FileName OK

NewName OK

OverWrite OK

Function

Value of OverWrite Treatment

TRUE (Enable overwrite.) The existing file or directory is overwritten.

FALSE (Prohibit overwrite.) The file or directory is not overwritten and an error occurs.

FileRename

Execute Done
FileName Busy
NewName Error
OverWrite ErrorID

FileRename_instance

2-853

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
D

 M
em

o
ry C

ard
 In

stru
ctio

n
s

2

F
ileR

enam
e

The following figure shows a programming example. Here, the name of the file ‘ABC.bin’ is changed to
‘DEF.bin.’

The root directory of the file name is the top level of the SD Memory Card.

Related System-defined Variables

Name Meaning Data type Description

_Card1Ready SD Memory Card
Ready Flag

BOOL This flag indicates if the SD Memory Card is physically
inserted and is mounted normally, i.e., if it can be
accessed by instructions and communications com-
mands.

TRUE: Can be used.

FALSE: Cannot be used.

_Card1Protect SD Memory Card Write
Protected Flag

BOOL This flag indicates if the SD Memory Card is write pro-
tected when it is inserted and ready to use.

TRUE: Write protected.

FALSE: Not write protected.

_Card1Err SD Memory Card Error
Flag

BOOL This flag indicates if an unspecified SD Memory Card
(e.g., an SDHC card) is mounted or if the format is
incorrect (i.e., not FAT16 or corrupted).

TRUE: Error.

FALSE: No error.

_Card1Access SD Memory Card
Access Flag

BOOL This flag indicates if the SD Memory Card is currently
being accessed.

TRUE: Being accessed.

FALSE: Not being accessed.

_Card1PowerFail SD Memory Card
Power Interruption Flag

BOOL This flag indicates if an error occurred in completing
processing when power was interrupted during SD
Memory Card access. This flag is not cleared automat-
ically.

TRUE: Error.

FALSE: No error.

Additional Information

FileRename_instance(A, ’ABC.bin’, ‘DEF.bin’,
 TRUE, abc, def, ghi, jkl);

LD ST

‘ABC.bin’
‘DEF.bin’

TRUE

def
ghi
jkl

abcA FileRename

Execute Done
FileName Busy
NewName Error
OverWrite ErrorID

FileRename_instance

2 Instruction Descriptions

2-854 NJ-series Instructions Reference Manual (W502)

• Execution of this instruction is continued until processing is completed even if the value of Execute
changes to FALSE or the execution time exceeds the task period. The value of Done changes to
TRUE when processing is completed. Use this to confirm normal completion of processing.

• Refer to Using this Section on page 2-2 for a timing chart for Execute, Done, Busy, and Error.

• If the directories are different for FileName and NewName, the file is moved to the directory that is
specified with NewName.

• If a file is open when the operating mode of the CPU Unit is changed to PROGRAM mode or when a
major fault level Controller error occurs, the file is closed by the system. Any read/write operations
that are in progress are completed to the end.

• If a file is open when the power supply it stopped with the power switch, the file is not corrupted.

• If a file is open and the SD Memory Card is removed before the power switch is pressed, the contents
of the file will sometimes be corrupted. Always turn OFF the power supply before removing the SD
Memory Card.

• If a file is open when the power supply is stopped or the SD Memory Card is removed, it will not be
possible to read or write the file even if the SD Memory Card is inserted again.

• An error occurs in the following cases. Error will change to TRUE.

• The SD Memory Card is not in a usable condition.

• The SD Memory Card is write protected.

• The file directory specified with FileName does not exist.

• The value of FileName or NewName is not a valid file name or directory name.

• The file specified by FileName is being accessed.

• There is a subdirectory in the directory that was specified for FileName and the value of OverWrite
is TRUE.

• A file with the name NewName already exits and the value of OverWrite is FALSE.

• A file with the name NewName already exits, the file is write protected, and the value of OverWrite
is TRUE.

• If more than four SD Memory Card instructions that do not have a FileID variable (i.e., FileWrite-
Var, FileReadVar, FileCopy, DirCreate, FileRemove, DirRemove, and FileRename) are executed
at the same time.

• The value of NewName exceeds the maximum number of characters allowed in a file name or
directory name.

• An error that prevents access occurs during SD Memory Card access.

Precautions for Correct Use

2-855

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
D

 M
em

o
ry C

ard
 In

stru
ctio

n
s

2

F
ileR

enam
e

In this sample, the name of the file 'ABC.bin' is changed to 'DEF.bin' on the SD Memory Card.

Sample Programming

Processing completed.
Execution condition
Processing

Variable Data type CommentInitial value

LD

OperatingEnd
Trigger
Operating
RS_instance
FileRename_instance

False
False
False

BOOL
BOOL
BOOL
RS
FileRename

FileRename_instance.Done

FileRename_instance.Error

Determine if execution of the FileRename instruction is completed.

Accept trigger.

Execute FileRename instruction.

OperatingEnd

Operating

OperatingEnd

Trigger _Card1Ready RS
 Set Q1
 Reset1

RS_instance

Operating

‘ABC.bin’
‘DEF.bin’
 FALSE

Operating FileRename_instance.Done

Processing after normal end.
Inline ST

Inline ST

1 // Processing after normal end.
2 ;

Operating FileRename_instance.Error

Processing after error end.

1 // Processing after normal end.
2 ;

FileRename

Execute Done
FileName Busy
NewName Error
OverWrite ErrorID

FileRename_instance

_Card1Ready BOOL

Variable Data type Comment

SD Memory Card Ready Flag

Internal Variables

External Variables

2 Instruction Descriptions

2-856 NJ-series Instructions Reference Manual (W502)

Execution condition
Value of Trigger from previous task period
Processing started.
Processing

Variable Data type Initial value Comment

ST

IF ((Trigger=TRUE) AND (LastTrigger=FALSE) AND (_Card1Ready=TRUE)) THEN
 OperatingStart:=TRUE;
 Operating :=TRUE;
END_IF;
LastTrigger:=Trigger;

IF (OperatingStart=TRUE) THEN
 FileRename_instance(Execute:=FALSE);
 OperatingStart:=FALSE;
END_IF;

IF (Operating=TRUE) THEN
 FileRename_instance(
 Execute :=TRUE,
 FileName :=’ABC.bin’,
 NewName:=’DEF.bin’,
 OverWrite :=FALSE);

 IF (FileRename_instance.Done=TRUE) THEN
 Operating:=FALSE;
 END_IF;

 IF (FileRename_instance.Error=TRUE) THEN
 Operating:=FALSE;
 END_IF;
END_IF;

// Start sequence when Trigger changes to TRUE.

// Normal end

// Original file name
// New file name
// Prohibit overwrite.

// Execute FileRename instruction.

// Error end

// Initialize instance.

Trigger
LastTrigger
OperatingStart
Operating
FileRename_instance

False
False
False
False

BOOL
BOOL
BOOL
BOOL
FileRename

_Card1Ready BOOL

Variable Data type Comment

SD Memory Card Ready Flag

Internal Variables

External Variables

2-857

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
D

 M
em

o
ry C

ard
 In

stru
ctio

n
s

2

D
irC

reate

DirCreate

The DirCreate instruction creates a directory with the specified name in the SD Memory Card.

The DirCreate instruction creates a directory with the name specified by directory to create Dir in the
SD Memory Card.

The following figure shows a programming example. Here, a directory named ‘Dir0’ is created.

Instruction Name FB/FUN Graphic expression ST expression

DirCreate Create Directory FB DirCreate_instance(Execute,
DirName, Done, Busy, Error,
ErrorID);

Variables

Name Meaning I/O Description Valid range Unit Default

DirName Directory to
create

Input Name of directory to create Depends on data type. --- ''

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

DirName OK

Function

DirCreate

Execute Done
DirName Busy
 Error
 ErrorID

DirCreate_instance

DirCreate_instance(A, ’Dir0’, abc,
 def, ghi, jkl);

LD ST

‘Dir0’

A DirCreate

Execute Done
DirName Busy
 Error
 ErrorID

DirCreate_instance

def
ghi
jkl

abc

2 Instruction Descriptions

2-858 NJ-series Instructions Reference Manual (W502)

The root directory of the file name is the top level of the SD Memory Card.

• Execution of this instruction is continued until processing is completed even if the value of Execute
changes to FALSE or the execution time exceeds the task period. The value of Done changes to
TRUE when processing is completed. Use this to confirm normal completion of processing.

• Refer to Using this Section on page 2-2 for a timing chart for Execute, Done, Busy, and Error.

• If a file is open when the operating mode of the CPU Unit is changed to PROGRAM mode or when a
major fault level Controller error occurs, the file is closed by the system. Any read/write operations
that are in progress are completed to the end.

• If a file is open when the power supply it stopped with the power switch, the file is not corrupted.

• If a file is open and the SD Memory Card is removed before the power switch is pressed, the contents
of the file will sometimes be corrupted. Always turn OFF the power supply before removing the SD
Memory Card.

• If a file is open when the power supply is stopped or the SD Memory Card is removed, it will not be
possible to read or write the file even if the SD Memory Card is inserted again.

• An error occurs in the following cases. Error will change to TRUE.

• The SD Memory Card is not in a usable condition.

• The SD Memory Card is write protected.

Related System-defined Variables

Name Meaning Data type Description

_Card1Ready SD Memory Card
Ready Flag

BOOL This flag indicates if the SD Memory Card is physi-
cally inserted and is mounted normally, i.e., if it can be
accessed by instructions and communications com-
mands.

TRUE: Can be used.

FALSE: Cannot be used.

_Card1Protect SD Memory Card Write
Protected Flag

BOOL This flag indicates if the SD Memory Card is write pro-
tected when it is inserted and ready to use.

TRUE: Write protected.

FALSE: Not write protected.

_Card1Err SD Memory Card Error
Flag

BOOL This flag indicates if an unspecified SD Memory Card
(e.g., an SDHC card) is mounted or if the format is
incorrect (i.e., not FAT16 or corrupted).

TRUE: Error.

FALSE: No error.

_Card1Access SD Memory Card
Access Flag

BOOL This flag indicates if the SD Memory Card is currently
being accessed.

TRUE: Being accessed.

FALSE: Not being accessed.

_Card1PowerFail SD Memory Card
Power Interruption Flag

BOOL This flag indicates if an error occurred in completing
processing when power was interrupted during SD
Memory Card access. This flag is not cleared auto-
matically.

TRUE: Error.

FALSE: No error.

Additional Information

Precautions for Correct Use

2-859

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
D

 M
em

o
ry C

ard
 In

stru
ctio

n
s

2

D
irC

reate

• There is insufficient space available on the SD Memory Card.

• The maximum number of directories is exceeded.

• The directory specified by DirName already exists.

• If more than four SD Memory Card instructions that do not have a FileID variable (i.e., FileWrite-
Var, FileReadVar, FileCopy, DirCreate, FileRemove, DirRemove, and FileRename) are executed
at the same time.

• The value of DirName is not a valid directory name.

• The value of DirName exceeds the maximum number of characters allowed in a directory name.

• An error that prevents access occurs during SD Memory Card access.

Refer to the sample programming that is provided for the FileCopy instruction (page 2-840).

Sample Programming

2 Instruction Descriptions

2-860 NJ-series Instructions Reference Manual (W502)

DirRemove

The DirRemove instruction deletes the specified directory from the SD Memory Card.

The DirRemove instruction deletes the directory with the name specified by directory to delete Dir from
the SD Memory Card.

If there are files or subdirectories in the specified directory, the following processing is performed
according to the value of all designation All.

Instruction Name FB/FUN Graphic expression ST expression

DirRemove Delete Directory FB DirRemove_instance(Execute,
DirName, All, Done, Busy, Error,
ErrorID);

Variables

Name Meaning I/O Description Valid range Unit Default

DirName Directory to
delete

Input

Directory to delete

Depends on data type. ---

''

All All designa-
tion

Specifies whether to delete
files and subdirectories
inside specified directory

TRUE: Delete files and sub-
directories.

FALSE: Do not delete.

FALSE

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

DirName OK

All OK

Function

Value of All Treatment

TRUE All files and subdirectories are deleted along with the specified directory.

FALSE The specified directory is not deleted and an error occurs.

DirRemove

Execute Done
DirName Busy
All Error
 ErrorID

DirRemove_instance

2-861

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

S
D

 M
em

o
ry C

ard
 In

stru
ctio

n
s

2

D
irR

em
ove

The following figure shows a programming example. Here, a directory named ‘Dir1’ is deleted.

The root directory of the file name is the top level of the SD Memory Card.

Related System-defined Variables

Name Meaning Data type Description

_Card1Ready SD Memory Card
Ready Flag

BOOL This flag indicates if the SD Memory Card is physically
inserted and is mounted normally, i.e., if it can be
accessed by instructions and communications com-
mands.

TRUE: Can be used.

FALSE: Cannot be used.

_Card1Protect SD Memory Card Write
Protected Flag

BOOL This flag indicates if the SD Memory Card is write pro-
tected when it is inserted and ready to use.

TRUE: Write protected.

FALSE: Not write protected.

_Card1Err SD Memory Card Error
Flag

BOOL This flag indicates if an unspecified SD Memory Card
(e.g., an SDHC card) is mounted or if the format is
incorrect (i.e., not FAT16 or corrupted).

TRUE: Error.

FALSE: No error.

_Card1Access SD Memory Card
Access Flag

BOOL This flag indicates if the SD Memory Card is currently
being accessed.

TRUE: Being accessed.

FALSE: Not being accessed.

_Card1PowerFail SD Memory Card
Power Interruption Flag

BOOL This flag indicates if an error occurred in completing
processing when power was interrupted during SD
Memory Card access. This flag is not cleared automati-
cally.

TRUE: Error.

FALSE: No error.

Additional Information

DirRemove_instance(A, ’Dir1’, TRUE, abc,
 def, ghi, jkl);

LD ST

‘Dir1’
TRUE

def
ghi
jkl

abcA DirRemove

Execute Done
DirName Busy
All Error
 ErrorID

DirRemove_instance

2 Instruction Descriptions

2-862 NJ-series Instructions Reference Manual (W502)

• Execution of this instruction is continued until processing is completed even if the value of Execute
changes to FALSE or the execution time exceeds the task period. The value of Done changes to
TRUE when processing is completed. Use this to confirm normal completion of processing.

• Refer to Using this Section on page 2-2 for a timing chart for Execute, Done, Busy, and Error.

• If a file is open when the operating mode of the CPU Unit is changed to PROGRAM mode or when a
major fault level Controller error occurs, the file is closed by the system. Any read/write operations
that are in progress are completed to the end.

• If a file is open when the power supply it stopped with the power switch, the file is not corrupted.

• If a file is open and the SD Memory Card is removed before the power switch is pressed, the contents
of the file will sometimes be corrupted. Always turn OFF the power supply before removing the SD
Memory Card.

• If a file is open when the power supply is stopped or the SD Memory Card is removed, it will not be
possible to read or write the file even if the SD Memory Card is inserted again.

• If the directory that is specified with DirName is write protected, an error occurs and the directory is
not deleted. However, any files or directories that are not write-protected inside that directory are
deleted.

• An error occurs in the following cases. Error will change to TRUE.

• The SD Memory Card is not in a usable condition.

• The SD Memory Card is write protected.

• If the value of All is TRUE and the directory specified with DirName is being accessed by another
instruction.

• If the value of All is FALSE and the directory specified with DirName contains a file or directory.

• The directory specified by DirName is write-protected.

• The directory that is specified with DirName contains write-protected files or write-protected direc-
tories.

• If more than four SD Memory Card instructions that do not have a FileID variable (i.e., FileWrite-
Var, FileReadVar, FileCopy, DirCreate, FileRemove, DirRemove, and FileRename) are executed
at the same time.

• The directory specified by DirName does not exist.

• The value of DirName exceeds the maximum number of characters allowed in a directory name.

• An error that prevents access occurs during SD Memory Card access.

Refer to the sample programming that is provided for the FileCopy instruction (page 2-840).

Precautions for Correct Use

Sample Programming

O
th

er In
stru

ctio
n

s

2

2-863NJ-series Instructions Reference Manual (W502)

Other Instructions

Instruction Name Page

ReadNbit_** N-bit Read Group 2-864

WriteNbit_** N-bit Write Group 2-866

ChkRange Check Subrange Variable 2-868

GetMyTaskStatus Read Current Task Status 2-870

Task_IsActive Determine Task Status 2-873

Lock and Unlock Lock Tasks/Unlock Tasks 2-875

Get**Clk Get Clock Pulse Group 2-880

Get**Cnt Get Incrementing Free-running
Counter Group

2-881

2 Instruction Descriptions

2-864 NJ-series Instructions Reference Manual (W502)

ReadNbit_**

The ReadNbit_** instructions read zero or more bits from a bit string.

A ReadNbit_** instruction reads the values of the upper Size bits from read position Pos in source bit
string In. It assigns the values to read result Out.

The name of the instruction is determined by the data types of In and Out. For example, if In and Out
are the WORD data type, the instruction is ReadNbit_WORD.

Instruction Name FB/FUN Graphic expression ST expression

ReadNbit_** N-bit Read Group FUN Out:=ReadNbit_**(In, Pos,
Size);

“**” must be a bit string data
type.

Variables

Name Meaning I/O Description Valid range Unit Default

In Read
source

Input

Bit string to read Depends on data type.

0

Pos Read posi-
tion

Bit position to read 0 to No. of bits in In −1

Size Read size Number of bits to read 0 to No. of bits in In 1

Out Read result Output Read result Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK OK OK OK

Pos OK

Size OK

Out Must be same data type as In

Function

(@)ReadNbit_**
EN ENO
In Out
Pos
Size

"**" must be a bit string data type.

2-865

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

O
th

er In
stru

ctio
n

s

2

R
eadN

bit_**

The following example shows the ReadNbit_BYTE instruction when In is BYTE#16#89, Pos is USINT#2
and Size is USINT#4.

Use a WriteNbit_** instruction to write zero or more bits to a bit string.

• The data types of In and Out must be the same.

• If the value of Size is 0, the value of Out is 16#0.

• An error occurs in the following cases. ENO will be FALSE, and Out will not change.

• The value of Size is outside of the valid range.

• The value of Pos is outside of the valid range.

• The bit string in In does not have enough bits for the number of bits specified by Size from the
position specified by Pos.

Additional Information

Precautions for Correct Use

abc:=ReadNbit_BYTE(BYTE#16#89, USINT#2,
 USINT#4);

LD ST

abcBYTE#16#89
USINT#2
USINT#4

ReadNbit_BYTE
EN ENO
In
Pos
Size

1 0In 0 0 1 0 0 1

Size=USINT#4

Pos=USINT#2

Bit 0Bit 7

0 0 0 0 0 0 1 0Out=abc

Bit 0Bit 7

2 Instruction Descriptions

2-866 NJ-series Instructions Reference Manual (W502)

WriteNbit_**

The WriteNbit_** instructions write zero or more bits to a bit string.

A WriteNbit_** instruction first reads the lower Size bits from read source In. Then it writes the values
that it read to write position Pos in write target InOut.

The name of the instruction is determined by the data types of In and Out. For example, if In and Out
are the WORD data type, the instruction is WriteNbit_WORD.

Instruction Name FB/FUN Graphic expression ST expression

WriteNbit_** N-bit Write Group FUN WriteNbit_**(In, Pos, Size,
InOut);

“**” must be a bit string data
type.

Variables

Name Meaning I/O Description Valid range Unit Default

In Read
source

Input

Bit string from which to read
bits to write to InOut

Depends on data type.

0

Pos Write posi-
tion

Bit position to which to write 0 to No. of bits in InOut
−1

Size Write size Number of bits to write 0 to No. of bits in In 1

InOut Write target In-out Write result Depends on data type. --- ---

Out Return
value

Output
Always TRUE TRUE only --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK OK OK OK

Pos OK

Size OK

InOut Must be same data type as In

Out OK

Function

"**" must be a bit string data type.

(@)WriteNbit_**
EN ENO
In Out
InOut

Pos
Size

2-867

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

O
th

er In
stru

ctio
n

s

2

W
riteN

bit_**

The following example shows the WriteNbit_BYTE instruction when In is BYTE#16#89, Pos is USINT#2
and Size is USINT#4.

Use a ReadNbit_** instruction to read zero or more bits from a bit string.

• The data types of In and InOut must be the same.

• The value of InOut does not change if the value of Size is 0.

• Return value Out is not used when the instruction is used in ST.

• An error occurs in the following cases. ENO will be FALSE, and InOut will not change.

• The value of Size is outside of the valid range.

• The value of Pos is outside of the valid range.

• The bit string in InOut does not have enough bits for the number of bits specified by Size from the
position specified by Pos.

Additional Information

Precautions for Correct Use

WriteNbit_BYTE(BYTE#16#89, abc,
 USINT#2, USINT#4);

LD ST

abc abc

BYTE#16#89

USINT#2
USINT#4

WriteNbit_BYTE
EN ENO
In
InOut

Pos
Size

1 0In 0 0 1 0 1 0

Size=USINT#4

Pos=USINT#2

0 0 1 0 1 0 0 0InOut=abc

Bit 0Bit 7

Bit 0Bit 7

2 Instruction Descriptions

2-868 NJ-series Instructions Reference Manual (W502)

ChkRange

The ChkRange instruction determines if the value of a variable is within the valid range of the range
type specification.

* If you omit the input parameter, the default value is not applied. A building error will occur.

The ChkRange instruction determines if the value of variable to check In is within the valid range of the
range specification variable Val. If the value is within the valid range, check result Out is TRUE. If the
value is not within the valid range, check result Out is FALSE.

You can define the range type specification for integer variables (USINT, UINT, UDINT, ULINT, SINT,
INT, DINT, and LINT).

Instruction Name FB/FUN Graphic expression ST expression

ChkRange Check Subrange
Variable

FUN Out:=ChkRange(In, Val);

Variables

Name Meaning I/O Description Valid range Unit Default

In Variable to
check

Input

Variable to check Depends on data type.

--- *Val Range
specifica-
tion vari-
able

Range specification variable Depends on the range
specification.

Out Check
result

Output Check result Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

In OK OK OK OK OK OK OK OK

Val The basic data type that is the basis for the range specification must be the same as In.

Out OK

Function

Additional Information

(@)ChkRange
EN Out
In
Val

2-869

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

O
th

er In
stru

ctio
n

s

2

C
hkR

ange

• If In is not a range specification variable, the value of Out changes to FALSE.

• If this instruction is used in a ladder diagram, the value of Out changes to FALSE if an error occurs in
the previous instruction on the rung.

Here, the result of addition i is checked to see if it is within the valid range (10 to 99) of the range speci-
fication variable x. If it is not within the valid range, the value of variable Correct is assigned to variable
x.

Precautions for Correct Use

Sample Programming

LD

i
abc
def
x
Correct

0
0
0
10
0

INT
INT
INT
INT(10..99)
INT

P_On

i

i

i x

xCorrect

ADD

abc
def

EN ENO
In1
In2

ChkRange
EN
In
Valx

MOVE
EN ENO
In Out

MOVE
EN ENO
In Out

Variable Data type Comment

ST

i := abc+def;
Chk:=ChkRange(i, x);

IF (Chk=TRUE) THEN
 x := i;
ELSE
 x := Correct;
END_IF;

// Assign i to x if value of i is in range.

// Assign Correct to x if value of i is out of range.

// Check subrange variable.

i
abc
def
Chk
x
Correct

0
0
0
False
10
0

INT
INT
INT
BOOL
INT(10..99)
INT

Variable Data type Comment

2 Instruction Descriptions

2-870 NJ-series Instructions Reference Manual (W502)

GetMyTaskStatus

The GetMyTaskStatus reads the status of the current task.

* Negative numbers are excluded.

Instruction Name FB/FUN Graphic expression ST expression

GetMyTaskStatus Read Current Task
Status

FUN GetMyTaskStatus(
LastExecTime,
MaxExecTime,
MinExecTime,
ExecCount,
Exceeded,
ExceedCount);

Variables

Name Meaning I/O Description Valid range Unit Default

Out Return value

Output

Always TRUE TRUE only ---

LastExec
Time

Last task exe-
cution time

Last task execution time of
the current task

Depends on data type.* ns
MaxExec
Time

Maximum task
execution time

Maximum task execution
time of the current task

MinExec
Time

Minimum task
execution time

Minimum task execution
time of the current task

ExecCount Task execu-
tion count

Number of task executions
of the current task

Depends on data type. ---

Exceeded Task period
exceeded flag

TRUE: The last execution of
the current task was not
completed within the task
period.
FALSE: The last execution
of the current task was com-
pleted within the task period.

Exceed-
Count

Task period
exceeded
count

The number of times the
current task has exceeded
the task period.

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

Out OK

LastExec
Time

OK

MaxExec
Time

OK

MinExec
Time

OK

(@)GetMyTaskStatus

EN ENO
 Out
 LastExecTime
 MaxExecTime
 MinExecTime
 ExecCount
 Exceeded
 ExceedCount

2-871

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

O
th

er In
stru

ctio
n

s

2

G
etM

yTaskS
tatus

The GetMyTaskStatus reads the status of the current task. The task status includes the last task execu-
tion time LastExecTime, maximum task execution time MaxExecTime, minimum task execution time
MinExecTime, task execution count ExecCount, task period exceeded flag Exceeded, and task period
exceeded count ExceedCount.

MaxExecTime, MinExecTime, ExecCount, and ExceedCount are reset at the following times.

• When operation is started

• When a reset operation is executed from the Task Execution Time Monitoring Pane of the Sysmac
Studio.

• When the value of ExecCount or ExceedCount exceeds the maximum value of UDINT data
(4,294,967,295), it returns to 0.

• Return value Out is not used when the instruction is used in ST.

In this sample, the GetMyTaskStatus reads the status of the current task. If the previous task execution
time exceeds 400 µs (400000 ns), the value of the Warning variable changes to TRUE.

ExecCount OK

Exceeded OK

Exceed-
Count

OK

Function

Additional Information

Precautions for Correct Use

Sample Programming

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

2 Instruction Descriptions

2-872 NJ-series Instructions Reference Manual (W502)

LD

ExecTime_t
ExecTime_ns
Warning

T#0s
0
False

Previous task execution time (TIME data)
Previous task execution time (nanoseconds LINT data)
Warning

TIME
LINT
BOOL

Variable

P_On

ExecTime_t

ExecTime_t

ExecTime_ns

ExecTime_ns
LINT#400000

Warning

GetMyTaskStatus

EN ENO

 LastExecTime
 MaxExecTime
 MinExecTime
 ExecCount
 Exceeded
 ExceedCount

TimeToNanoSec

EN ENO
In

>
EN
In1:
In2

Data type Initial
value Comment

ST

GetMyTaskStatus(LastExecTime=>ExecTime_t);
ExecTime_ns:=TimeToNanoSec(ExecTime_t);
IF (ExecTime_ns>DINT#400000) THEN
 Warning:=TRUE;
ELSE
 Warning:=FALSE;
END_IF;

// Get previous task period.
// Convert previous task period from TIME data to nanoseconds.
// If previous task period exceeds 400,000 ns...
// Assign TRUE to Warning variable.

ExecTime_t
ExecTime_ns
Warning

T#0s
0
False

TIME
LINT
BOOL

Previous task execution time (TIME data)
Previous task execution time (nanoseconds LINT data)
Warning

Variable Data type Initial
value Comment

2-873

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

O
th

er In
stru

ctio
n

s

2

Task_IsA
ctive

Task_IsActive

The Task_IsActive instruction determines if the specified task is currently in execution.

The Task_IsActive instruction determines if the task specified with TaskName is currently in execution
or on standby. “On standby” means that a high-priority task was started after this task was started, so
processing has been interrupted.
If it is being executed or on standby, the value of judgment Out is TRUE. If it is not being executed, the
value of Out is FALSE.

• You cannot use a variable to which a text string was assigned for TaskName. Directly specify a text
string.

• If this instruction is used in a ladder diagram, the value of Out changes to FALSE if an error occurs in
the previous instruction on the rung.

• An error occurs in the following case. The value of Out does not change.

• The task specified with TaskName does not exist.

Instruction Name FB/FUN Graphic expression ST expression

Task_IsActive Determine Task
Status

FUN Out:=Task_IsActive(
TaskName);

Variables

Name Meaning I/O Description Valid range Unit Default

TaskName Task name Input Task name 63 bytes max. (62 sin-
gle-byte alphanumeric
characters plus the final
NULL character)

--- ''

Out Judgement Output TRUE: Task is in execution
or on standby.

FALSE: Not active

Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

TaskName OK

Out OK

Function

Precautions for Correct Use

(@)Task_IsActive

EN Out
TaskName

2 Instruction Descriptions

2-874 NJ-series Instructions Reference Manual (W502)

In this sample, the instruction determines whether periodic task Tc2 is active when the value of variable
A changes to TRUE. If it is active, the value of variable B changes to TRUE.

Sample Programming

LD

A
B
Tc2_Run

False
False
False Task Tc2 execution status

BOOL
BOOL
BOOL

A

’Tc2’

Tc2_Run

A Tc2_Run

Task_IsActive

EN
TaskName

B

Variable Initial
valueData type Comment

ST

IF (A=TRUE) THEN

 Tc2_Run:=Task_isActive(’Tc2’);

 IF (Tc2_Run=TRUE) THEN
 B := TRUE;
 END_IF;

END_IF;

// Determine task status.

// Make variable B TRUE if Tc2 is running.

A
B
Tc2_Run

False
False
False Task Tc2 execution status

BOOL
BOOL
BOOL

Variable Initial
valueData type Comment

2-875

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

O
th

er In
stru

ctio
n

s

2

Lock and U
nlock

Lock and Unlock

The Lock and Unlock instructions create lock regions. If a lock region in one task is being executed, the
lock regions with the same lock number in other tasks are not executed. Specify the lock number with
Index.

The following figure shows a programming example.

Both task T1 and task T2 contain a lock region with Index set to 1. If the Lock instruction in T2 is exe-
cuted first, the lock region in T1 is not executed until the Unlock instruction is executed in T2.

Lock: Starts an exclusive lock between tasks. Execution of any other task with a lock region
with the same lock number is disabled.

Unlock: Stops an exclusive lock between tasks.

Instruction Name FB/FUN Graphic expression ST expression

Lock Lock Tasks FUN Lock(Index);

Unlock Unlock Tasks FUN Unlock(Index);

Variables

Name Meaning I/O Description Valid range Unit Default

Index Lock num-
ber

Input Lock number Depends on data type. --- 0

Out Return
value

Output Always TRUE TRUE only --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

Index OK

Out OK

Function

(@)Lock

EN ENO
Index Out

(@)Unlock

EN ENO
Index Out

2 Instruction Descriptions

2-876 NJ-series Instructions Reference Manual (W502)

Lock regions with different values for Index do not affect each other.

• The Lock and Unlock instructions are used when the same data is read/written from more than one
task. They are used to prevent other tasks from reading/writing the data while a certain task is read-
ing/writing the data.

• As long as the Index values are different, more than one pair of Lock and Unlock instructions can be
placed in the same POU. The instruction pairs can also be nested.

• Do not make lock regions any longer than necessary. If the lock region is too long, the task execution
period may be exceeded.

• Always use the Lock and Unlock instructions together as a set in the same section of the same POU.

• You can set a maximum of 16,777,215 lock regions at the same time.

Additional Information

Precautions for Correct Use

Task T1

Task T2

The priority of T1 is higher than the
priority of T2, so T2 is interrupted
and execution of T1 is started.

Execution priority
High

Low

Lock region

Normal execution

Lock(1)

Execution interrupted.

Unlock(1)

Lock(1) Unlock(1)

T2 executes a Lock instruction with the same Index
value as the Lock instruction in T1. Therefore,
execution of T1 is interrupted until the Unlock
instruction is executed in T2.

When the Unlock instruction is executed in T2,
execution of T1 is started again, and execution of T2
is interrupted.

Execution of T2 is started again
after T1 completes execution.

2-877

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

O
th

er In
stru

ctio
n

s

2

Lock and U
nlock

• If Lock instructions are used in more than one task, a deadlock may occur if they are positioned
poorly. A Task Execution Timeout Error will occur if there is a deadlock and a total stop is performed.

• An error occurs in the following case. The value of Out does not change.

• There are more than 16,777,215 lock region at the same time.

Here, program P1 in task T1 and program P2 in task T2 both access the same global variable GTable1.
When the value of write request WriteReq changes to TRUE, P1 writes one record to record array
GTable1.Record[] and increments GTable1.Index. When read request ReadReq changes to TRUE, P2
decrements GTable1.Index and reads one record from GTable1.Record[].
The Lock instruction is used so that reading and writing do not occur at the same time.

Definition of Global Variable GTable

Data type

Global Variables

Sample Programming

Variable Data type Comment
USERTABLE STRUCT Record storage structure

Index INT Index
Record ARRAY[0..99] OF LREAL Record array

Variable Data type Initial value Comment
GTable1 USERTABLE (Index:=0,Record:=[100(0.0)]) Record storage structure

Task T1

Task T2

The priority of T1 is higher than the priority of T2,
so T2 is interrupted and execution of T1 is started.

Execution priority
High

Low

Lock(1) Lock(2)

Lock(2) Lock(1)

Execution interrupted.

Lock region

Normal execution

T1 executes a Lock instruction with an Index value
of 2. Therefore, execution of T1 is interrupted until
the Unlock instruction is executed in T2.

T2 executes a Lock instruction with an Index value of 1.
Therefore, execution of T2 is interrupted until the
Unlock instruction is executed in T1.

Here, restarting the execution of
both of the tasks must wait until
the Unlock instruction is executed
in the other task, i.e., they are
deadlocked.

Program P1

 Task T1

GTabel1

Record 0
Record 1

 :
Record n

Program P2

 Task T2

Record
written.

Record
read.

2 Instruction Descriptions

2-878 NJ-series Instructions Reference Manual (W502)

Program P1

LD

WriteReq
InDat

False
0.0

BOOL
LREAL

Write request
Write data

Record storage structure

WriteReq

USINT#1

USINT#1

INT#100 InDat
GTable1.Index

GTable1.Index

GTable1.Record[Gtable1.index]

GTable1 USERTABLE

Lock

EN ENO
Index

>
EN
In1
In2

Unlock

EN ENO
Index

MOVE
EN ENO
In Out

Inc
EN ENO
InOut

R

WriteReq

Internal
Variables Initial value

External
Variables

Variable CommentData type

Variable CommentData type

ST

IF (WriteReq=TRUE) THEN

 Lock(USINT#1);

 IF (INT#100>GTable1.Index) THEN
 GTable1.Record[GTable1.Index]:=InDat;
 GTable1.Index :=GTable1.Index+INT#1;
 END_IF;

 UnLock(USINT#1);
 WriteReq:=FALSE;

END_IF;

// Detect write request.

// Execute Lock instruction.

// Execute Unlock instruction.

WriteReq
InDat

False
0.0

BOOL
LREAL

GTable1 USERTABLE

Write request
Write data

Record storage structure

Internal
Variables Initial value

External
Variables

Variable CommentData type

Variable CommentData type

2-879

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

O
th

er In
stru

ctio
n

s

2

Lock and U
nlock

Program P2

LD

ReadReq
OutDat

False
0.0

BOOL
LREAL

GTable1 USERTABLE

R

ReadReq

ReadReq

USINT#1

USINT#1

INT#0

OutDat

GTable1.Index
GTable1.Index

GTable1.Record[Gtable1.index]

Lock

EN ENO
Index

>
EN
In1
In2

Unlock

EN ENO
Index

MOVE
EN ENO
In Out

Dec
EN ENO
InOut

Read request
Read data

Record storage structure

Internal
Variables Initial value

External
Variables

Variable CommentData type

Variable CommentData type

ST

IF (ReadReq=TRUE) THEN

 Lock(USINT#1);

 IF (GTable1.Index>INT#0) THEN
 GTable1.Index:=GTable1.Index-INT#1;
 OutDat :=GTable1.Record[GTable1.Index];
 END_IF;

 UnLock(USINT#1);
 ReadReq:=FALSE;

END_IF;

// Detect read request.

// Execute Lock instruction.

// Execute Unlock instruction.

ReadReq
OutDat

False
0.0

BOOL
LREAL

GTable1 USERTABLE

Read request
Read data

Record storage structure

Internal
Variables Initial value

External
Variables

Variable CommentData type

Variable CommentData type

2 Instruction Descriptions

2-880 NJ-series Instructions Reference Manual (W502)

Get**Clk

The Get**Clk instruction outputs a clock pulse at the specified cycle.

The Get**Clk instruction outputs a clock pulse at the specified cycle.
The clock pulse period is 100 us, 1 ms, 10 ms, 20 ms, 100 ms, 1 s, or 1 min.

The name of the instruction is determined by the period of the clock pulse. For example, if the period of
the clock pulse is 10 ms, the instruction name is Get10msClk.

The following example is for the Get1sClk instruction.

• When the instruction is executed, the first value of Out may be TRUE or it may be FALSE.

• If this instruction is used in a ladder diagram, the value of Out changes to FALSE if an error occurs in
the previous instruction on the rung.

Instruction Name FB/FUN Graphic expression ST expression

Get**Clk Get Clock Pulse
Group

FUN Out:=Get**Clk();

“**” must be 100 us, 1 ms,
10 ms, 20 ms, 100 ms, 1 s,
or 1 min.

Variables

Name Meaning I/O Description Valid range Unit Default

Out Clock pulse Output Clock pulse Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

Out OK

Function

Precautions for Correct Use

Get**Clk
EN Out

"**" must be 100 us, 1 ms, 10 ms, 20 ms,
100 ms, 1 s, or 1 min.

abc:=Get1sClk();

LD ST

abcGet1sClk
EN

Out=abc
TRUE
FALSE

1 s

2-881

2 Instruction Descriptions

NJ-series Instructions Reference Manual (W502)

O
th

er In
stru

ctio
n

s

2

G
et**C

nt

Get**Cnt

The Get**Cnt instruction gets the values of free-running counters of the specified cycle.

The Get**Cnt instruction gets the values of free-running counters of the specified cycle.
A free-running counter is a counter that is incremented at a specific period. Out is the current value of
the count. The counter period is 100 ns, 1 us, 1 ms, 10 ms, 100 ms, or 1 s.

The name of the instruction is determined by counter period. For example, if the counter period is
10 ms, the instruction name is Get10msCnt.

The following example is for the Get1sCnt instruction.

Instruction Name FB/FUN Graphic expression ST expression

Get**Cnt Get Incrementing
Free-running
Counter Group

FUN Out:=Get**Cnt();

"**" must be 100 ns, 1 us, 1 ms,
10 ms, 100 ms, or 1 s.

Variables

Name Meaning I/O Description Valid range Unit Default

Out Count Output Value of free-running
counter

Depends on data type. --- ---

B
o

o
lean

Bit strings Integers

R
eal

n
u

m
b

ers

Times, durations,
dates, and text strings

B
O

O
L

B
Y

T
E

W
O

R
D

D
W

O
R

D

LW
O

R
D

U
S

IN
T

U
IN

T

U
D

IN
T

U
L

IN
T

S
IN

T

IN
T

D
IN

T

L
IN

T

R
E

A
L

L
R

E
A

L

T
IM

E

D
A

T
E

TO
D

D
T

S
T

R
IN

G

Out OK

Function

Get**Cnt
EN ENO
 Out

"**" must be 100 ns, 1us, 1 ms, 10 ms,
100 ms, or 1 s.

abc:=Get1sCnt();

LD ST

abc

Get1sCnt
EN ENO

Out=abc

12

13

14

15

16

1 s

2 Instruction Descriptions

2-882 NJ-series Instructions Reference Manual (W502)

• Free-running counters start counting as soon as the power supply is turned ON. When the count
exceeds the valid range of ULINT data (18,446,744,073,709,551,615), it returns to 0 and counting
continues.

• This instruction only gets the current value of the free-running counter. It does not reset the counter
to 0.

• The first value of Out cannot be predicted. It will not necessarily start from 0.

Precautions for Correct Use

A-1

pp

NJ-series Instructions Reference Manual (W502)

A
p

p

A-1 Error Codes Related to Instructions . A-2

A-2 Error Code Descriptions . A-18

A-3 Error Code Details . A-24

A-4 SDO Abort Codes . A-47

Appendices

 Appendices

A-2 NJ-series Instructions Reference Manual (W502)

A-1 Error Codes Related to Instructions

Error codes are assigned to the errors that can occur when instructions are executed. If an instruction
has an ErrorID output variable, the value of the ErrorID gives you the error code. However, you cannot
get the error codes for instructions that do not have an ErrorID output variable. The following table, how-
ever, gives all of the error codes that can occur for instruction execution. Use this table together with the
information in A-2 Error Code Descriptions and A-3 Error Code Details.

Type Instruction Name Error codes

Ladder Diagram Instruc-
tions

LD Load 16#0406

LDN Load NOT 16#0406

AND AND 16#0406

ANDN AND NOT 16#0406

OR OR 16#0406

ORN OR NOT 16#0406

Out Output 16#0406

OutNot Output NOT 16#0406

ST Statement Instruc-
tions

IF If ---

CASE Case ---

WHILE While ---

REPEAT Repeat ---

RETURN Return ---

FOR Repeat Start ---

EXIT Break Loop ---

Sequence Input Instruc-
tions

R_TRIG (Up) Up Trigger 16#0406

F_TRIG (Down) Down Trigger 16#0406

TestABit Test A Bit 16#0405

TestABitN Test A Bit NOT 16#0405

Sequence Output
Instructions

RS Reset-Priority Keep ---

SR Set-Priority Keep ---

Set Set ---

Reset Reset ---

SetBits Set Bits 16#0405

16#0400

16#0406

ResetBits Reset Bits 16#0405

16#0400

16#0406

SetABit Set A Bit 16#0405

ResetABit Reset A Bit 16#0405

OutABit Output A Bit 16#0405

Sequence Control
Instructions

End End ---

RETURN Return ---

MC Master Control Start ---

MCR Master Control End ---

JMP Jump ---

FOR Repeat Start ---

A-3

 Appendices

NJ-series Instructions Reference Manual (W502)

A
-1 E

rro
r C

o
d

es R
elated

 to
 In

stru
ctio

n
s

A
p

p

Sequence Control
Instructions

NEXT Repeat End ---

BREAK Break Loop ---

Comparison Instructions EQ (=) Equal ---

NE (<>) Not Equal ---

LT (<) Less Than ---

LE (<=) Less Than Or Equal ---

GT (>) Greater Than ---

GE (>=) Greater Than Or Equal ---

EQascii Text String Comparison Equal 16#0410

NEascii Text String Comparison Not Equal 16#0410

LTascii Text String Comparison Less Than 16#0410

LEascii Text String Comparison Less Than or
Equal

16#0410

GTascii Text String Comparison Greater Than 16#0410

GEascii Text String Comparison Greater Than or
Equal

16#0410

Cmp Compare ---

ZoneCmp Zone Comparison 16#0401

TableCmp Table Comparison 16#0406

AryCmpEQ Array Comparison Equal 16#0400

16#0406

AryCmpNE Array Comparison Not Equal 16#0400

16#0406

AryCmpLT Array Comparison Less Than 16#0400

16#0406

AryCmpLE Array Comparison Less Than Or Equal 16#0400

16#0406

AryCmpGT Array Comparison Greater Than 16#0400

16#0406

AryCmpGE Array Comparison Greater Than Or
Equal

16#0400

16#0406

AryCmpEQV Array Value Comparison Equal 16#0406

AryCmpNEV Array Value Comparison Not Equal 16#0406

AryCmpLTV Array Value Comparison Less Than 16#0406

AryCmpLEV Array Value Comparison Less Than Or
Equal

16#0406

AryCmpGTV Array Value Comparison Greater Than 16#0406

AryCmpGEV Array Value Comparison Greater Than
Or Equal

16#0406

Timer Instructions TON On-Delay Timer ---

TOF Off-Delay Timer ---

TP Timer Pulse ---

AccumulationTimer Accumulation Timer ---

Timer Hundred-ms Timer ---

Counter Instructions CTD Down-counter ---

CTD_** Down-counter Group ---

CTU Up-counter ---

CTU_** Up-counter Group ---

Type Instruction Name Error codes

 Appendices

A-4 NJ-series Instructions Reference Manual (W502)

Counter Instructions CTUD Up-down Counter ---

CTUD_** Up-down Counter Group ---

Math Instructions ADD (+) Addition 16#0410

AddOU (+OU) Addition with Overflow/Underflow Check ---

SUB (-) Subtraction ---

SubOU (-OU) Subtraction with Overflow/Underflow
Check

MUL (*) Multiplication ---

MulOU (*OU) Multiplication with Overflow/Underflow
Check

DIV (/) Division 16#0400

MOD Modulo-division 16#0400

ABS Absolute Value ---

RadToDeg Radians to Degrees ---

DegToRad Degrees to Radians ---

SIN Sine in Radians ---

COS Cosine in Radians ---

TAN Tangent in Radians ---

ASIN Principal Arc Sine ---

ACOS Principal Arc Cosine ---

ATAN Principal Arc Tangent ---

SQRT Square Root ---

LN Natural Logarithm ---

LOG Logarithm Base 10 ---

EXP Natural Exponential Operation ---

EXPT (**) Exponentiation ---

Inc Increment ---

Dec Decrement ---

Rand Random Number ---

AryAdd Array Addition 16#0400

16#1006

AryAddV Array Value Addition 16#0400

16#1006

ArySub Array Subtraction 16#0400

16#1006

ArySubV Array Value Subtraction 16#0400

16#1006

AryMean Array Mean 16#0406

ArySD Array Element Standard Deviation 16#0406

ModReal Real Number Modulo-division ---

Fraction Real Number Fraction ---

CheckReal Real Number Check 16#0402

BCD Conversion Instruc-
tions

_BCD_TO_* BCD-to-Unsigned Integer Conversion
Group

16#0400

16#0403

_TO_BCD_* Unsigned Integer-to-BCD Conversion
Group

16#0400

Type Instruction Name Error codes

A-5

 Appendices

NJ-series Instructions Reference Manual (W502)

A
-1 E

rro
r C

o
d

es R
elated

 to
 In

stru
ctio

n
s

A
p

p

BCD Conversion Instruc-
tions

BCD_TO_** BCD Data Type-to-Unsigned Integer
Conversion Group

16#0400

16#0403

BCDsToBin Signed BCD-to-Signed Integer
Conversion

16#0400

16#0403

16#0404

BinToBCDs_** Signed Integer-to-BCD Conversion
Group

16#0400

AryToBCD Array BCD Conversion 16#0400

16#1006

AryToBin Array Unsigned Integer Conversion 16#0400

16#0403

16#0406

Data Type Conversion
Instructions

TO* (Integer-to-Integer
Conversion Group)

Integer-to-Integer Conversion Group ---

TO* (Integer-to-Bit String
Conversion Group)

Integer-to-Bit String Conversion Group ---

TO* (Integer-to-Real
Number Conversion Group)

Integer-to-Real Number Conversion
Group

TO* (Bit String-to-Integer
Conversion Group)

Bit String-to-Integer Conversion Group ---

TO* (Bit String-to-Bit
String Conversion Group)

Bit String-to-Bit String Conversion Group ---

TO* (Bit String-to-Real
Number Conversion Group)

Bit String-to-Real Number Conversion
Group

TO* (Real Number-to-
Integer Conversion Group)

Real Number-to-Integer Conversion
Group

TO* (Real Number-to-Bit
String Conversion Group)

Real Number-to-Bit String Conversion
Group

TO* (Real Number-to-
Real Number Conversion
Group)

Real Number-to-Real Number
Conversion Group

**_TO_STRING (Integer-to-
Text String Conversion Group)

Integer-to-Text String Conversion Group ---

**_TO_STRING (Bit String-to-
Text String Conversion Group)

Bit String-to-Text String Conversion
Group

**_TO_STRING (Real Num-
ber-to-Text String Conversion
Group)

Real Number-to-Text String Conversion
Group

RealToFormatString REAL-to-Formatted Text String 16#0400

16#0401

LrealToFormatString LREAL-to-Formatted Text String 16#0400

16#0401

STRING_TO_** (Text String-
to-Integer Conversion Group)

Text String-to-Integer Conversion Group 16#0407

16#0410

STRING_TO_** (Text String-
to-Bit String Conversion
Group)

Text String-to-Bit String Conversion
Group

16#0407

16#0410

STRING_TO_** (Text String-
to-Real Number Conversion
Group)

Text String-to-Real Number Conversion
Group

16#0400

16#0410

TO_** (Integer Conversion
Group)

Integer Conversion Group 16#0410

Type Instruction Name Error codes

 Appendices

A-6 NJ-series Instructions Reference Manual (W502)

Data Type Conversion
Instructions

TO_** (Bit String Conversion
Group)

Bit String Conversion Group 16#0410

TO_** (Real Number Conver-
sion Group)

Real Number Conversion Group 16#0410

TRUNC Truncate ---

Round Round Off Real Number ---

RoundUp Round Up Real Number ---

Bit String Processing
Instructions

AND (&) Logical AND ---

OR Logical OR ---

XOR Logical Exclusive OR ---

XORN Logical Exclusive NOR ---

NOT Bit Reversal ---

AryAnd Array Logical AND 16#0400

16#1006

AryOr Array Logical OR 16#0400

16#1006

AryXor Array Logical Exclusive OR 16#0400

16#1006

AryXorN Array Logical Exclusive NOR 16#0400

16#1006

Selection Instructions SEL Binary Selection 16#0410

MUX Multiplexer 16#0400

16#0410

LIMIT Limiter 16#0401

Band Deadband Control 16#0401

16#0407

Zone Dead Zone Control 16#0401

16#0407

MAX Maximum ---

MIN Minimum ---

AryMax Array Maximum 16#0406

AryMin Array Minimum 16#0406

ArySearch Array Search 16#0406

16#0410

16#0419

Data Movement Instruc-
tions

MOVE Move 16#0410

MoveBit Move Bit 16#0405

MoveDigit Move Digit 16#0406

TransBits Move Bits 16#0405

16#0406

MemCopy Memory Copy 16#0406

SetBlock Block Set 16#0406

Exchange Data Exchange 16#0407

AryExchange Array Data Exchange 16#0406

16#0407

16#0410

AryMove Array Move 16#0406

Type Instruction Name Error codes

A-7

 Appendices

NJ-series Instructions Reference Manual (W502)

A
-1 E

rro
r C

o
d

es R
elated

 to
 In

stru
ctio

n
s

A
p

p

Data Movement Instruc-
tions

Clear Initialize ---

Copy**ToNum (Bit String to
Signed Integer)

Bit Pattern Copy (Bit String to Signed
Integer) Group

Copy**To*** (Bit String to Real
Number)

Bit Pattern Copy (Bit String to Real
Number) Group

CopyNumTo** (Signed Integer
to Bit String)

Bit Pattern Copy (Signed Integer to Bit
String) Group

CopyNumTo** (Signed Integer
to Real Number)

Bit Pattern Copy (Signed Integer to Real
Number) Group

Copy**To*** (Real Number to
Bit String)

Bit Pattern Copy (Real Number to Bit
String) Group

Copy**ToNum (Real Number
to Signed Integer)

Bit Pattern Copy (Real Number to
Signed Integer) Group

Shift Instructions AryShiftReg Shift Register 16#0407

AryShiftRegLR Reversible Shift Register 16#0407

ArySHL Array N-element Left Shift 16#0407

ArySHR Array N-element Right Shift 16#0407

SHL N-bit Left Shift ---

SHR N-bit Right Shift ---

NSHLC Shift N-bits Left with Carry 16#0407

NSHRC Shift N-bits Right with Carry 16#0407

ROL Rotate N-bits Left ---

ROR Rotate N-bits Right ---

Conversion Instructions Swap Swap Bytes ---

Neg Reverse Sign ---

Decoder Bit Decoder 16#0406

Encoder Bit Encoder 16#0406

BitCnt Bit Counter ---

ColmToLine_** Column to Line Conversion Group 16#0405

16#0406

LineToColm Line to Column Conversion 16#0405

16#0406

Gray Gray Code Conversion 16#0400

16#0401

PWLApprox Broken Line Approximation 16#0401

16#0402

16#0406

MovingAverage Moving Average 16#0400

16#0406

PIDAT PID with Autotuning 16#0400

16#0401

DispartReal Separate Mantissa and Exponent 16#0402

UniteReal Combine Real Number Mantissa and
Exponent

NumToDecString Fixed-length Decimal Text String
Conversion

16#0400

16#0406

NumToHexString Fixed-length Hexadecimal Text String
Conversion

16#0400

16#0406

Type Instruction Name Error codes

 Appendices

A-8 NJ-series Instructions Reference Manual (W502)

Conversion Instructions HexStringToNum_** Hexadecimal Text String-to-Number
Conversion Group

16#0410

FixNumToString Fixed-decimal Number-to-Text String
Conversion

StringToFixNum Text String-to-Fixed-decimal Conversion 16#0407

16#0410

DtToString Date and Time-to-Text String Conversion ---

DateToString Date-to-Text String Conversion ---

TodToString Time of Day-to-Text String Conversion ---

GrayToBin_** Gray Code-to-Binary Code Conversion
Group

BinToGray_** Binary Code-to-Gray Code Conversion ---

StringToAry Text String-to-Array Conversion 16#0407

16#0410

AryToString Array-to-Text String Conversion 16#0406

DispartDigit Four-bit Separation 16#0406

UniteDigit_** Four-bit Join Group 16#0406

Dispart8Bit Byte Data Separation 16#0406

Unite8Bit_** Byte Data Join Group 16#0406

ToAryByte Conversion to Byte Array 16#0400

16#0407

AryByteTo Conversion from Byte Array 16#0400

16#0406

SizeOfAry Get Number of Array Elements ---

Stack and Table Instruc-
tions

StackPush Push onto Stack 16#0400

16#0401

16#0406

16#0407

16#0410

StackFIFO First In First Out 16#0400

16#0401

16#0406

16#0407

16#0410

StackLIFO Last In First Out 16#0400

16#0401

16#0406

16#0407

16#0410

StackIns Insert into Stack 16#0400

16#0401

16#0406

16#0407

16#0410

StackDel Delete from Stack 16#0401

16#0407

Type Instruction Name Error codes

A-9

 Appendices

NJ-series Instructions Reference Manual (W502)

A
-1 E

rro
r C

o
d

es R
elated

 to
 In

stru
ctio

n
s

A
p

p

Stack and Table Instruc-
tions

RecSearch Record Search 16#0400

16#0406

16#0410

RecRangeSearch Range Record Search 16#0400

16#0401

16#0406

RecSort Record Sort 16#0400

16#0406

RecNum Get Number of Records 16#0410

16#0406

RecMax Maximum Record Search 16#0406

RecMin Minimum Record Search 16#0406

FCS Instructions StringSum Checksum Calculation 16#0400

16#0410

StringLRC Calculate Text String LRC 16#0400

16#0410

StringCRCCCITT Calculate Text String CRC-CCITT 16#0400

16#0410

StringCRC16 Calculate Text String CRC-16 16#0400

16#0410

AryLRC_** Calculate Array LRC Group 16#0406

AryCRCCCITT Calculate Array CRC-CCITT 16#0400

16#0406

AryCRC16 Calculate Array CRC-16 16#0400

16#0406

Text String Instructions CONCAT Concatenate String 16#0410

LEFT Get String Left 16#0410

RIGHT Get String Right 16#0410

MID Get String Any 16#0406

16#0410

FIND Find String 16#0410

LEN String Length 16#0410

REPLACE Replace String 16#0406

16#0410

DELETE Delete String 16#0406

16#0410

INSERT Insert String 16#0406

16#0410

GetByteLen Get Byte Length 16#0410

ClearString Clear String ---

ToUCase Convert to Uppercase 16#0410

ToLCase Convert to Lowercase 16#0410

TrimL Trim String Left 16#0410

TrimR Trim String Right 16#0410

Time and Time of Day
Instructions

ADD_TIME Add Time ---

ADD_TOD_TIME Add Time to Time of Day ---

ADD_DT_TIME Add Time to Date and Time ---

Type Instruction Name Error codes

 Appendices

A-10 NJ-series Instructions Reference Manual (W502)

Time and Time of Day
Instructions

SUB_TIME Subtract Time ---

SUB_TOD_TIME Subtract Time from Time of Day ---

SUB_TOD_TOD Subtract Time of Day ---

SUB_DATE_DATE Subtract Date ---

SUB_DT_DT Subtract Date and Time ---

SUB_DT_TIME Subtract Time from Date and Time ---

MULTIME Multiply Time ---

DIVTIME Divide Time 16#0400

CONCAT_DATE_TOD Concatenate Date and Time of Day 16#0407

DT_TO_TOD Extract Time of Day from Date and Time ---

DT_TO_DATE Extract Date from Date and Time ---

SetTime Set Time 16#0400

GetTime Get Time of Day ---

DtToSec Convert Date and Time to Seconds ---

DateToSec Convert Date to Seconds ---

TodToSec Convert Time of Day to Seconds ---

SecToDt Convert Seconds to Date and Time 16#0400

SecToDate Convert Seconds to Date 16#0400

SecToTod Convert Seconds to Time of Day 16#0400

TimeToNanoSec Convert Time to Nanoseconds ---

TimeToSec Convert Time to Seconds ---

NanoSecToTime Convert Nanoseconds to Time 16#0400

SecToTime Convert Seconds to Time 16#0400

ChkLeapYear Check for Leap Year ---

GetDaysOfMonth Get Days in Month 16#0400

DaysToMonth Convert Days to Month 16#0400

GetDayOfWeek Get Day of Week ---

GetWeekOfYear Get Week Number ---

DtToDateStruct Break Down Date and Time ---

DateStructToDt Join Time 16#0400

16#0407

System Control Instruc-
tions

TraceSamp Data Trace Sampling ---

TraceTrig Data Trace Trigger ---

GetTraceStatus Read Data Trace Status 16#0400

SetAlarm Create User-defined Error 16#0400

16#040C

ResetAlarm Reset User-defined Error 16#0400

GetAlarm Get User-defined Error Status ---

ResetPLCError Reset PLC Controller Error ---

GetPLCError Get PLC Controller Error Status ---

ResetCJBError Reset CJ Bus Controller Error 16#0400

16#040D

GetCJBError Get I/O Bus Error Status ---

GetEIPError Get EtherNet/IP Error Status ---

ResetMCError Reset Motion Control Error ---

GetMCError Get Motion Control Error Status ---

Type Instruction Name Error codes

A-11

 Appendices

NJ-series Instructions Reference Manual (W502)

A
-1 E

rro
r C

o
d

es R
elated

 to
 In

stru
ctio

n
s

A
p

p

System Control Instruc-
tions

ResetECError Reset EtherCAT Error 16#041A

GetECError Get EtherCAT Error Status ---

SetInfo Create User-defined Information 16#0400

ResetUnit Restart Unit 16#0400

16#040D

16#040F

GetNTPStatus Read NTP Status ---

Communications Instruc-
tions

ExecPMCR Protocol Macro 16#0400

16#0406

16#0407

16#040D

16#0413

16#0C00

16#0800

16#0801

SerialSend SCU Send Serial 16#0400

16#0406

16#040D

16#0C00

16#0800

16#0801

SerialRcv SCU Receive Serial 16#0400

16#0407

16#040D

16#0C00

16#0800

16#0801

SendCmd Send Command 16#0400

16#0406

16#0407

16#0800

16#0801

CIPOpen Open CIP Class 3 Connection 16#0400

16#1C00

16#1C01

16#1C03

16#1C04

16#2000

16#2003

16#2004

CIPRead Read Variable Class 3 Explicit 16#0400

16#0407

16#1C00

16#1C02

16#1C03

16#1C04

Type Instruction Name Error codes

 Appendices

A-12 NJ-series Instructions Reference Manual (W502)

Communications Instruc-
tions

CIPWrite Write Variable Class 3 Explicit 16#0400

16#0407

16#1C00

16#1C02

16#1C03

16#1C04

CIPSend Send Explicit Message Class 3 16#0407

16#1C00

16#1C02

16#1C03

16#1C04

CIPClose Close CIP Class 3 Connection 16#1C02

16#1C03

CIPUCMMRead Read Variable UCMM Explicit 16#0400

16#0407

16#2000

16#2004

16#1C00

16#1C01

16#1C03

16#1C04

CIPUCMMWrite Write Variable UCMM Explicit 16#0400

16#0407

16#2000

16#2004

16#1C00

16#1C01

16#1C03

16#1C04

CIPUCMMSend Send Explicit Message UCMM 16#0400

16#0407

16#2000

16#2004

16#1C00

16#1C01

16#1C03

16#1C04

EC_CoESDOWrite Write EtherCAT CoE SDO 16#0400

16#1800

16#1801

16#1802

16#1804

16#1808

Type Instruction Name Error codes

A-13

 Appendices

NJ-series Instructions Reference Manual (W502)

A
-1 E

rro
r C

o
d

es R
elated

 to
 In

stru
ctio

n
s

A
p

p

Communications Instruc-
tions

EC_CoESDORead Read EtherCAT CoE SDO 16#0400

16#1800

16#1801

16#1802

16#1803

16#1804

16#1808

EC_StartMon Start EtherCAT Packet Monitor 16#1805

16#1807

16#1808

EC_StopMon Stop EtherCAT Packet Monitor 16#1806

16#1808

EC_SaveMon Save EtherCAT Packets 16#1805

16#1807

16#1808

EC_CopyMon Transfer EtherCAT Packets 16#0400

16#1400

16#1401

16#1402

16#1403

16#1404

16#1405

16#140A

16#140B

16#140D

16#140E

16#1808

EC_DisconnectSlave Disconnect EtherCAT Slave 16#1801

16#1808

EC_ConnectSlave Connect EtherCAT Slave 16#1801

16#1808

SktUDPCreate Create UDP Socket 16#0400

16#2000

16#2001

16#2002

16#2003

16#2004

16#2008

SktUDPRcv UDP Socket Receive 16#0400

16#0407

16#2003

16#2006

16#2007

16#2008

Type Instruction Name Error codes

 Appendices

A-14 NJ-series Instructions Reference Manual (W502)

Communications Instruc-
tions

SktUDPSend UDP Socket Send 16#0400

16#0407

16#2002

16#2003

16#2007

16#2008

SktTCPAccept Accept TCP Socket 16#0400

16#2000

16#2002

16#2003

16#2004

16#2006

16#2008

SktTCPConnect Connect TCP Socket 16#0400

16#2000

16#2002

16#2003

16#2008

SktTCPRcv TCP Socket Receive 16#0400

16#0407

16#2003

16#2006

16#2007

16#2008

SktTCPSend TCP Socket Send 16#0400

16#0407

16#2003

16#2007

16#2008

SktGetTCPStatus Read TCP Socket Status 16#2007

16#2008

SktClose Close TCP/UDP Socket 16#2007

16#2008

SktClearBuf Clear TCP/UDP Socket Receive Buffer 16#2007

16#2008

SD Memory Card Instruc-
tions

FileWriteVar Write Variable to File 16#0400

16#1400

16#1401

16#1402

16#1403

16#1404

16#1405

16#1409

16#140A

16#140B

16#140D

16#140E

Type Instruction Name Error codes

A-15

 Appendices

NJ-series Instructions Reference Manual (W502)

A
-1 E

rro
r C

o
d

es R
elated

 to
 In

stru
ctio

n
s

A
p

p

SD Memory Card Instruc-
tions

FileReadVar Read Variable from File 16#0400

16#1400

16#1403

16#1405

16#140B

16#140D

16#140E

FileOpen Open File 16#0400

16#1400

16#1401

16#1403

16#1404

16#1405

16#140A

16#140B

16#140D

16#140E

FileClose Close File 16#1403

16#1405

16#140E

FileSeek Seek File 16#0400

16#1400

16#1403

16#1405

16#1407

16#140E

FileRead Read File 16#0406

16#1400

16#1403

16#1405

16#1406

16#140E

FileWrite Write File 16#0406

16#1400

16#1401

16#1402

16#1403

16#1405

16#1406

16#140E

FileGets Get Text String 16#1400

16#1403

16#1405

16#1406

16#140E

Type Instruction Name Error codes

 Appendices

A-16 NJ-series Instructions Reference Manual (W502)

SD Memory Card Instruc-
tions

FilePuts Put Text String 16#1400

16#1401

16#1402

16#1403

16#1405

16#1406

16#140E

FileCopy Copy File 16#0400

16#1400

16#1401

16#1402

16#1403

16#1404

16#1405

16#1409

16#140A

16#140B

16#140D

16#140E

FileRemove Delete File 16#0400

16#1400

16#1401

16#1403

16#1405

16#140A

16#140B

16#140D

16#140E

FileRename Change File Name 16#0400

16#1400

16#1401

16#1403

16#1405

16#1408

16#1409

16#140A

16#140B

16#140D

16#140E

DirCreate Create Directory 16#0400

16#1400

16#1401

16#1402

16#1404

16#1409

16#140B

16#140C

16#140D

16#140E

Type Instruction Name Error codes

A-17

 Appendices

NJ-series Instructions Reference Manual (W502)

A
-1 E

rro
r C

o
d

es R
elated

 to
 In

stru
ctio

n
s

A
p

p

SD Memory Card Instruc-
tions

DirRemove Delete Directory 16#0400

16#1400

16#1401

16#1405

16#1408

16#140A

16#140B

16#140C

16#140D

16#140E

Other Instructions ReadNbit_** N-bit Read Group 16#1405

16#1406

WriteNbit_** N-bit Write Group 16#1405

16#1406

ChkRange Check Subrange Variable ---

GetMyTaskStatus Read Current Task Status ---

Task_IsActive Determine Task Status 16#1032

Lock Lock Tasks 16#0400

Unlock Unlock Tasks ---

Get**Clk Get Clock Pulse Group ---

Get**Cnt Get Incrementing Free-running Counter
Group

Type Instruction Name Error codes

 Appendices

A-18 NJ-series Instructions Reference Manual (W502)

A-2 Error Code Descriptions

The following table gives the error name, meaning, and assumed cause for each error code. Refer to A-3 Error
Code Details for details.

Error code Name Meaning Assumed cause Reference

16#0400 Input Value Out of
Range

An input parameter for an
instruction exceeded the
valid range for an input vari-
able. Or, division by an inte-
ger of 0 occurred in division
or remainder calculations.

• An input parameter for an instruction
exceeded the valid range for an input vari-
able. Or, division by an integer of 0 occurred
in division or remainder calculations.

page A-25

16#0401 Input Mismatch The relationship for the
instruction input parame-
ters did not meet required
conditions. Or, a numeric
value during or after
instruction execution did
not meet conditions.

• The relationship for an input parameter did
not meet required conditions.

• A value when processing an instruction or in
the result does not meet the conditions.

page A-25

16#0402 Floating-point
Error

Non-numeric data was
input for a floating-point
number input parameter to
an instruction.

• Non-numeric data was input for a floating-
point number input parameter to an instruc-
tion.

page A-25

16#0403 BCD Error A value that was not BCD
was input for a BCD input
parameter to an instruction.

• A hexadecimal digit of A, B, C, D, E, or F
was input for a BCD input parameter to an
instruction.

page A-26

16#0404 Signed BCD Error An illegal value was input
for the most significant digit
for a signed BCD input
parameter to an instruction.

• An illegal value was input for the most signif-
icant digit for a signed BCD input parameter
to an instruction.

• The most-significant digit was 2 to F when
_BCD0 was specified as the BCD format.

• The most-significant digit was A, B, C, D,
or E when _BCD2 was specified as the
BCD format.

• The most-significant digit was B, C, D, or
E when _BCD3 was specified as the BCD
format.

page A-26

16#0405 Illegal Bit Position
Specified

The bit position specified
for an instruction was ille-
gal.

• The bit position specified for an instruction
exceeds the data range.

page A-26

16#0406 Illegal Data Posi-
tion Specified

The data position specified
for an instruction exceeded
the data area range.

• The data position or data size specified for
an instruction exceeded the data area
range.

page A-27

16#0407 Data Range
Exceeded

The results of instruction
processing exceeded the
data area range of the out-
put parameter.

• The results of instruction processing, such
as the number of array elements, exceeded
the data area range of the output parameter.

page A-27

16#0409 No Errors to Clear An instruction to clear a
Controller error was exe-
cuted when there was no
error in the Controller.

• An instruction to clear a Controller error was
executed when there was no error in the
Controller.

page A-27

16#040B No User Errors to
Clear

An instruction to clear user-
defined errors was exe-
cuted when there was no
user-defined error.

• An instruction to clear user-defined errors
was executed when there was no user-
defined error.

page A-28

16#040C Limit Exceeded for
User-defined
Errors

An attempt was made to
use the Create User-
defined Error instruction to
create more than the maxi-
mum number of user-
defined errors.

• An attempt was made to use the Create
User-defined Error instruction to create
more than the maximum number of user-
defined errors.

page A-28

A-19

 Appendices

NJ-series Instructions Reference Manual (W502)

A
-2 E

rro
r C

o
d

e D
escrip

tio
n

s
A

p
p

16#040D Illegal Unit Speci-
fied

The Unit specified for an
instruction does not exist.

• A Unit that does not exist in the Unit configu-
ration information was specified.

• A Unit that is in the Unit configuration infor-
mation was specified, but the Units does not
actually exist in the Controller.

page A-28

16#040F Unit Restart Failed Restarting a Special I/O
Unit or CPU Bus Unit failed.

• The Special I/O Unit or CPU Bus Unit is pro-
cessing data.

page A-29

16#0410 Text String Format
Error

The text string input to an
instruction is not correct.

• The text string that is input to the instruction
for conversion to a number does not repre-
sent a number or it does not represent a
positive number.

• The input text string does not end in NULL.

page A-29

16#0411 Illegal Program
Specified

The program specified for
an instruction does not
exist.

• The program specified by the function does
not exist (e.g., it was deleted).

page A-29

16#0413 Undefined CJ-
series Memory
Address

The required specification
is missing for a variable for
which CJ-series Unit mem-
ory must be specified.

• The required AT specification is missing for
a variable for which CJ-series Unit memory
must be specified.

page A-30

16#0414 Stack Underflow There is no data in a stack. • An attempt was made to read data from a
stack that contains no data.

page A-30

16#0416 Illegal Number of
Array Elements or
Dimensions

The valid range was
exceeded for the number of
array elements or dimen-
sions in an array I/O param-
eter for an instruction.

• The valid range was exceeded for the num-
ber of array elements or dimensions in an
array I/O parameter for an instruction.

page A-30

16#0417 Specified Task
Does Not Exist

The task specified for the
instruction does not exist.

• The specified task does not exist. page A-30

16#0418 Unallowed Task
Specification

An unallowed task was
specified for an instruction.

• The local task, the primary periodic task, or
a periodic task was specified.

page A-31

16#0419 Incorrect Data
Type

A data type that cannot be
used for an instruction is
specified for an input or in-
out variable.

• A data type that cannot be used for an
instruction is specified for an input or in-out
variable.

page A-31

16#041A Multi-execution of
Instructions

Multi-execution was speci-
fied for an instruction that
does not support it.

• Execution of an instruction that does not
support multi-execution of instructions was
specified more than once.

page A-31

16#0800 FINS Error An error occurred when a
FINS command was sent
or received.

• An error occurred when a FINS command
was sent or received.

page A-32

16#0801 FINS Port Already
in Use

The FINS port is being
used.

• The FINS port is being used. page A-32

16#0C00 Illegal Serial Com-
munications Mode

The Serial Communica-
tions Unit is not in the serial
communications mode
required to execute an
instruction.

• The serial communications port for the
Serial Communications Unit is not set to the
mode expected by the instruction.

page A-32

16#0C02 Port Setup Already
Busy

A Change Port Setup
instruction was executed
during execution of another
Change Port Setup instruc-
tion.

• A Change Port Setup instruction was exe-
cuted during execution of another Change
Port Setup instruction.

page A-33

16#1400 SD Memory Card
Access Failure

SD Memory Card access
failed when an instruction
was executed.

• An SD Memory Card is either not inserted
or is not inserted properly.

• The SD Memory Card is broken.

• The SD Memory Card slot is broken.

page A-33

16#1401 SD Memory Card
Write-protected

An attempt was made to
write to a write-protected
SD Memory Card when an
instruction was executed.

• An attempt was made to write to a write-pro-
tected SD Memory Card.

page A-33

Error code Name Meaning Assumed cause Reference

 Appendices

A-20 NJ-series Instructions Reference Manual (W502)

16#1402 SD Memory Card
Insufficient Capac-
ity

The capacity of the SD
Memory Card was insuffi-
cient when writing to the
SD Memory Card for an
instruction.

• The SD Memory Card has run out of free
space.

page A-34

16#1403 File Does Not Exist The file specified for an
instruction does not exist.

• The specified file does not exist. page A-34

16#1404 Too Many Files/
Directories

The maximum number of
files/directories was
exceeded when creating a
file/directory for an instruc-
tion.

• The number of files or directories exceeded
the maximum number.

page A-34

16#1405 File Already in Use A file specified for an
instruction cannot be
accessed because it is
already being used.

• An instruction attempted to read or write a
file already being accessed by another
instruction.

page A-35

16#1406 Open Mode Mis-
match

A file operation for an
instruction was inconsistent
with the open mode of the
file.

• The file open mode specified by the Open
File instruction does not match the file oper-
ation attempted by a subsequent SD Mem-
ory Card instruction.

page A-35

16#1407 Offset Out of
Range

Access to the address is
not possible for the offset
specified for an instruction.

• An attempt was made to access beyond the
size of the file.

page A-35

16#1408 Directory Not
Empty

A directory was not empty
when the Delete Directory
instruction was executed or
when an attempt was made
to change the directory
name.

• A directory was not empty when the Delete
Directory instruction was executed.

• A directory contained another directory
when an attempt was made to change the
directory name.

page A-36

16#1409 That File Name
Already Exists

An instruction could not be
executed because the file
name specified for the
instruction already exists.

• A file already exists with the same name as
the name specified for the instruction to cre-
ate.

page A-36

16#140A Write Access
Denied

An attempt was made to
write to a write-protected
file or directory when an
instruction was executed.

• The file or directory specified for the instruc-
tion to write is write-protected.

page A-36

16#140B Too Many Files
Open

The maximum number of
open files was exceeded
when opening a file for an
instruction.

• The maximum number of open files was
exceeded when opening a file for an instruc-
tion.

page A-37

16#140C Directory Does Not
Exist

The directory specified for
an instruction does not
exist.

• The directory specified for an instruction
does not exist.

page A-37

16#140D File or Directory
Name Is Too Long

The file name or directory
name that was specified for
an instruction is too long.

• The file name or directory name that was
specified for the instruction to create is too
long.

page A-37

16#140E SD Memory Card
Access Failed

SD Memory Card access
failed.

• The SD Memory Card is broken.

• The SD Memory Card slot is broken.

page A-38

16#1800 EtherCAT Commu-
nications Error

Accessing the EtherCAT
network failed when an
instruction was executed.

• The EtherCAT network is not in a usable
status.

page A-38

16#1801 EtherCAT Slave
Does Not Respond

Accessing the target slave
failed when an instruction
was executed.

• The target slave does not exist.

• The target slave is not in an operating condi-
tion.

page A-38

16#1802 EtherCAT Timeout A timeout occurred while
trying to access an Ether-
CAT slave when an instruc-
tion was executed.

• Communications with the target slave timed
out.

page A-39

Error code Name Meaning Assumed cause Reference

A-21

 Appendices

NJ-series Instructions Reference Manual (W502)

A
-2 E

rro
r C

o
d

e D
escrip

tio
n

s
A

p
p

16#1803 Reception Buffer
Overflow

The receive data from an
EtherCAT slave overflowed
the receive buffer when an
instruction was executed.

• The receive data from the slave overflowed
the receive buffer.

page A-39

16#1804 SDO Abort Error An SDO abort error was
received from an EtherCAT
slave when an instruction
was executed.

• Depends on the specifications of the slave. page A-39

16#1805 Saving Packet
Monitor File

An instruction for packet
monitoring was executed
while saving an EtherCAT
packet monitor file.

• An instruction for packet monitoring was
executed while saving an EtherCAT packet
monitor file.

page A-39

16#1806 Packet Monitoring
Function Not
Started

A Stop EtherCAT Packet
Monitor instruction was
executed when EtherCAT
packet monitoring was
stopped.

• A Stop EtherCAT Packet Monitor instruction
was executed when EtherCAT packet moni-
toring was stopped.

page A-40

16#1807 Packet Monitoring
Function in Opera-
tion

A Start EtherCAT Packet
Monitor instruction was
executed when EtherCAT
packet monitoring was
already being executed.

• The Start EtherCAT Packet Monitor instruc-
tion was executed again while the EtherCAT
packet monitoring function was already in
operation.

page A-40

16#1808 Communications
Resource Overflow

More than 32 EtherCAT
communications instruc-
tions were executed at the
same time.

• More than 32 EtherCAT communications
instructions were executed at the same
time. The EtherCAT communications
instructions are listed below.

• EC_CoESDOWrite instruction

• EC_CoESDORead instruction

• EC_ConnectSlave instruction

• EC_DisconnectSlave instruction

• EC_StartMon instruction

• EC_SaveMon instruction

• EC_StopMon instruction

• EC_CopyMon instruction

page A-41

16#1C00 Explicit Message
Error

An error response code
was returned for an explicit
message that was sent with
a CIP communications
instruction.

• Depends on the nature of the error. page A-41

16#1C01 Incorrect Route
Path

The format of the route
path that is specified for a
CIP communications
instruction is not correct.

• The format of the route path that is specified
for a CIP communications instruction is not
correct.

page A-41

16#1C02 CIP Handle Out of
Range

The handle that is specified
for the CIP communications
instruction is not correct.

• The handle that is specified for the CIP com-
munications instruction is not correct.

page A-42

16#1C03 CIP Communica-
tions Resource
Overflow

The maximum resources
that you can use for CIP
communications instruc-
tions at the same time was
exceeded.

• More than 32 CIP communications instruc-
tions were executed at the same time.

• An attempt was made to use more than 32
handles at the same time.

page A-42

Error code Name Meaning Assumed cause Reference

 Appendices

A-22 NJ-series Instructions Reference Manual (W502)

16#1C04 CIP Timeout A CIP timeout occurred
during execution of a CIP
communications instruc-
tion.

• A device does not exist for the specified IP
address.

• The CIP connection for the specified handle
timed out and was closed.

• Power to the remote device is OFF.

• Communications are stopped at the remote
device.

• The Ethernet cable connector for Ether-
Net/IP is disconnected.

• The Ethernet cable for EtherNet/IP is dis-
connected.

• Noise

page A-42

16#2000 Local IP Address
Setting Error

An instruction was exe-
cuted when there was a
setting error in the local IP
address.

• An instruction was executed when there
was a setting error in the local IP address.

page A-43

16#2001 TCP/UDP Port
Already in Use

The UDP or TCP port was
already in use when the
instruction was executed.

• The UDP or TCP port is already in use. page A-43

16#2002 Address Resolu-
tion Failed

Address resolution failed
for a remote node with the
domain name that was
specified in the instruction.

• The domain name specified for the instruc-
tion is not correct.

• The hosts and DNS settings in the Control-
ler are incorrect.

• The DNS server settings are incorrect.

page A-43

16#2003 Status Error The status was not suit-
able for execution of the
instruction.

• SktUDPRcv Instruction

• The socket is receiving data.

• The socket is not open.

• SktUDPSend Instruction

• The socket is sending data.

• The socket is not open.

• SktTCPAccept Instruction
The specified TCP port is in one of the fol-
lowing states.

• The port is being opened.

• The port is being closed.

• A connection is already established for
this instruction for the same IP address
and TCP port.

• SktTCPConnect Instruction

• The TCP port that is specified with the
SrcTcpPort input variable is already open.

• The remote node that is specified with
DstAdr input variable does not exist.

• The remote node that is specified with
DstAdr and DstTcpPort input variables is
not waiting for a connection.

• SktTCPRcv Instruction

• The specified socket is receiving data.

• The specified socket is not connected.

• SktTCPSend Instruction

• The specified socket is sending data.

• The specified socket is not connected.

page A-44

16#2004 Local IP Address
Not Set

The local IP address was
not set when a socket ser-
vice instruction was exe-
cuted.

• There is a BOOTP server setting error.

• The BOOTP server does not exist.

• The local IP address is not set because
operation just started.

page A-45

Error code Name Meaning Assumed cause Reference

A-23

 Appendices

NJ-series Instructions Reference Manual (W502)

A
-2 E

rro
r C

o
d

e D
escrip

tio
n

s
A

p
p

16#2006 Socket Timeout A timeout occurred for a
socket service instruction.

• SktTCPAccept instruction: There was no
request for a connection from the remote
node during the user-set timeout time.

• SktTCPRcv or SktUDPRcv instruction: Data
was not received from the remote node dur-
ing the user-set timeout time.

page A-45

16#2007 Socket Handle Out
of Range

The handle that is specified
for the socket service
instruction is not correct.

• The handle that is specified for the socket
service instruction is not correct.

page A-45

16#2008 Socket Communi-
cations Resource
Overflow

The maximum resources
that you can use for socket
service instructions at the
same time was exceeded.

• More than 17 socket service communica-
tions instructions were executed at the
same time.

• An attempt was made to use more than 16
socket handles at the same time.

page A-46

Error code Name Meaning Assumed cause Reference

 Appendices

A-24 NJ-series Instructions Reference Manual (W502)

A-3 Error Code Details

This appendix provides detailed information on error codes.

The items that are used to describe individual errors are described in the following copy of an error
table.

* One of the following:
Continues: Execution of the user program will continue.
Stops: Execution of the user program stops.
Starts: Execution of the user program starts.

Error Descriptions

Name Gives the name of the error. Error code Gives the code of the error.

Meaning Gives a short description of the error.

Effects User program Tells what will
happen to execu-
tion of the user
program.*

Operation Provides special information on the operation that results
from the error.

System-defined
variables

Variable Data type Name

Lists the variable names, data types, and meanings for system-defined variables that provide direct error notification,
that are directly affected by the error, or that contain settings that cause the error.

Cause and
correction

Assumed cause Correction Prevention

Lists the possible causes, corrections, and preventive measures for the error.

Precautions/
Remarks

Provides precautions, restrictions, and supplemental information.

A-25

 Appendices

NJ-series Instructions Reference Manual (W502)

A
-3 E

rro
r C

o
d

e D
etails

A
p

p

Name Input Value Out of Range Error code 16#0400

Meaning An input parameter for an instruction exceeded the valid range for an input variable. Or, division by an integer of 0
occurred in division or remainder calculations.

Effects User program Continues. Operation The relevant instruction will end according to specifica-
tions.

System-defined
variables

Variable Data type Name

None --- ---

Cause and
correction

Assumed cause Correction Prevention

An input parameter for an instruction
exceeded the valid range for an input
variable. Or, division by an integer of
0 occurred in division or remainder
calculations.

Check the valid range for the input
variables of the instruction. Make sure
the input parameters are within the
valid range and that no division by 0
or remainder calculation for 0 is per-
formed.

Set the value of the input parameter
to the instruction so that the input
range is not exceeded.

Precautions/
Remarks

None

Name Input Mismatch Error code 16#0401

Meaning The relationship for the instruction input parameters did not meet required conditions. Or, a numeric value during or
after instruction execution did not meet conditions.

Effects User program Continues. Operation The relevant instruction will end according to specifica-
tions.

System-defined
variables

Variable Data type Name

None --- ---

Cause and
correction

Assumed cause Correction Prevention

The relationship for an input parame-
ter did not meet required conditions.

Check the meaning and the relation-
ship of the input variables of the
instruction. Correct them so that the
relationships for the input parameters
meet the required conditions.

Set the input parameter to the instruc-
tion so that the value meets the condi-
tions of the relationship for the input
variables.

A value when processing an instruc-
tion or in the result does not meet the
conditions.

Check the execution process of the
instruction. Set the value of the input
parameter so that it does not cause
inappropriate processing results.

Check the execution process of the
instruction. Set the input parameter
so that it does not cause this error
during processing.

Precautions/
Remarks

None

Name Floating-point Error Error code 16#0402

Meaning Non-numeric data was input for a floating-point number input parameter to an instruction.

Effects User program Continues. Operation The relevant instruction will end according to specifica-
tions.

System-defined
variables

Variable Data type Name

None --- ---

Cause and
correction

Assumed cause Correction Prevention

Non-numeric data was input for a
floating-point number input parameter
to an instruction.

Correct the instruction so that a
numeric value is input for the floating-
point number input parameter.

Use numeric values for the floating-
point number input parameters.

Precautions/
Remarks

None

 Appendices

A-26 NJ-series Instructions Reference Manual (W502)

Name BCD Error Error code 16#0403

Meaning A value that was not BCD was input for a BCD input parameter to an instruction.

Effects User program Continues. Operation The relevant instruction will end according to specifica-
tions.

System-defined
variables

Variable Data type Name

None --- ---

Cause and
correction

Assumed cause Correction Prevention

A hexadecimal digit of A, B, C, D, E,
or F was input for a BCD input param-
eter to an instruction.

Correct the instruction so that BCD
data is input for the BCD input param-
eter.

Change the BCD input parameter for
the instruction to BCD data.

Precautions/
Remarks

None

Name Signed BCD Error Error code 16#0404

Meaning An illegal value was input for the most significant digit for a signed BCD input parameter to an instruction.

Effects User program Continues. Operation The relevant instruction will end according to specifica-
tions.

System-defined
variables

Variable Data type Name

None --- ---

Cause and
correction

Assumed cause Correction Prevention

An illegal value was input for the most
significant digit for a signed BCD input
parameter to an instruction.

• The most-significant digit was 2 to F
when _BCD0 was specified as the
BCD format.

• The most-significant digit was A, B,
C, D, or E when _BCD2 was speci-
fied as the BCD format.

• The most-significant digit was B, C,
D, or E when _BCD3 was specified
as the BCD format.

Correct the instruction so that proper
signed BCD data is input for the BCD
input parameter.

Set the most-significant digit of the
signed BCD data input parameter for
the instruction to the correct value.

Precautions/
Remarks

None

Name Illegal Bit Position Specified Error code 16#0405

Meaning The bit position specified for an instruction was illegal.

Effects User program Continues. Operation The relevant instruction will end according to specifica-
tions.

System-defined
variables

Variable Data type Name

None --- ---

Cause and
correction

Assumed cause Correction Prevention

The bit position specified for an
instruction exceeds the data range.

Correct the instruction so that the bit
position specified for an instruction
does not exceed the data range.

Use the instruction so that the bit
position specified for an instruction
does not exceed the data range.

Precautions/
Remarks

None

A-27

 Appendices

NJ-series Instructions Reference Manual (W502)

A
-3 E

rro
r C

o
d

e D
etails

A
p

p

Name Illegal Data Position Specified Error code 16#0406

Meaning The data position specified for an instruction exceeded the data area range.

Effects User program Continues. Operation The relevant instruction will end according to specifica-
tions.

System-defined
variables

Variable Data type Name

None --- ---

Cause and
correction

Assumed cause Correction Prevention

The data position or data size speci-
fied for an instruction exceeded the
data area range.

Correct the instruction so that the
data position or data size specified for
an instruction does not exceed the
range of the data area.

Use the instruction so that the data
position or data size specified for an
instruction does not exceed the data
range.

Precautions/
Remarks

None

Name Data Range Exceeded Error code 16#0407

Meaning The results of instruction processing exceeded the data area range of the output parameter.

Effects User program Continues. Operation The relevant instruction will end according to specifica-
tions.

System-defined
variables

Variable Data type Name

None --- ---

Cause and
correction

Assumed cause Correction Prevention

The results of instruction processing,
such as the number of array ele-
ments, exceeded the data area range
of the output parameter.

Correct the input parameters so that
the processing result of the instruction
does not exceed the range of the data
area of the output parameter.

Set the input parameter so that the
processing result of the instruction
does not exceed the range of the data
area of the output parameter.

Precautions/
Remarks

None

Name No Errors to Clear Error code 16#0409

Meaning An instruction to clear a Controller error was executed when there was no error in the Controller.

Effects User program Continues. Operation The relevant instruction will end according to specifica-
tions. The output or Unit operation is not affected.

System-defined
variables

Variable Data type Name

None --- ---

Cause and
correction

Assumed cause Correction Prevention

An instruction to clear a Controller
error was executed when there was
no error in the Controller.

Correct the program so that the
instruction is executed when there is
a Controller error.

Write the program so that the instruc-
tion is executed when there is a Con-
troller error.

Precautions/
Remarks

None

 Appendices

A-28 NJ-series Instructions Reference Manual (W502)

Name No User Errors to Clear Error code 16#040B

Meaning An instruction to clear user-defined errors was executed when there was no user-defined error.

Effects User program Continues. Operation The relevant instruction will end according to specifica-
tions. The output or Unit operation is not affected.

System-defined
variables

Variable Data type Name

None --- ---

Cause and
correction

Assumed cause Correction Prevention

An instruction to clear user-defined
errors was executed when there was
no user-defined error.

Correct the program so that the
instruction is executed when there is
a user-defined error.

Write the program so that the instruc-
tion is executed when there is a user-
defined error.

Precautions/
Remarks

None

Name Limit Exceeded for User-defined Errors Error code 16#040C

Meaning An attempt was made to use the Create User-defined Error instruction to create more than the maximum number of
user-defined errors.

Effects User program Continues. Operation The relevant instruction will end according to specifica-
tions. The output or Unit operation is not affected.

System-defined
variables

Variable Data type Name

None --- ---

Cause and
correction

Assumed cause Correction Prevention

An attempt was made to use the Cre-
ate User-defined Error instruction to
create more than the maximum num-
ber of user-defined errors.

Execute the Reset User-defined Error
instruction. Monitor the number of
user-defined errors in the system-
defined variable to check the number
of user-defined errors.

Write the program so that it checks
the number of user-defined errors as
a condition to execute the user-
defined error instruction.

Precautions/
Remarks

None

Name Illegal Unit Specified Error code 16#040D

Meaning The Unit specified for an instruction does not exist.

Effects User program Continues. Operation The relevant instruction will end according to specifica-
tions. The output or Unit operation is not affected.

System-defined
variables

Variable Data type Name

None --- ---

Cause and
correction

Assumed cause Correction Prevention

A Unit that does not exist in the Unit
configuration information was speci-
fied.

Correct the unit number in the instruc-
tion so that it specifies a Unit in the
Unit configuration and make sure that
the actual Unit exists.

Make sure that unit numbers in
instructions specify Units in the Unit
configuration and make sure that the
actual Units exist.A Unit that is in the Unit configuration

information was specified, but the
Units does not actually exist in the
Controller.

Precautions/
Remarks

None

A-29

 Appendices

NJ-series Instructions Reference Manual (W502)

A
-3 E

rro
r C

o
d

e D
etails

A
p

p

Name Unit Restart Failed Error code 16#040F

Meaning Restarting a Special I/O Unit or CPU Bus Unit failed.

Effects User program Continues. Operation The relevant instruction will end according to specifica-
tions. The output or Unit operation is not affected.

System-defined
variables

Variable Data type Name

None --- ---

Cause and
correction

Assumed cause Correction Prevention

The Special I/O Unit or CPU Bus Unit
is processing data.

Wait a few moments and then restart
the Special I/O Unit or CPU Bus Unit.

Check to be sure that Special I/O
Units and CPU Bus Units are not pro-
cessing data before restarting them
from the user program.

Precautions/
Remarks

None

Name Text String Format Error Error code 16#0410

Meaning The text string input to an instruction is not correct.

Effects User program Continues. Operation The relevant instruction will end according to specifica-
tions.

System-defined
variables

Variable Data type Name

None --- ---

Cause and
correction

Assumed cause Correction Prevention

The text string that is input to the
instruction for conversion to a number
does not represent a number or it
does not represent a positive number.

Correct the text string so that it is
properly formatted for the instruction.

When converting a text string to a
number, make sure that the text string
that is input to the instruction repre-
sents a number. If the number must
be positive, make sure the text string
represents a positive number.

The input text string does not end in
NULL.

Correct the text string that is input to
the instruction so that it ends in NULL.

When converting a text string to a
number, make sure that the text string
that is input to the instruction ends in
NULL.

Precautions/
Remarks

None

Name Illegal Program Specified Error code 16#0411

Meaning The program specified for an instruction does not exist.

Effects User program Continues. Operation The relevant instruction will end according to specifica-
tions.

System-defined
variables

Variable Data type Name

None --- ---

Cause and
correction

Assumed cause Correction Prevention

The program specified by the function
does not exist (e.g., it was deleted).

Make sure that the program that is
specified by the instruction exists. Or,
add the program that is specified for
the instruction.

Make sure that the programs that are
specified by instructions exist. Be
careful not to delete any programs
that are used by instructions.

Precautions/
Remarks

None

 Appendices

A-30 NJ-series Instructions Reference Manual (W502)

Name Undefined CJ-series Memory Address Error code 16#0413

Meaning The required specification is missing for a variable for which CJ-series Unit memory must be specified.

Effects User program Continues. Operation The relevant instruction will end according to specifica-
tions.

System-defined
variables

Variable Data type Name

None --- ---

Cause and
correction

Assumed cause Correction Prevention

The required AT specification is miss-
ing for a variable for which CJ-series
Unit memory must be specified.

Correct the program so that it uses
the AT specification to specify CJ-
series Unit memory when doing so is
required by the variable.

Write the program so that it uses an
AT designation to specify CJ-series
Unit memory when doing so is
required by the variable.

Precautions/
Remarks

None

Name Stack Underflow Error code 16#0414

Meaning There is no data in a stack.

Effects User program Continues. Operation The relevant instruction will end according to specifica-
tions.

System-defined
variables

Variable Data type Name

None --- ---

Cause and
correction

Assumed cause Correction Prevention

An attempt was made to read data
from a stack that contains no data.

Correct the program so that the data
is read only after it is stored in the
stack.

Correct the program so that the data
is read only after it is stored in the
stack.

Precautions/
Remarks

None

Name Illegal Number of Array Elements or Dimensions Error code 16#0416

Meaning The valid range was exceeded for the number of array elements or dimensions in an array I/O parameter for an instruc-
tion.

Effects User program Continues. Operation The relevant instruction will end according to specifica-
tions.

System-defined
variables

Variable Data type Name

None --- ---

Cause and
correction

Assumed cause Correction Prevention

The valid range was exceeded for the
number of array elements or dimen-
sions in an array I/O parameter for an
instruction.

Correct the instruction so that the
valid range for the number of array
elements or dimensions in an array
I/O parameter is not exceeded.

Correct the instruction so that the
valid range for the number of array
elements or dimensions in an array
I/O parameter is not exceeded.

Precautions/
Remarks

None

Name Specified Task Does Not Exist Error code 16#0417

Meaning The task specified for the instruction does not exist.

Effects User program Continues. Operation The relevant instruction will end according to specifica-
tions.

System-defined
variables

Variable Data type Name

None --- ---

Cause and
correction

Assumed cause Correction Prevention

The specified task does not exist. Correct the user program so that it
specifies an existing task.

Write the user program so that it
specifies only existing tasks.

Precautions/
Remarks

None

A-31

 Appendices

NJ-series Instructions Reference Manual (W502)

A
-3 E

rro
r C

o
d

e D
etails

A
p

p

Name Unallowed Task Specification Error code 16#0418

Meaning An unallowed task was specified for an instruction.

Effects User program Continues. Operation The relevant instruction will end according to specifica-
tions.

System-defined
variables

Variable Data type Name

None --- ---

Cause and
correction

Assumed cause Correction Prevention

The local task, the primary periodic
task, or a periodic task was specified.

Correct the user program so that it
specifies an event task that is not the
local task.

Write the user program so that it
specifies event tasks that are not the
local task.

Precautions/
Remarks

None

Name Incorrect Data Type Error code 16#0419

Meaning A data type that cannot be used for an instruction is specified for an input or in-out variable.

Effects User program Continues. Operation The relevant instruction will end according to specifica-
tions.

System-defined
variables

Variable Data type Name

None --- ---

Cause and
correction

Assumed cause Correction Prevention

A data type that cannot be used for an
instruction is specified for an input or
in-out variable.

Check the data types of the input and
in-out variables of the instruction and
correct them to correct data types.

Check the allowed data types for input
and in-out variables for the instruction
and use correct data types.

Precautions/
Remarks

None

Name Multi-execution of Instructions Error code 16#041A

Meaning Multi-execution was specified for an instruction that does not support it.

Effects User program Continues. Operation The relevant instruction will end according to specifica-
tions.

System-defined
variables

Variable Data type Name

None --- ---

Cause and
correction

Assumed cause Correction Prevention

Execution of an instruction that does
not support multi-execution of instruc-
tions was specified more than once.

Correct the program so that any
instance of an instruction that does
not support multi-execution is com-
pleted before another instance is exe-
cuted.

Write the user program so that any
instance of an instruction that does
not support multi-execution is com-
pleted before another instance is exe-
cuted.

Precautions/
Remarks

None

 Appendices

A-32 NJ-series Instructions Reference Manual (W502)

Name FINS Error Error code 16#0800

Meaning An error occurred when a FINS command was sent or received.

Effects User program Continues. Operation The relevant instruction will end according to specifica-
tions.

System-defined
variables

Variable Data type Name

None --- ---

Cause and
correction

Assumed cause Correction Prevention

An error occurred when a FINS com-
mand was sent or received.

Check the value of the ErrorIDEx out-
put variable from the instruction and
refer to the description in this manual
for the communications response
code (ErrorIDEx) with the same value
for the instruction.

Read the description of ErrorIDEx in
advance for the instruction and pro-
gram correctly.

Precautions/
Remarks

None

Name FINS Port Already in Use Error code 16#0801

Meaning The FINS port is being used.

Effects User program Continues. Operation The relevant instruction will end according to specifica-
tions. The communications output or Unit operation is not
affected.

System-defined
variables

Variable Data type Name

None --- ---

Cause and
correction

Assumed cause Correction Prevention

The FINS port is being used. Correct the program by inserting
_Port.isAvailable in a N.O. input con-
dition.

Insert _Port.isAvailable in a N.O.
input condition when you create the
program.

Precautions/
Remarks

None

Name Illegal Serial Communications Mode Error code 16#0C00

Meaning The Serial Communications Unit is not in the serial communications mode required to execute an instruction.

Effects User program Continues. Operation The relevant instruction will end according to specifica-
tions. The communications output will follow the specifica-
tions of the instruction. The operation of the Unit is not
affected.

System-defined
variables

Variable Data type Name

None --- ---

Cause and
correction

Assumed cause Correction Prevention

The serial communications port for
the Serial Communications Unit is not
set to the mode expected by the
instruction.

Change to the serial communications
mode required to execute the instruc-
tion. Or, correct the program so that it
only uses instructions that can be
executed in the current mode.

Set the Serial Communications Unit
to the serial communications mode
required to execute the instruction.
Or, correct the program so that it only
uses instructions that can be exe-
cuted in the currently set mode.

Precautions/
Remarks

None

A-33

 Appendices

NJ-series Instructions Reference Manual (W502)

A
-3 E

rro
r C

o
d

e D
etails

A
p

p

Name Port Setup Already Busy Error code 16#0C02

Meaning A Change Port Setup instruction was executed during execution of another Change Port Setup instruction.

Effects User program Continues. Operation The relevant instruction will end according to specifica-
tions. Communications output will follow the specifications
of the instruction. The operation of the Unit will follow the
changes made to the port settings with the first instruc-
tion.

System-defined
variables

Variable Data type Name

_CJB_SCU##1ChgSta BOOL Serial Communications Unit ## Port 1
Settings Changing Flag

_CJB_SCU##2ChgSta BOOL Serial Communications Unit ## Port 2
Settings Changing Flag

Cause and
correction

Assumed cause Correction Prevention

A Change Port Setup instruction was
executed during execution of another
Change Port Setup instruction.

Correct the program so that the
instruction is not executed while
changing port settings.

Write the program so that the instruc-
tion is not executed while changing
port settings.

Precautions/
Remarks

None

Name SD Memory Card Access Failure Error code 16#1400

Meaning SD Memory Card access failed when an instruction was executed.

Effects User program Continues. Operation The relevant instruction will end according to specifica-
tions. The operation of the Unit is not affected.

System-defined
variables

Variable Data type Name

None --- ---

Cause and
correction

Assumed cause Correction Prevention

An SD Memory Card is either not
inserted or is not inserted properly.

Insert the SD Memory Card correctly. Make sure that the SD Memory Card
is inserted properly.

The SD Memory Card is broken. Replace the SD Memory Card with
one that operates normally.

None

The SD Memory Card slot is broken. If this error persists even after making
the above two corrections, replace the
CPU Unit.

None

Precautions/
Remarks

None

Name SD Memory Card Write-protected Error code 16#1401

Meaning An attempt was made to write to a write-protected SD Memory Card when an instruction was executed.

Effects User program Continues. Operation The relevant instruction will end according to specifica-
tions. The operation of the Unit is not affected.

System-defined
variables

Variable Data type Name

None --- ---

Cause and
correction

Assumed cause Correction Prevention

An attempt was made to write to a
write-protected SD Memory Card.

Remove write protection from the SD
Memory Card. Slide the small switch
on the side of the SD Memory Card
from the LOCK position to the writable
position.

Use an SD Memory Card that is not
write-protected when writing to the
SD Memory Card.

Precautions/
Remarks

None

 Appendices

A-34 NJ-series Instructions Reference Manual (W502)

Name SD Memory Card Insufficient Capacity Error code 16#1402

Meaning The capacity of the SD Memory Card was insufficient when writing to the SD Memory Card for an instruction.

Effects User program Continues. Operation The relevant instruction will end according to specifica-
tions. The operation of the Unit is not affected.

System-defined
variables

Variable Data type Name

None --- ---

Cause and
correction

Assumed cause Correction Prevention

The SD Memory Card has run out of
free space.

Replace the SD Memory Card for one
with sufficient available capacity.

Use an SD Memory Card with suffi-
cient available space when you add
files to it.

Precautions/
Remarks

Do not remove the SD Memory Card during Card access. That may damage the SD Memory Card or corrupt the data
on it.

Name File Does Not Exist Error code 16#1403

Meaning The file specified for an instruction does not exist.

Effects User program Continues. Operation The relevant instruction will end according to specifica-
tions. The operation of the Unit is not affected.

System-defined
variables

Variable Data type Name

None --- ---

Cause and
correction

Assumed cause Correction Prevention

The specified file does not exist. Make sure that the filename that is
specified for the instruction exists. Or,
modify the filename so that it matches
the filename specified for the instruc-
tion.

Make sure that the filename that is
specified for the instruction exists.

Precautions/
Remarks

None

Name Too Many Files/ Directories Error code 16#1404

Meaning The maximum number of files/directories was exceeded when creating a file/directory for an instruction.

Effects User program Continues. Operation The relevant instruction will end according to specifica-
tions. The operation of the Unit is not affected.

System-defined
variables

Variable Data type Name

None --- ---

Cause and
correction

Assumed cause Correction Prevention

The number of files or directories
exceeded the maximum number.

Delete any unnecessary files and/or
directories. Or, replace the SD Mem-
ory Card with one that has fewer files
and directories compared to the maxi-
mum number of files and directories
for FAT16 or FAT32.

Delete unnecessary files and directo-
ries so that there are not too many
files and directories on the SD Mem-
ory Card. Regularly replace the SD
Memory Card when the number of
files grows constantly.

Precautions/
Remarks

None

A-35

 Appendices

NJ-series Instructions Reference Manual (W502)

A
-3 E

rro
r C

o
d

e D
etails

A
p

p

Name File Already in Use Error code 16#1405

Meaning A file specified for an instruction cannot be accessed because it is already being used.

Effects User program Continues. Operation The relevant instruction will end according to specifica-
tions. The operation of the Unit is not affected.

System-defined
variables

Variable Data type Name

None --- ---

Cause and
correction

Assumed cause Correction Prevention

An instruction attempted to read or
write a file already being accessed by
another instruction.

Correct the program so that the rele-
vant instruction is only executed when
the Busy output variable for all other
instructions for the same file are
FALSE.

When you execute multiple instruc-
tions that access the same file, write
the program so that the instructions
are not executed simultaneously.
Make sure that the Busy output vari-
able for all other instructions for the
same file is FALSE.

Precautions/
Remarks

None

Name Open Mode Mismatch Error code 16#1406

Meaning A file operation for an instruction was inconsistent with the open mode of the file.

Effects User program Continues. Operation The relevant instruction will end according to specifica-
tions. The operation of the Unit is not affected.

System-defined
variables

Variable Data type Name

None --- ---

Cause and
correction

Assumed cause Correction Prevention

The file open mode specified by the
Open File instruction does not match
the file operation attempted by a sub-
sequent SD Memory Card instruction.

Correct the Open File instruction to
open the file in an open mode that is
suitable for the file operation.

Change the Open File instruction to
open the file in an open mode that is
suitable for the file operation.

Precautions/
Remarks

None

Name Offset Out of Range Error code 16#1407

Meaning Access to the address is not possible for the offset specified for an instruction.

Effects User program Continues. Operation The relevant instruction will end according to specifica-
tions. The operation of the Unit is not affected.

System-defined
variables

Variable Data type Name

None --- ---

Cause and
correction

Assumed cause Correction Prevention

An attempt was made to access
beyond the size of the file.

Decrease the offset specified for the
instruction.

Include information in the file so that
the file format can be identified, and
modify the program to check that
information in order to perform appro-
priate file seeking.

Precautions/
Remarks

None

 Appendices

A-36 NJ-series Instructions Reference Manual (W502)

Name Directory Not Empty Error code 16#1408

Meaning A directory was not empty when the Delete Directory instruction was executed or when an attempt was made to
change the directory name.

Effects User program Continues. Operation The relevant instruction will end according to specifica-
tions. The operation of the Unit is not affected.

System-defined
variables

Variable Data type Name

None --- ---

Cause and
correction

Assumed cause Correction Prevention

A directory was not empty when the
Delete Directory instruction was exe-
cuted.

Delete all files in the relevant direc-
tory.

Check the contents of a directory
before you delete the directory using
the Delete Directory instruction or
before you change the directory
name.

A directory contained another direc-
tory when an attempt was made to
change the directory name.

Delete all directories from the relevant
directory.

Precautions/
Remarks

None

Name That File Name Already Exists Error code 16#1409

Meaning An instruction could not be executed because the file name specified for the instruction already exists.

Effects User program Continues. Operation The relevant instruction will end according to specifica-
tions. The operation of the Unit is not affected.

System-defined
variables

Variable Data type Name

None --- ---

Cause and
correction

Assumed cause Correction Prevention

A file already exists with the same
name as the name specified for the
instruction to create.

Correct the program so that the file-
name specified for the instruction
does not already exist. Or, delete the
existing file.

Make sure that the file specified does
not already exist when you create a
file with an instruction.

Precautions/
Remarks

When you delete an existing file, check to make sure that you no longer need the file.

Name Write Access Denied Error code 16#140A

Meaning An attempt was made to write to a write-protected file or directory when an instruction was executed.

Effects User program Continues. Operation The relevant instruction will end according to specifica-
tions. The operation of the Unit is not affected.

System-defined
variables

Variable Data type Name

None --- ---

Cause and
correction

Assumed cause Correction Prevention

The file or directory specified for the
instruction to write is write-protected.

Remove write protection from the file
or directory specified for the instruc-
tion. Or, change the filename of the
file to write.

Do not write-protect any files that
need to be written to.

Precautions/
Remarks

Before you remove write protection from a file, be sure it is OK to overwrite the file.

A-37

 Appendices

NJ-series Instructions Reference Manual (W502)

A
-3 E

rro
r C

o
d

e D
etails

A
p

p

Name Too Many Files Open Error code 16#140B

Meaning The maximum number of open files was exceeded when opening a file for an instruction.

Effects User program Continues. Operation The relevant instruction will end according to specifica-
tions. The operation of the Unit is not affected.

System-defined
variables

Variable Data type Name

None --- ---

Cause and
correction

Assumed cause Correction Prevention

The maximum number of open files
was exceeded when opening a file for
an instruction.

Correct the program to decrease the
number of open files.

Decrease the number of files. Or,
write the program so that files that no
longer need to be open are closed in
order to prevent too many files from
being open at once.

Precautions/
Remarks

None

Name Directory Does Not Exist Error code 16#140C

Meaning The directory specified for an instruction does not exist.

Effects User program Continues. Operation The relevant instruction will end according to specifica-
tions. The operation of the Unit is not affected.

System-defined
variables

Variable Data type Name

None --- ---

Cause and
correction

Assumed cause Correction Prevention

The directory specified for an instruc-
tion does not exist.

Correct the program so that the direc-
tory specified for the instruction
exists. Or, create the relevant direc-
tory in advance.

Make sure that the directory specified
for the instruction directory actually
exists when using an instruction that
accesses a directory.

Precautions/
Remarks

None

Name File or Directory Name Is Too Long Error code 16#140D

Meaning The file name or directory name that was specified for an instruction is too long.

Effects User program Continues. Operation The relevant instruction will end according to specifica-
tions. The operation of the Unit is not affected.

System-defined
variables

Variable Data type Name

None --- ---

Cause and
correction

Assumed cause Correction Prevention

The file name or directory name that
was specified for the instruction to
create is too long.

Correct the program so that the file
name or directory name specified for
the instruction is within FAT16 or
FAT32 restrictions.

Write the program so that the speci-
fied file names and directory names
are within FAT16 or FAT32 restric-
tions.

Precautions/
Remarks

None

 Appendices

A-38 NJ-series Instructions Reference Manual (W502)

Name SD Memory Card Access Failed Error code 16#140E

Meaning SD Memory Card access failed.

Effects User program Continues. Operation The relevant instruction will end according to specifica-
tions. The operation of the Unit is not affected.

System-defined
variables

Variable Data type Name

None --- ---

Cause and
correction

Assumed cause Correction Prevention

The SD Memory Card is broken. Replace the SD Memory Card. None

The SD Memory Card slot is broken. If this error occurs even after making
the above correction, replace the
CPU Unit.

None

Precautions/
Remarks

None

Name EtherCAT Communications Error Error code 16#1800

Meaning Accessing the EtherCAT network failed when an instruction was executed.

Effects User program Continues. Operation The relevant instruction will end according to specifica-
tions.

System-defined
variables

Variable Data type Name

None --- ---

Cause and
correction

Assumed cause Correction Prevention

The EtherCAT network is not in a
usable status.

Check the operation status of the
EtherCAT network by checking the
status of the EtherCAT master. Use
this information to correct the cause
of the problem.

Depends on the nature of the error.

Precautions/
Remarks

None

Name EtherCAT Slave Does Not Respond Error code 16#1801

Meaning Accessing the target slave failed when an instruction was executed.

Effects User program Continues. Operation The relevant instruction will end according to specifica-
tions.

System-defined
variables

Variable Data type Name

None --- ---

Cause and
correction

Assumed cause Correction Prevention

The target slave does not exist. Specify an existing node address. Specify an existing node address for
the target slave.

The target slave is not in an operating
condition.

Check the status of the target Ether-
CAT slave. Make sure that the target
slave is in a usable status.

Make sure that the target slave is in a
usable status.

Precautions/
Remarks

None

A-39

 Appendices

NJ-series Instructions Reference Manual (W502)

A
-3 E

rro
r C

o
d

e D
etails

A
p

p

Name EtherCAT Timeout Error code 16#1802

Meaning A timeout occurred while trying to access an EtherCAT slave when an instruction was executed.

Effects User program Continues. Operation The relevant instruction will end according to specifica-
tions.

System-defined
variables

Variable Data type Name

None --- ---

Cause and
correction

Assumed cause Correction Prevention

Communications with the target slave
timed out.

Check the operating status of the tar-
get slave and correct the cause of the
problem.

Depends on the nature of the error.

Precautions/
Remarks

None

Name Reception Buffer Overflow Error code 16#1803

Meaning The receive data from an EtherCAT slave overflowed the receive buffer when an instruction was executed.

Effects User program Continues. Operation The relevant instruction will end according to specifica-
tions. It will not be possible to receive data from the slave.

System-defined
variables

Variable Data type Name

None --- ---

Cause and
correction

Assumed cause Correction Prevention

The receive data from the slave over-
flowed the receive buffer.

Set the size of the reception buffer to
a value larger than the size of the
receive data from the slave.

Set the size of the receive buffer to a
value larger than the size of the
receive data from the slave.

Precautions/
Remarks

None

Name SDO Abort Error Error code 16#1804

Meaning An SDO abort error was received from an EtherCAT slave when an instruction was executed.

Effects User program Continues. Operation The relevant instruction will end according to specifica-
tions.

System-defined
variables

Variable Data type Name

None --- ---

Cause and
correction

Assumed cause Correction Prevention

Depends on the specifications of the
slave.

Refer to the manual for the slave and
correct the problem.

Refer to the manual for the slave and
take the necessary steps to prevent
the problem.

Precautions/
Remarks

None

Name Saving Packet Monitor File Error code 16#1805

Meaning An instruction for packet monitoring was executed while saving an EtherCAT packet monitor file.

Effects User program Continues. Operation The relevant instruction will end according to specifica-
tions.

System-defined
variables

Variable Data type Name

None --- ---

Cause and
correction

Assumed cause Correction Prevention

An instruction for packet monitoring
was executed while saving an Ether-
CAT packet monitor file.

Execute the instruction for packet
monitoring after saving the EtherCAT
packet monitor file is completed. You
can check packet monitor file save
status to see if saving a packet moni-
tor file is completed.

Execute packet monitoring instruc-
tions only after the packet monitor file
is saved. You can check packet moni-
tor file save status to see if saving a
packet monitor file is completed.

Precautions/
Remarks

None

 Appendices

A-40 NJ-series Instructions Reference Manual (W502)

Name Packet Monitoring Function Not Started Error code 16#1806

Meaning A Stop EtherCAT Packet Monitor instruction was executed when EtherCAT packet monitoring was stopped.

Effects User program Continues. Operation The relevant instruction will end according to specifica-
tions.

System-defined
variables

Variable Data type Name

None --- ---

Cause and
correction

Assumed cause Correction Prevention

A Stop EtherCAT Packet Monitor
instruction was executed when Ether-
CAT packet monitoring was stopped.

Execute the Stop EtherCAT Packt
Monitor instruction after starting the
packet monitoring function. You can
check packet monitoring function
operation status to see if the packet
monitoring function is currently in
operation.

Execute the Stop EtherCAT Packet
Monitor instruction after starting the
packet monitoring function. You can
check packet monitoring function
operation status to see if the packet
monitoring function is currently in
operation.

Precautions/
Remarks

None

Name Packet Monitoring Function in Operation Error code 16#1807

Meaning A Start EtherCAT Packet Monitor instruction was executed when EtherCAT packet monitoring was already being exe-
cuted.

Effects User program Continues. Operation The relevant instruction will end according to specifica-
tions.

System-defined
variables

Variable Data type Name

None --- ---

Cause and
correction

Assumed cause Correction Prevention

The Start EtherCAT Packet Monitor
instruction was executed again while
the EtherCAT packet monitoring func-
tion was already in operation.

Execute the Start EtherCAT Packet
Monitor instruction after the packet
monitoring function was stopped. You
can check packet monitoring function
operation status to see if the packet
monitoring function is stopped.

Execute the Start EtherCAT Packet
Monitor instruction after the packet
monitoring function is stopped. You
can check packet monitoring function
operation status to see if the packet
monitoring function is stopped.

Precautions/
Remarks

None

A-41

 Appendices

NJ-series Instructions Reference Manual (W502)

A
-3 E

rro
r C

o
d

e D
etails

A
p

p

Name Communications Resource Overflow Error code 16#1808

Meaning More than 32 EtherCAT communications instructions were executed at the same time.

Effects User program Continues. Operation The relevant instruction will end according to specifica-
tions.

System-defined
variables

Variable Data type Name

None --- ---

Cause and
correction

Assumed cause Correction Prevention

More than 32 EtherCAT communica-
tions instructions were executed at
the same time. The EtherCAT com-
munications instructions are listed
below.

• EC_CoESDOWrite instruction

• EC_CoESDORead instruction

• EC_ConnectSlave instruction

• EC_DisconnectSlave instruction

• EC_StartMon instruction

• EC_SaveMon instruction

• EC_StopMon instruction

• EC_CopyMon instruction

Correct the user program so that no
more than 32 EtherCAT communica-
tions instructions are executed at the
same time.

Write the user program so that no
more than 32 EtherCAT communica-
tions instructions are executed at the
same time.

Precautions/
Remarks

None

Name Explicit Message Error Error code 16#1C00

Meaning An error response code was returned for an explicit message that was sent with a CIP communications instruction.

Effects User program Continues. Operation The relevant instruction will end according to specifica-
tions.

System-defined
variables

Variable Data type Name

None --- ---

Cause and
correction

Assumed cause Correction Prevention

Depends on the nature of the error. Check the value of the ErrorIDEx out-
put variable from the instruction and
refer to the description in this manual
of the CIP message error code.

Depends on the nature of the error.
Refer to the description in this manual
of the CIP message error code.

Precautions/
Remarks

None

Name Incorrect Route Path Error code 16#1C01

Meaning The format of the route path that is specified for a CIP communications instruction is not correct.

Effects User program Continues. Operation The relevant instruction will end according to specifica-
tions.

System-defined
variables

Variable Data type Name

None --- ---

Cause and
correction

Assumed cause Correction Prevention

The format of the route path that is
specified for a CIP communications
instruction is not correct.

Correct the route path that is speci-
fied by the instruction.

Make sure that the instructions spec-
ify correct route paths.

Precautions/
Remarks

None

 Appendices

A-42 NJ-series Instructions Reference Manual (W502)

Name CIP Handle Out of Range Error code 16#1C02

Meaning The handle that is specified for the CIP communications instruction is not correct.

Effects User program Continues. Operation The relevant instruction will end according to specifica-
tions.

System-defined
variables

Variable Data type Name

None --- ---

Cause and
correction

Assumed cause Correction Prevention

The handle that is specified for the
CIP communications instruction is not
correct.

Correct the handle for the instruction
to the handle that was obtained with
the CIPOpen instruction.

Specify handles that were obtained
with the CIPOpen instruction.

Precautions/
Remarks

None

Name CIP Communications Resource Overflow Error code 16#1C03

Meaning The maximum resources that you can use for CIP communications instructions at the same time was exceeded.

Effects User program Continues. Operation The relevant instruction will end according to specifica-
tions.

System-defined
variables

Variable Data type Name

None --- ---

Cause and
correction

Assumed cause Correction Prevention

More than 16 CIP communications
instructions were executed at the
same time.

Correct the user program so that no
more than 16 CIP communications
instructions are executed at the same
time.

Write the user program so that no
more than 16 CIP communications
instructions are executed at the same
time.

An attempt was made to use more
than 32 handles at the same time.

Correct the user program so that no
more than 32 handles are used at the
same time.

Write the user program so that no
more than 32 handles are used at the
same time.

Precautions/
Remarks

None

Name CIP Timeout Error code 16#1C04

Meaning A CIP timeout occurred during execution of a CIP communications instruction.

Effects User program Continues. Operation The relevant instruction will end according to specifica-
tions.

System-defined
variables

Variable Data type Name

None --- ---

Cause and
correction

Assumed cause Correction Prevention

A device does not exist for the speci-
fied IP address.

Correct the specified IP address to
the IP address of the remote device.

Specify the correct IP address of the
remote device.

The CIP connection for the specified
handle timed out and was closed.

Execute the instruction before the
connection times out. Or, increase the
timeout time of the connection.

Execute the instruction before the
connection times out.

Power to the remote device is OFF. Check the status of the remote device
and start it normally.

Check the status of the remote device
and start it normally.Communications are stopped at the

remote device.

The Ethernet cable connector for Eth-
erNet/IP is disconnected.

Reconnect the connector and make
sure it is mated correctly.

Connect the connector securely.

The Ethernet cable for EtherNet/IP is
disconnected.

Replace the Ethernet cable. None

Noise Implement noise countermeasures if
there is excessive noise.

Implement noise countermeasures if
there is excessive noise.

Precautions/
Remarks

None

A-43

 Appendices

NJ-series Instructions Reference Manual (W502)

A
-3 E

rro
r C

o
d

e D
etails

A
p

p

Name Local IP Address Setting Error Error code 16#2000

Meaning An instruction was executed when there was a setting error in the local IP address.

Effects User program Continues. Operation The relevant instruction will end according to specifica-
tions.

System-defined
variables

Variable Data type Name

None --- ---

Cause and
correction

Assumed cause Correction Prevention

An instruction was executed when
there was a setting error in the local
IP address.

There was a TCP/IP Basic Setting
Error (IP Address Setting Error) when
the instruction was executed. Remove
the cause of the TCP/IP Basic Setting
Error.

Set the IP addresses correctly so that
a TCP/IP Basic Setting Error does not
occur.

Precautions/
Remarks

None

Name TCP/UDP Port Already in Use Error code 16#2001

Meaning The UDP or TCP port was already in use when the instruction was executed.

Effects User program Continues. Operation The relevant instruction will end according to specifica-
tions.

System-defined
variables

Variable Data type Name

None --- ---

Cause and
correction

Assumed cause Correction Prevention

The UDP or TCP port is already in
use.

Correct the user program so that an
unused port is specified for the
instruction.

Write the user program so that used
ports are not specified for instruc-
tions.

Precautions/
Remarks

None

Name Address Resolution Failed Error code 16#2002

Meaning Address resolution failed for a remote node with the domain name that was specified in the instruction.

Effects User program Continues. Operation The relevant instruction will end according to specifica-
tions.

System-defined
variables

Variable Data type Name

None --- ---

Cause and
correction

Assumed cause Correction Prevention

The domain name specified for the
instruction is not correct.

Correct the domain name that is
specified in the instruction.

Specify correct domain names in
instructions.

The hosts and DNS settings in the
Controller are incorrect.

Correct the hosts and DNS settings in
the Controller.

Check the hosts and DNS settings in
the Controller and make sure they are
correct.

The DNS server settings are incor-
rect.

Correct the DNS server settings. Check that there are no mistakes in
the DNS server settings.

Precautions/
Remarks

None

 Appendices

A-44 NJ-series Instructions Reference Manual (W502)

Name Status Error Error code 16#2003

Meaning The status was not suitable for execution of the instruction.

Effects User program Continues. Operation The relevant instruction will end according to specifica-
tions.

System-defined
variables

Variable Data type Name

None --- ---

Cause and
correction

Assumed cause Correction Prevention

• SktUDPRcv Instruction

• The socket is receiving data.

• The socket is not open.

• SktUDPSend Instruction

• The socket is sending data.

• The socket is not open.

• SktTCPAccept Instruction
The specified TCP port is in one of
the following states.

• The port is being opened.

• The port is being closed.

• A connection is already estab-
lished for this instruction for the
same IP address and TCP port.

• SktTCPConnect Instruction

• The TCP port that is specified
with the SrcTcpPort input variable
is already open.

• The remote node that is specified
with DstAdr input variable does
not exist.

• The remote node that is specified
with DstAdr and DstTcpPort input
variables is not waiting for a con-
nection.

• SktTCPRcv Instruction

• The specified socket is receiving
data.

• The specified socket is not con-
nected.

• SktTCPSend Instruction

• The specified socket is sending
data.

• The specified socket is not con-
nected.

Remove the cause of the error for the
instruction.

Do not execute the instruction when it
will cause an error.

Precautions/
Remarks

None

A-45

 Appendices

NJ-series Instructions Reference Manual (W502)

A
-3 E

rro
r C

o
d

e D
etails

A
p

p

Name Local IP Address Not Set Error code 16#2004

Meaning The local IP address was not set when a socket service instruction was executed.

Effects User program Continues. Operation The relevant instruction will end according to specifica-
tions.

System-defined
variables

Variable Data type Name

None --- ---

Cause and
correction

Assumed cause Correction Prevention

There is a BOOTP server setting
error.

Correct any errors in the BOOTP
server settings.

Check that there are no mistakes in
the BOOTP server settings.

The BOOTP server does not exist. Make sure that the BOOTP server
has started normally and is normally
connected to the network.

Make sure that the BOOTP server
has started normally and is normally
connected to the network.

The local IP address is not set
because operation just started.

Wait until the local IP address is set
before executing socket service
instructions.

Wait until the local IP address is set
before executing socket service
instructions.

Precautions/
Remarks

None

Name Socket Timeout Error code 16#2006

Meaning A timeout occurred for a socket service instruction.

Effects User program Continues. Operation The relevant instruction will end according to specifica-
tions.

System-defined
variables

Variable Data type Name

None --- ---

Cause and
correction

Assumed cause Correction Prevention

SktTCPAccept instruction: There was
no request for a connection from the
remote node during the user-set time-
out time.

Correct the system and user program
so that there is a connection request
from the remote node within the time-
out time after the instruction is exe-
cuted. Or, increase the timeout time.

Set up the system and user program
so that there is a connection request
from the remote node within the time-
out time after the instruction is exe-
cuted.

SktTCPRcv or SktUDPRcv instruc-
tion: Data was not received from the
remote node during the user-set time-
out time.

Correct the system and user program
so that data is received from the
remote node within the timeout time
after the instruction is executed. Or,
increase the timeout time.

Set up the system and user program
so that data is received from the
remote node within the timeout time
after the instruction is executed.

Precautions/
Remarks

None

Name Socket Handle Out of Range Error code 16#2007

Meaning The handle that is specified for the socket service instruction is not correct.

Effects User program Continues. Operation The relevant instruction will end according to specifica-
tions.

System-defined
variables

Variable Data type Name

None --- ---

Cause and
correction

Assumed cause Correction Prevention

The handle that is specified for the
socket service instruction is not cor-
rect.

Correct the socket handle for the
instruction to the handle that was
obtained with one of the following
instructions.

• SktUDPCreate instruction

• SktTCPConnect instruction

• SktTCPAccept instruction

Specify handles that are obtained
with the following instructions.

• SktUDPCreate instruction

• SktTCPConnect instruction

• SktTCPAccept instruction

Precautions/
Remarks

None

 Appendices

A-46 NJ-series Instructions Reference Manual (W502)

Name Socket Communications Resource Overflow Error code 16#2008

Meaning The maximum resources that you can use for socket service instructions at the same time was exceeded.

Effects User program Continues. Operation The relevant instruction will end according to specifica-
tions.

System-defined
variables

Variable Data type Name

None --- ---

Cause and
correction

Assumed cause Correction Prevention

More than 17 socket service commu-
nications instructions were executed
at the same time.

Correct the user program so that no
more than 17 socket service instruc-
tions are executed at the same time.

Write the user program so that no
more than 17 socket service instruc-
tions are executed at the same time.

An attempt was made to use more
than 16 socket handles at the same
time.

Correct the user program so that no
more than 16 socket handles are
used at the same time.

Write the user program so that no
more than 16 socket handles are
used at the same time.

Precautions/
Remarks

None

A-47

 Appendices

NJ-series Instructions Reference Manual (W502)

A
-4 S

D
O

 A
b

o
rt C

o
d

es
A

p
p

A-4 SDO Abort Codes

As reference information, the following table lists the SDO abort codes for EtherCAT communications.
The abort codes that are used in actual communications are specified by the slaves. Refer to the slave
manuals when programming communications.

Source: EtherCAT Specification Part 6 Application Layer Protocol Specification.

Document No.: ETG.1000.6 S (R) V1.0.2

Value Meaning

16#05030000 Toggle bit not changed

16#05040000 SDO protocol timeout

16#05040001 Client/Server command specifier not valid or unknown

16#05040005 Out of memory

16#06010000 Unsupported access to an object

16#06010001 Attempt to read to a write only object

16#06010002 Attempt to write to a read only object

16#06020000 The object does not exist in the object directory

16#06040041 The object cannot be mapped into the PDO

16#06040042 The number and length of the objects to be mapped would exceed the PDO
length

16#06040043 General parameter incompatibility reason

16#06040047 General internal incompatibility in the device

16#06060000 Access failed due to a hardware error

16#06070010 Data type does not match, length of service parameter does not match

16#06070012 Data type does not match, length of service parameter too high

16#06070013 Data type does not match, length of service parameter too low

16#06090011 Subindex does not exist

16#06090030 Value range of parameter exceeded (only for write access)

16#06090031 Value of parameter written too high

16#06090032 Value of parameter written too low

16#06090036 Maximum value is less than minimum value

16#08000000 General error

16#08000020 Data cannot be transferred or stored to the application

16#08000021 Data cannot be transferred or stored to the application because of local control

16#08000022 Data cannot be transferred or stored to the application because of the present
device state

16#08000023 Object dictionary dynamic generation failed or no object dictionary is present

 Appendices

A-48 NJ-series Instructions Reference Manual (W502)

Index-1NJ-series Instructions Reference Manual (W502)

I

Index

Index-2 NJ-series Instructions Reference Manual (W502)

 Index

Index

Symbols

& (Logical AND) ... 2-286
* (Multiplication) ... 2-161
** (Exponentiation) .. 2-187
_BCD_TO_*

(BCD-to-Unsigned Integer Conversion Group) 2-212
TO*

(Bit String-to-Bit String Conversion Group) 2-242
TO*

(Bit String-to-Integer Conversion Group) 2-239
TO*

(Bit String-to-Real Number Conversion Group) 2-244
TO*

(Integer-to-Bit String Conversion Group) 2-235
TO*

(Integer-to-Integer Conversion Group) 2-232
TO*

(Integer-to-Real Number Conversion Group) 2-237
TO*

(Real Number-to-Bit String Conversion Group) 2-249
TO*

(Real Number-to-Integer Conversion Group) 2-246
TO* (Real Number-to-Real Number

Conversion Group) ... 2-251
_TO_BCD_*

(Unsigned Integer-to-BCD Conversion Group) 2-215
**_TO_STRING

(Bit String-to-Text String Conversion Group) 2-255
**_TO_STRING

(Integer-to-Text String Conversion Group) 2-253
**_TO_STRING

(Real Number-to-Text String Conversion Group) 2-257
+ (Addition) .. 2-152
+OU (Addition with Overflow/Underflow Check) 2-154
- (Subtraction) .. 2-156
-OU (Subtraction with Overflow/Underflow Check) ... 2-158
/ (Division) ... 2-166
< (Less Than) .. 2-88
<= (Less Than Or Equal) ... 2-88
<> (Not Equal) ... 2-86
= (Equal) .. 2-84
> (Greater Than) ... 2-88
>= (Greater Than Or Equal) .. 2-88

A

ABS (Absolute Value) .. 2-170
Absolute Value .. 2-170
Accept TCP Socket ... 2-767
Accumulation Timer ... 2-126
AccumulationTimer (Accumulation Timer) 2-126
ACOS (Principal Arc Cosine) 2-177
ADD (Addition) .. 2-152

Add Time ... 2-544
Add Time to Date and Time 2-548
Add Time to Time of Day ... 2-546
ADD_DT_TIME (Add Time to Date and Time) 2-548
Addition ... 2-152
Addition with Overflow/Underflow Check 2-154
AddOU (Addition with Overflow/Underflow Check) 2-154
ADD_TIME (Add Time) ... 2-544
ADD_TOD_TIME (Add Time to Time of Day) 2-546
AND ... 2-16
AND (AND) .. 2-16
AND (Logical AND) ... 2-286
AND NOT .. 2-16
ANDN (AND NOT) ... 2-16
Array Addition .. 2-193
Array BCD Conversion .. 2-227
Array Comparison Equal ... 2-105
Array Comparison Greater Than 2-107
Array Comparison Greater Than Or Equal 2-107
Array Comparison Less Than 2-107
Array Comparison Less Than Or Equal 2-107
Array Comparison Not Equal 2-105
Array Data Exchange .. 2-333
Array Element Standard Deviation 2-203
Array Logical AND ... 2-293
Array Logical Exclusive NOR 2-293
Array Logical Exclusive OR 2-293
Array Logical OR ... 2-293
Array Maximum ... 2-312
Array Mean .. 2-201
Array Minimum .. 2-312
Array Move .. 2-335
Array N-element Left Shift ... 2-357
Array N-element Right Shift 2-357
Array Search .. 2-314
Array Subtraction ... 2-197
Array Unsigned Integer Conversion 2-229
Array Value Addition .. 2-195
Array Value Comparison Equal 2-110
Array Value Comparison Greater Than 2-112
Array Value Comparison Greater Than Or Equal 2-112
Array Value Comparison Less Than 2-112
Array Value Comparison Less Than Or Equal 2-112
Array Value Comparison Not Equal 2-110
Array Value Subtraction ... 2-199
Array-to-Text String Conversion 2-443
AryAdd (Array Addition) ... 2-193
AryAddV (Array Value Addition) 2-195
AryAnd (Array Logical AND) 2-293
AryByteTo (Conversion from Byte Array) 2-458
AryCmpEQ (Array Comparison Equal) 2-105
AryCmpEQV (Array Value Comparison Equal) 2-110
AryCmpGE

(Array Comparison Greater Than Or Equal) 2-107

Index-3NJ-series Instructions Reference Manual (W502)

I

Index

AryCmpGEV
(Array Value Comparison Greater Than Or Equal) 2-112

AryCmpGT
(Array Comparison Greater Than) 2-107

AryCmpGTV
(Array Value Comparison Greater Than) 2-112

AryCmpLE
(Array Comparison Less Than Or Equal) 2-107

AryCmpLEV
(Array Value Comparison Less Than Or Equal) 2-112

AryCmpLT (Array Comparison Less Than) 2-107
AryCmpLTV (Array Value Comparison Less Than) ... 2-112
AryCmpNE (Array Comparison Not Equal) 2-105
AryCmpNEV (Array Value Comparison Not Equal) .. 2-110
AryCRC16 (Calculate Array CRC-16) 2-516
AryCRCCCITT (Calculate Array CRC-CCITT) 2-514
AryExchange (Array Data Exchange) 2-333
AryLRC_** (Calculate Array LRC Group) 2-512
AryMax (Array Maximum) ... 2-312
AryMean (Array Mean) .. 2-201
AryMin (Array Minimum) ... 2-312
AryMove (Array Move) .. 2-335
AryOr (Array Logical OR) .. 2-293
ArySD (Array Element Standard Deviation) 2-203
ArySearch (Array Search) ... 2-314
AryShiftReg (Shift Register) 2-352
AryShiftRegLR (Reversible Shift Register) 2-354
ArySHL (Array N-element Left Shift) 2-357
ArySHR (Array N-element Right Shift) 2-357
ArySub (Array Subtraction) 2-197
ArySubV (Array Value Subtraction) 2-199
AryToBCD (Array BCD Conversion) 2-227
AryToBin (Array Unsigned Integer Conversion) 2-229
AryToString (Array-to-Text String Conversion) 2-443
AryXor (Array Logical Exclusive OR) 2-293
AryXorN (Array Logical Exclusive NOR) 2-293
ASIN (Principal Arc Sine) .. 2-177
ATAN (Principal Arc Tangent) 2-177

B

Band (Deadband Control) ... 2-304
BCD Data Type-to-Unsigned Integer

Conversion Group .. 2-218
BCDsToBin

(Signed BCD-to-Signed Integer Conversion) 2-221
BCD_TO_** (BCD Data Type-to-Unsigned

Integer Conversion Group) 2-218
BCD-to-Unsigned Integer Conversion Group 2-212
Binary Code-to-Gray Code Conversion 2-438
Binary Selection .. 2-298
BinToBCDs_**

(Signed Integer-to-BCD Conversion Group) 2-224
BinToGray_**

(Binary Code-to-Gray Code Conversion) 2-438
Bit Counter .. 2-376
Bit Decoder ... 2-371
Bit Encoder ... 2-374

Bit Pattern Copy
(Bit String to Real Number) Group 2-341

Bit Pattern Copy
(Bit String to Signed Integer) Group 2-339

Bit Pattern Copy
(Real Number to Bit String) Group 2-347

Bit Pattern Copy
(Real Number to Signed Integer) Group 2-349

Bit Pattern Copy
(Signed Integer to Bit String) Group 2-343

Bit Pattern Copy
(Signed Integer to Real Number) Group 2-345

Bit Reversal ... 2-291
Bit String Conversion Group 2-279
Bit String-to-Bit String Conversion Group 2-242
Bit String-to-Integer Conversion Group 2-239
Bit String-to-Real Number Conversion Group 2-244
Bit String-to-Text String Conversion Group 2-255
BitCnt (Bit Counter) ... 2-376
Block Set ... 2-329
BREAK (Break Loop) .. 2-81
Break Down Date and Time 2-597
Break Loop .. 2-81
Broken Line Approximation 2-384
Byte Data Join Group .. 2-451
Byte Data Separation .. 2-449

C

Calculate Array CRC-16 .. 2-516
Calculate Array CRC-CCITT 2-514
Calculate Array LRC Group 2-512
Calculate Text String CRC-16 2-510
Calculate Text String CRC-CCITT 2-508
Calculate Text String LRC ... 2-506
Case .. 2-28
CASE (Case) .. 2-28
Change File Name .. 2-852
Check for Leap Year .. 2-588
Check Subrange Variable ... 2-868
CheckReal (Real Number Check) 2-209
Checksum Calculation .. 2-504
ChkLeapYear (Check for Leap Year) 2-588
ChkRange (Check Subrange Variable) 2-868
CIPClose (Close CIP Class 3 Connection) 2-704
CIPOpen (Open CIP Class 3 Connection) 2-684
CIPRead (Read Variable Class 3 Explicit) 2-692
CIPSend (Send Explicit Message Class 3) 2-701
CIPUCMM Read (Read Variable UCMM Explicit) 2-706
CIPUCMM Send (Send Explicit Message UCMM) ... 2-716
CIPUCMM Write (Write Variable UCMM Explicit) 2-710
CIPWrite (Write Variable Class 3 Explicit) 2-696
Clear (Initialize) ... 2-337
Clear String ... 2-537
Clear TCP/UDP Socket Receive Buffer 2-789
ClearString (Clear String) .. 2-537
Close CIP Class 3 Connection 2-704
Close File .. 2-806
Close TCP/UDP Socket .. 2-786

Index-4 NJ-series Instructions Reference Manual (W502)

 Index

Cmp (Compare) ... 2-98
ColmToLine_**

(Column to Line Conversion Group) 2-377
Column to Line Conversion Group 2-377
Combine Real Number Mantissa and Exponent 2-421
Compare .. 2-98
CONCAT (Concatenate String) 2-520
CONCAT_DATE _TOD

(Concatenate Date and Time of Day) 2-564
Concatenate Date and Time of Day 2-564
Concatenate String .. 2-520
Connect EtherCAT Slave ... 2-752
Connect TCP Socket ... 2-770
Conversion from Byte Array 2-458
Conversion to Byte Array ... 2-453
Convert Date and Time to Seconds 2-574
Convert Date to Seconds .. 2-576
Convert Days to Month .. 2-591
Convert Nanoseconds to Time 2-585
Convert Seconds to Date .. 2-580
Convert Seconds to Date and Time 2-578
Convert Seconds to Time .. 2-586
Convert Seconds to Time of Day 2-582
Convert Time of Day to Seconds 2-577
Convert Time to Nanoseconds 2-583
Convert Time to Seconds .. 2-584
Convert to Lowercase ... 2-538
Convert to Uppercase ... 2-538
Copy File ... 2-840
Copy**To*** (Bit Pattern Copy

(Bit String to Real Number) Group) 2-341
Copy**To*** (Bit Pattern Copy

(Real Number to Bit String) Group) 2-347
Copy**ToNum (Bit Pattern Copy

(Bit String to Signed Integer) Group) 2-339
Copy**ToNum (Bit Pattern Copy

(Real Number to Signed Integer) Group) 2-349
CopyNumTo** (Bit Pattern Copy

(Signed Integer to Bit String) Group) 2-343
CopyNumTo** (Bit Pattern Copy

(Signed Integer to Real Number) Group) 2-345
COS (Cosine in Radians) .. 2-174
Cosine in Radians ... 2-174
Create Directory .. 2-857
Create UDP Socket ... 2-754
Create User-defined Error ... 2-610
Create User-defined Information 2-639
CTD (Down-counter) ... 2-134
CTD_** (Down-counter Group) 2-136
CTU (Up-counter) .. 2-138
CTU_** (Up-counter Group) 2-140
CTUD (Up-down Counter) ... 2-142
CTUD_** (Up-down Counter Group) 2-146

D

Data Exchange .. 2-331
Data Trace Sampling ... 2-602
Data Trace Trigger ... 2-605

Date and Time-to-Text String Conversion 2-433
DateStructToDt (Join Time) 2-599
DateToSec (Convert Date to Seconds) 2-576
DateToString (Date-to-Text String Conversion) 2-435
Date-to-Text String Conversion 2-435
DaysToMonth (Convert Days to Month) 2-591
Dead Zone Control .. 2-307
Deadband Control ... 2-304
Dec (Decrement) ... 2-189
Decoder (Bit Decoder) ... 2-371
Decrement ... 2-189
Degrees to Radians ... 2-172
DegToRad (Degrees to Radians) 2-172
DELETE (Delete String) .. 2-531
Delete Directory ... 2-860
Delete File ... 2-848
Delete from Stack .. 2-480
Delete String .. 2-531
Determine Task Status .. 2-873
DirCreate (Create Directory) 2-857
DirRemove (Delete Directory) 2-860
Disconnect EtherCAT Slave 2-746
Dispart8Bit (Byte Data Separation) 2-449
DispartDigit (Four-bit Separation) 2-445
DispartReal (Separate Mantissa and Exponent) 2-418
DIV (Division) .. 2-166
Divide Time ... 2-562
Division .. 2-166
DIVTIME (Divide Time) ... 2-562
Down (Down Trigger) ... 2-40
Down Trigger ... 2-40
Down-counter .. 2-134
Down-counter Group ... 2-136
DT_TO_DATE (Extract Date from Date and Time) 2-568
DtToDateStruct (Break Down Date and Time) 2-597
DtToSec (Convert Date and Time to Seconds) 2-574
DtToString

(Date and Time-to-Text String Conversion) 2-433
DT_TO_TOD

(Extract Time of Day from Date and Time) 2-566

E

EC_CoESDORead (Read EtherCAT CoE SDO) 2-729
EC_CoESDOWrite (Write EtherCAT CoE SDO) 2-726
EC_ConnectSlave (Connect EtherCAT Slave) 2-752
EC_CopyMon (Transfer EtherCAT Packets) 2-744
EC_DisconnectSlave (Disconnect EtherCAT Slave) . 2-746
EC_SaveMon (Save EtherCAT Packets) 2-742
EC_StartMon (Start EtherCAT Packet Monitor) 2-734
EC_StopMon (Stop EtherCAT Packet Monitor) 2-740
Encoder (Bit Encoder) ... 2-374
End .. 2-60
End (End) .. 2-60
EQ (Equal) ... 2-84
EQascii (Text String Comparison Equal) 2-91
Equal ... 2-84
Exchange (Data Exchange) 2-331
ExecPMCR (Protocol Macro) 2-648

Index-5NJ-series Instructions Reference Manual (W502)

I

Index

EXP (Natural Exponential Operation) 2-185
Exponentiation .. 2-187
EXPT (Exponentiation) ... 2-187
Extract Date from Date and Time 2-568
Extract Time of Day from Date and Time 2-566

F

FileClose (Close File) .. 2-806
FileCopy (Copy File) ... 2-840
FileGets (Get Text String) ... 2-826
FileOpen (Open File) .. 2-803
FilePuts (Put Text String) .. 2-833
FileRead (Read File) ... 2-812
FileReadVar (Read Variable from File) 2-799
FileRemove (Delete File) .. 2-848
FileRename (Change File Name) 2-852
FileSeek (Seek File) .. 2-809
FileWrite (Write File) ... 2-819
FileWriteVar (Write Variable to File) 2-794
FIND (Find String) ... 2-526
Find String .. 2-526
First In First Out .. 2-475
Fixed-decimal Number-to-Text String Conversion 2-428
Fixed-length Decimal Text String Conversion 2-423
Fixed-length Hexadecimal Text String Conversion 2-423
FixNumToString (Fixed-decimal Number-to-Text

String Conversion) ... 2-428
FOR (Repeat Start) ... 2-76
Four-bit Join Group ... 2-447
Four-bit Separation ... 2-445
Fraction (Real Number Fraction) 2-207
F_TRIG (Down Trigger) ... 2-40

G

GE (Greater Than Or Equal) 2-88
GEascii (Text String Comparison Greater Than

or Equal) ... 2-95
Get Byte Length .. 2-535
Get Clock Pulse Group ... 2-880
Get Days in Month .. 2-589
Get EtherCAT Error Status .. 2-637
Get EtherNet/IP Error Status 2-628
Get I/O Bus Error Status ... 2-626
Get Incrementing Free-running Counter Group 2-881
Get Motion Control Error Status 2-634
Get Number of Array Elements 2-463
Get Number of Records .. 2-497
Get PLC Controller Error Status 2-622
Get String Any ... 2-524
Get String Left ... 2-522
Get String Right .. 2-522
Get Text String .. 2-826
Get Time of Day .. 2-572
Get User-defined Error Status 2-617
Get**Clk (Get Clock Pulse Group) 2-880
Get**Cnt

(Get Incrementing Free-running Counter Group) ... 2-881

GetAlarm (Get User-defined Error Status) 2-617
GetByteLen (Get Byte Length) 2-535
GetCJBError (Get I/O Bus Error Status) 2-626
GetDayOfWeek (Get Day of Week) 2-593
GetDaysOfMonth (Get Days in Month) 2-589
GetECError (Get EtherCAT Error Status) 2-637
GetEIPError (Get EtherNet/IP Error Status) 2-628
GetMCError (Get Motion Control Error Status) 2-634
GetMyTaskStatus (Read Current Task Status) 2-870
GetNTPStatus (Read NTP Status) 2-645
GetPLCError (Get PLC Controller Error Status) 2-622
GetTime (Get Time of Day) 2-572
GetTraceStatus (Read Data Trace Status) 2-607
GetWeekOfYear (Get Week Number) 2-595
Gray (Gray Code Conversion) 2-381
Gray Code Conversion .. 2-381
Gray Code-to-Binary Code Conversion Group 2-438
GrayToBin_**

(Gray Code-to-Binary Code Conversion Group) 2-438
Greater Than ... 2-88
Greater Than Or Equal ... 2-88
GT (Greater Than) .. 2-88
GTascii (Text String Comparison Greater Than) 2-95

H

Hexadecimal Text String-to-Number
Conversion Group .. 2-426

HexStringToNum_** (Hexadecimal Text String-to-Number
Conversion Group) ... 2-426

Hundred-ms Timer .. 2-129

I

If .. 2-24
IF (If) ... 2-24
Inc (Increment) .. 2-189
Increment .. 2-189
Initialize ... 2-337
INSERT (Insert String) .. 2-533
Insert into Stack .. 2-478
Insert String .. 2-533
Integer Conversion Group ... 2-277
Integer-to-Bit String Conversion Group 2-235
Integer-to-Integer Conversion Group 2-232
Integer-to-Real Number Conversion Group 2-237
Integer-to-Text String Conversion Group 2-253

J

JMP (Jump) ... 2-74
Join Time .. 2-599
Jump ... 2-74

L

Last In First Out .. 2-475
LD (Load) .. 2-14
LDN (Load NOT) ... 2-14

Index-6 NJ-series Instructions Reference Manual (W502)

 Index

LE (Less Than Or Equal) ... 2-88
LEascii (Text String Comparison

Less Than or Equal) ... 2-95
LEFT (Get String Left) ... 2-522
LEN (String Length) ... 2-528
Less Than .. 2-88
Less Than Or Equal .. 2-88
LIMIT (Limiter) ... 2-302
Limiter .. 2-302
Line to Column Conversion 2-379
LineToColm (Line to Column Conversion) 2-379
LN (Natural Logarithm) .. 2-182
Load .. 2-14
Load NOT .. 2-14
Lock (Lock Tasks) .. 2-875
Lock Tasks ... 2-875
LOG (Logarithm Base 10) ... 2-182
Logarithm Base 10 .. 2-182
Logical AND .. 2-286
Logical Exclusive OR .. 2-286
Logical OR ... 2-286
LrealToFormatString

(LREAL-to-Formatted Text String) 2-264
LREAL-to-Formatted Text String 2-264
LT (Less Than) .. 2-88
LTascii (Text String Comparison Less Than) 2-95

M

Master Control End ... 2-62
Master Control Start .. 2-62
MAX (Maximum) .. 2-310
Maximum ... 2-310
Maximum Record Search .. 2-499
MC (Master Control Start) ... 2-62
MCR (Master Control End) .. 2-62
MemCopy (Memory Copy) .. 2-327
Memory Copy .. 2-327
MID (Get String Any) ... 2-524
MIN (Minimum) .. 2-310
Minimum .. 2-310
Minimum Record Search ... 2-499
MOD (Modulo-division) .. 2-168
ModReal (Real Number Modulo-division) 2-205
Modulo-division ... 2-168
Move .. 2-318
MOVE (Move) .. 2-318
Move Bit .. 2-321
Move Bits ... 2-325
Move Digit .. 2-323
MoveBit (Move Bit) .. 2-321
MoveDigit (Move Digit) .. 2-323
Moving Average ... 2-387
MovingAverage (Moving Average) 2-387
MUL (Multiplication) ... 2-161
MulOU

(Multiplication with Overflow/Underflow Check) 2-163
MULTIME (Multiply Time) .. 2-560
Multiplexer ... 2-300

Multiplication .. 2-161
Multiplication with Overflow/Underflow Check 2-163
Multiply Time ... 2-560
MUX (Multiplexer) .. 2-300

N

NanoSecToTime (Convert Nanoseconds to Time) 2-585
Natural Exponential Operation 2-185
Natural Logarithm .. 2-182
N-bit Left Shift .. 2-360
N-bit Right Shift ... 2-360
NE (Not Equal) .. 2-86
NEascii (Text String Comparison Not Equal) 2-93
Neg (Reverse Sign) ... 2-369
NEXT (Repeat End) .. 2-76
NOT (Bit Reversal) .. 2-291
Not Equal ... 2-86
NSHLC (Shift N-bits Left with Carry) 2-362
NSHRC (Shift N-bits Right with Carry) 2-362
NumToDecString (Fixed-length Decimal

Text String Conversion) .. 2-423
NumToHexString (Fixed-length Hexadecimal

Text String Conversion) .. 2-423

O

Off-Delay Timer ... 2-120
On-Delay Timer ... 2-116
Open CIP Class 3 Connection 2-684
Open File ... 2-803
OR ... 2-18
OR (Logical OR) .. 2-286
OR (OR) .. 2-18
OR NOT ... 2-18
ORN (OR NOT) ... 2-18
Out (Output) .. 2-20
OutABit (Output A Bit) ... 2-57
OutNot (Output NOT) .. 2-20
Output .. 2-20
Output A Bit ... 2-57
Output NOT ... 2-20

P

PID Control with Autotuning 2-393
PIDAT (PID Control with Autotuning) 2-393
Principal Arc Cosine .. 2-177
Principal Arc Sine .. 2-177
Principal Arc Tangent .. 2-177
Protocol Macro .. 2-648
Push onto Stack .. 2-466
Put Text String ... 2-833
PWLApprox (Broken Line Approximation) 2-384

R

Radians to Degrees ... 2-172
RadToDeg (Radians to Degrees) 2-172

Index-7NJ-series Instructions Reference Manual (W502)

I

Index

Rand (Random Number) ... 2-191
Random Number ... 2-191
Range Record Search .. 2-487
Read Current Task Status ... 2-870
Read Data Trace Status .. 2-607
Read EtherCAT CoE SDO .. 2-729
Read File ... 2-812
Read NTP Status .. 2-645
Read TCP Socket Status .. 2-783
Read Variable Class 3 Explicit 2-692
Read Variable from File .. 2-799
Read Variable UCMM Explicit 2-706
ReadNbit_** (N-bit Read Group) 2-864
Real Number Check .. 2-209
Real Number Conversion Group 2-281
Real Number Fraction ... 2-207
Real Number Modulo-division 2-205
Real Number-to-Bit String Conversion Group 2-249
Real Number-to-Integer Conversion Group 2-246
Real Number-to-Real Number Conversion Group 2-251
Real Number-to-Text String Conversion Group 2-257
RealToFormatString

(REAL-to-Formatted Text String) 2-259
REAL-to-Formatted Text String 2-259
RecMax (Maximum Record Search) 2-499
RecMin (Minimum Record Search) 2-499
RecNum (Get Number of Records) 2-497
Record Search .. 2-482
Record Sort ... 2-492
RecRangeSearch (Range Record Search) 2-487
RecSearch (Record Search) 2-482
RecSort (Record Sort) .. 2-492
Repeat .. 2-34
REPEAT (Repeat) ... 2-34
Repeat End ... 2-76
Repeat Start .. 2-76
REPLACE (Replace String) 2-529
Replace String .. 2-529
Reset ... 2-50
Reset (Reset) .. 2-50
Reset A Bit .. 2-55
Reset Bits .. 2-53
Reset EtherCAT Controller Error 2-636
Reset I/O Bus Error ... 2-624
Reset Motion Control Error 2-630
Reset PLC Controller Error 2-619
Reset User-defined Error .. 2-615
ResetABit (Reset A Bit) ... 2-55
ResetAlarm (Reset User-defined Error) 2-615
ResetBits (Reset Bits) ... 2-53
ResetCJBError (Reset I/O Bus Error) 2-624
ResetECError (Reset EtherCAT Controller Error) 2-636
ResetMCError (Reset Motion Control Error) 2-630
ResetPLCError (Reset PLC Controller Error) 2-619
Reset-Priority Keep ... 2-46
ResetUnit (Restart Unit) .. 2-641
Restart Unit ... 2-641
Return ... 2-61
RETURN (Return) ... 2-61

Reverse Sign ... 2-369
Reversible Shift Register ... 2-354
RIGHT (Get String Right) .. 2-522
ROL (Rotate N-bits Left) ... 2-364
ROR (Rotate N-bits Right) .. 2-364
Rotate N-bits Left .. 2-364
Rotate N-bits Right .. 2-364
Round (Round Off Real Number) 2-283
Round Off Real Number ... 2-283
Round Up Real Number .. 2-283
RoundUp (Round Up Real Number) 2-283
RS (Reset-Priority Keep) .. 2-46
R_TRIG (Up Trigger) ... 2-40

S

Save EtherCAT Packets .. 2-742
SCU Receive Serial .. 2-665
SCU Send Serial ... 2-658
SecToDate (Convert Seconds to Date) 2-580
SecToDt (Convert Seconds to Date and Time) 2-578
SecToTime (Convert Seconds to Time) 2-586
SecToTod (Convert Seconds to Time of Day) 2-582
Seek File ... 2-809
SEL (Binary Selection) .. 2-298
Send Command .. 2-674
Send Explicit Message Class 3 2-701
Send Explicit Message UCMM 2-716
SendCmd (Send Command) 2-674
Separate Mantissa and Exponent 2-418
SerialRcv (SCU Receive Serial) 2-665
SerialSend (SCU Send Serial) 2-658
Set ... 2-50
Set (Set) .. 2-50
Set A Bit .. 2-55
Set Bits .. 2-53
Set Time .. 2-570
SetABit (Set A Bit) ... 2-55
SetAlarm (Create User-defined Error) 2-610
SetBits (Set Bits) ... 2-53
SetBlock (Block Set) ... 2-329
SetInfo (Create User-defined Information) 2-639
Set-Priority Keep ... 2-48
SetTime (Set Time) ... 2-570
Shift N-bits Left with Carry .. 2-362
Shift N-bits Right with Carry 2-362
Shift Register .. 2-352
SHL (N-bit Left Shift) ... 2-360
SHR (N-bit Right Shift) .. 2-360
Signed BCD-to-Signed Integer Conversion 2-221
Signed Integer-to-BCD Conversion Group 2-224
SIN (Sine in Radians) ... 2-174
Sine in Radians ... 2-174
SizeOfAry (Get Number of Array Elements) 2-463
SktClearBuf

(Clear TCP/UDP Socket Receive Buffer) 2-789
SktClose (Close TCP/UDP Socket) 2-786
SktGetTCP Status (Read TCP Socket Status) 2-783
SktTCP Connect (Connect TCP Socket) 2-770

Index-8 NJ-series Instructions Reference Manual (W502)

 Index

SktTCPAccept (Accept TCP Socket) 2-767
SktTCPRcv (TCP Socket Receive) 2-777
SktTCPSend (TCP Socket Send) 2-780
SktUDP Create (Create UDP Socket) 2-754
SktUDPRcv (UDP Socket Receive) 2-761
SktUDPSend (UDP Socket Send) 2-764
SQRT (Square Root) ... 2-180
Square Root .. 2-180
SR (Set-Priority Keep) ... 2-48
StackDel (Delete from Stack) 2-480
StackFIFO (First In First Out) 2-475
StackIns (Insert into Stack) 2-478
StackLIFO (Last In First Out) 2-475
StackPush (Push onto Stack) 2-466
Start EtherCAT Packet Monitor 2-734
Stop EtherCAT Packet Monitor 2-740
String Length ... 2-528
StringCRC16 (Calculate Text String CRC-16) 2-510
StringCRCCCITT

(Calculate Text String CRC-CCITT) 2-508
StringLRC (Calculate Text String LRC) 2-506
StringSum (Checksum Calculation) 2-504
STRING_TO_** (Text String-to-Bit String

Conversion Group) ... 2-272
STRING_TO_**

(Text String-to-Integer Conversion Group) 2-270
STRING_TO_**

(Text String-to-Real Number Conversion Group) 2-274
StringToAry (Text String-to-Array Conversion) 2-441
StringToFixNum (Text String-to-Fixed-decimal 2-430
SUB (Subtraction) ... 2-156
SUB_DATE_DATE (Subtract Date) 2-555
SUB_DT_DT (Subtract Date and Time) 2-556
SUB_DT_TIME

(Subtract Time from Date and Time) 2-558
SubOU

(Subtraction with Overflow/Underflow Check) 2-158
SUB_TIME (Subtract Time) 2-550
SUB_TOD_TIME

(Subtract Time from Time of Day) 2-552
SUB_TOD_TOD (Subtract Time of Day) 2-554
Subtract Date .. 2-555
Subtract Date and Time .. 2-556
Subtract Time .. 2-550
Subtract Time from Date and Time 2-558
Subtract Time from Time of Day 2-552
Subtract Time of Day ... 2-554
Subtraction .. 2-156
Subtraction with Overflow/Underflow Check 2-158
Swap (Swap Bytes) ... 2-368
Swap Bytes ... 2-368

T

Table Comparison ... 2-102
TableCmp (Table Comparison) 2-102
TAN (Tangent in Radians) ... 2-174
Tangent in Radians .. 2-174
Task_IsActive (Determine Task Status) 2-873

TCP Socket Receive ... 2-777
TCP Socket Send .. 2-780
Test A Bit ... 2-43
Test A Bit NOT ... 2-43
TestABit (Test A Bit) ... 2-43
TestABitN (Test A Bit NOT) .. 2-43
Text String Comparison Equal 2-91
Text String Comparison Greater Than 2-95
Text String Comparison Greater Than or Equal 2-95
Text String Comparison Less Than 2-95
Text String Comparison Less Than or Equal 2-95
Text String Comparison Not Equal 2-93
Text String-to-Array Conversion 2-441
Text String-to-Bit String Conversion Group 2-272
Text String-to-Fixed-decimal Conversion 2-430
Text String-to-Integer Conversion Group 2-270
Text String-to-Real Number Conversion Group 2-274
Time of Day-to-Text String Conversion 2-436
Timer (Hundred-ms Timer) .. 2-129
Timer Pulse ... 2-123
TimeToNanoSec (Convert Time to Nanoseconds) 2-583
TimeToSec (Convert Time to Seconds) 2-584
TO_** (Bit String Conversion Group) 2-279
TO_** (Integer Conversion Group) 2-277
TO_** (Real Number Conversion Group) 2-281
ToAryByte (Conversion to Byte Array) 2-453
TodToSec (Convert Time of Day to Seconds) 2-577
TodToString

(Time of Day-to-Text String Conversion) 2-436
TOF (Off-Delay Timer) ... 2-120
ToLCase (Convert to Lowercase) 2-538
TON (On-Delay Timer) .. 2-116
ToUCase (Convert to Uppercase) 2-538
TP (Timer Pulse) ... 2-123
TraceSamp (Data Trace Sampling) 2-602
TraceTrig (Data Trace Trigger) 2-605
TransBits (Move Bits) ... 2-325
Transfer EtherCAT Packets .. 2-744
Trim String Left .. 2-540
Trim String Right .. 2-540
TrimL (Trim String Left) .. 2-540
TrimR (Trim String Right) ... 2-540
TRUNC (Truncate) ... 2-283
Truncate ... 2-283

U

UDP Socket Receive ... 2-761
UDP Socket Send .. 2-764
Unite8Bit_** (Byte Data Join Group) 2-451
UniteDigit_** (Four-bit Join Group) 2-447
UniteReal

(Combine Real Number Mantissa and Exponent) .. 2-421
Unlock (Unlock Tasks) ... 2-875
Unlock Tasks ... 2-875
Unsigned Integer-to-BCD Conversion Group 2-215
Up (Up Trigger) .. 2-40
Up Trigger .. 2-40
Up-counter ... 2-138

Index-9NJ-series Instructions Reference Manual (W502)

I

Index

Up-counter Group ... 2-140
Up-down Counter .. 2-142
Up-down Counter Group ... 2-146

W

While ... 2-32
WHILE (While) .. 2-32
Write EtherCAT CoE SDO .. 2-726
Write File ... 2-819
Write Variable Class 3 Explicit 2-696
Write Variable to File ... 2-794
Write Variable UCMM Explicit 2-710
WriteNbit_** (N-bit Write Group) 2-866

X

XOR (Logical Exclusive OR) 2-286
XORN (Logical Exclusive NOR) 2-289

Z

Zone (Dead Zone Control) .. 2-307
Zone Comparison ... 2-100
ZoneCmp (Zone Comparison) 2-100

Index-10 NJ-series Instructions Reference Manual (W502)

 Index

Authorized Distributor:

In the interest of product improvement,
specifications are subject to change without notice.

Cat. No. W502-E1-01 1107

 © OMRON Corporation 2011 All Rights Reserved.

OMRON Corporation Industrial Automation Company

OMRON ELECTRONICS LLC
One Commerce Drive Schaumburg,
IL 60173-5302 U.S.A.
Tel: (1) 847-843-7900/Fax: (1) 847-843-7787

Regional Headquarters
OMRON EUROPE B.V.
Wegalaan 67-69-2132 JD Hoofddorp
The Netherlands
Tel: (31)2356-81-300/Fax: (31)2356-81-388

 Contact: www.ia.omron.com
Tokyo, JAPAN

OMRON ASIA PACIFIC PTE. LTD.
No. 438A Alexandra Road # 05-05/08 (Lobby 2),
Alexandra Technopark,
Singapore 119967
Tel: (65) 6835-3011/Fax: (65) 6835-2711

OMRON (CHINA) CO., LTD.
Room 2211, Bank of China Tower,
200 Yin Cheng Zhong Road,
PuDong New Area, Shanghai, 200120, China
Tel: (86) 21-5037-2222/Fax: (86) 21-5037-2200

	NJ-series Instructions Reference Manual
	Introduction
	Relevant Manuals
	Manual Configuration
	Sections in this Manual
	CONTENTS
	Read and Understand this Manual
	Safety Precautions
	Precautions for Safe Use
	Precautions for Correct Use
	Regulations and Standards
	Unit Versions
	Related Manuals
	Revision History
	Section 1 Instruction Set
	Instruction Set

	Section 2 Instruction Descriptions
	Using this Section
	Ladder Diagram Instructions
	LD and LDN
	AND and ANDN
	OR and ORN
	Out and OutNot

	ST Statement Instructions
	IF
	CASE
	WHILE
	REPEAT
	RETURN
	FOR
	EXIT

	Sequence Input Instructions
	R_TRIG (Up) and F_TRIG (Down)
	TestABit and TestABitN

	Sequence Output Instructions
	RS
	SR
	Set and Reset
	SetBits and ResetBits
	SetABit and ResetABit
	OutABit

	Sequence Control Instructions
	End
	RETURN
	MC and MCR
	JMP
	FOR and NEXT
	BREAK

	Comparison Instructions
	EQ (=)
	NE (<>)
	LT (<), LE (<=), GT (>), and GE (>=)
	EQascii
	NEascii
	LTascii, LEascii, GTascii, and GEascii
	Cmp
	ZoneCmp
	TableCmp
	AryCmpEQ and AryCmpNE
	AryCmpLT, AryCmpLE, AryCmpGT, and AryCmpGE
	AryCmpEQV and AryCmpNEV
	AryCmpLTV, AryCmpLEV, AryCmpGTV, and AryCmpGEV

	Timer Instructions
	TON
	TOF
	TP
	AccumulationTimer
	Timer

	Counter Instructions
	CTD
	CTD_**
	CTU
	CTU_**
	CTUD
	CTUD_**

	Math Instructions
	ADD (+)
	AddOU (+OU)
	SUB (-)
	SubOU (-OU)
	MUL (*)
	MulOU (*OU)
	DIV (/)
	MOD
	ABS
	RadToDeg and DegToRad
	SIN, COS, and TAN
	ASIN, ACOS, and ATAN
	SQRT
	LN and LOG
	EXP
	EXPT (**)
	Inc and Dec
	Rand
	AryAdd
	AryAddV
	ArySub
	ArySubV
	AryMean
	ArySD
	ModReal
	Fraction
	CheckReal

	BCD Conversion Instructions
	_BCD_TO_*
	_TO_BCD_*
	BCD_TO_**
	BCDsToBin
	BinToBCDs_**
	AryToBCD
	AryToBin

	Data Type Conversion Instructions
	TO* (Integer-to-Integer Conversion Group)
	TO* (Integer-to-Bit String Conversion Group)
	TO* (Integer-to-Real Number Conversion Group)
	TO* (Bit String-to-Integer Conversion Group)
	TO* (Bit String-to-Bit String Conversion Group)
	TO* (Bit String-to-Real Number Conversion Group)
	TO* (Real Number-to-Integer Conversion Group)
	TO* (Real Number-to-Bit String Conversion Group)
	TO* (Real Number-to-Real Number Conversion Group)
	**_TO_STRING (Integer-to-Text String Conversion Group)
	**_TO_STRING (Bit String-to-Text String Conversion Group)
	**_TO_STRING (Real Number-to- Text String Conversion Group)
	RealToFormatString
	LrealToFormatString
	STRING_TO_** (Text String-to- Integer Conversion Group)
	STRING_TO_** (Text String-to-Bit String Conversion Group)
	STRING_TO_** (Text String-to- Real Number Conversion Group)
	TO_** (Integer Conversion Group)
	TO_** (Bit String Conversion Group)
	TO_** (Real Number Conversion Group)
	TRUNC, Round, and RoundUp

	Bit String Processing Instructions
	AND (&), OR, and XOR
	XORN
	NOT
	AryAnd, AryOr, AryXor, and AryXorN

	Selection Instructions
	SEL
	MUX
	LIMIT
	Band
	Zone
	MAX and MIN
	AryMax and AryMin
	ArySearch

	Data Movement Instructions
	MOVE
	MoveBit
	MoveDigit
	TransBits
	MemCopy
	SetBlock
	Exchange
	AryExchange
	AryMove
	Clear
	Copy**ToNum (Bit String to Signed Integer)
	Copy**To*** (Bit String to Real Number)
	CopyNumTo** (Signed Integer to Bit String)
	CopyNumTo** (Signed Integer to Real Number)
	Copy**To*** (Real Number to Bit String)
	Copy**ToNum (Real Number to Signed Integer)

	Shift Instructions
	AryShiftReg
	AryShiftRegLR
	ArySHL and ArySHR
	SHL and SHR
	NSHLC and NSHRC
	ROL and ROR

	Conversion Instructions
	Swap
	Neg
	Decoder
	Encoder
	BitCnt
	ColmToLine_**
	LineToColm
	Gray
	PWLApprox
	MovingAverage
	PIDAT
	DispartReal
	UniteReal
	NumToDecString and NumToHexString
	HexStringToNum_**
	FixNumToString
	StringToFixNum
	DtToString
	DateToString
	TodToString
	GrayToBin_** and BinToGray_**
	StringToAry
	AryToString
	DispartDigit
	UniteDigit_**
	Dispart8Bit
	Unite8Bit_**
	ToAryByte
	AryByteTo
	SizeOfAry

	Stack and Table Instructions
	StackPush
	StackFIFO and StackLIFO
	StackIns
	StackDel
	RecSearch
	RecRangeSearch
	RecSort
	RecNum
	RecMax and RecMin

	FCS Instructions
	StringSum
	StringLRC
	StringCRCCCITT
	StringCRC16
	AryLRC_**
	AryCRCCCITT
	AryCRC16

	Text String Instructions
	CONCAT
	LEFT and RIGHT
	MID
	FIND
	LEN
	REPLACE
	DELETE
	INSERT
	GetByteLen
	ClearString
	ToUCase and ToLCase
	TrimL and TrimR

	Time and Time of Day Instructions
	ADD_TIME
	ADD_TOD_TIME
	ADD_DT_TIME
	SUB_TIME
	SUB_TOD_TIME
	SUB_TOD_TOD
	SUB_DATE_DATE
	SUB_DT_DT
	SUB_DT_TIME
	MULTIME
	DIVTIME
	CONCAT_DATE_TOD
	DT_TO_TOD
	DT_TO_DATE
	SetTime
	GetTime
	DtToSec
	DateToSec
	TodToSec
	SecToDt
	SecToDate
	SecToTod
	TimeToNanoSec
	TimeToSec
	NanoSecToTime
	SecToTime
	ChkLeapYear
	GetDaysOfMonth
	DaysToMonth
	GetDayOfWeek
	GetWeekOfYear
	DtToDateStruct
	DateStructToDt

	System Control Instructions
	TraceSamp
	TraceTrig
	GetTraceStatus
	SetAlarm
	ResetAlarm
	GetAlarm
	ResetPLCError
	GetPLCError
	ResetCJBError
	GetCJBError
	GetEIPError
	ResetMCError
	GetMCError
	ResetECError
	GetECError
	SetInfo
	ResetUnit
	GetNTPStatus

	Communications Instructions
	ExecPMCR
	SerialSend
	SerialRcv
	SendCmd
	CIPOpen
	CIPRead
	CIPWrite
	CIPSend
	CIPClose
	CIPUCMMRead
	CIPUCMMWrite
	CIPUCMMSend
	EC_CoESDOWrite
	EC_CoESDORead
	EC_StartMon
	EC_StopMon
	EC_SaveMon
	EC_CopyMon
	EC_DisconnectSlave
	EC_ConnectSlave
	SktUDPCreate
	SktUDPRcv
	SktUDPSend
	SktTCPAccept
	SktTCPConnect
	SktTCPRcv
	SktTCPSend
	SktGetTCPStatus
	SktClose
	SktClearBuf

	SD Memory Card Instructions
	FileWriteVar
	FileReadVar
	FileOpen
	FileClose
	FileSeek
	FileRead
	FileWrite
	FileGets
	FilePuts
	FileCopy
	FileRemove
	FileRename
	DirCreate
	DirRemove

	Other Instructions
	ReadNbit_**
	WriteNbit_**
	ChkRange
	GetMyTaskStatus
	Task_IsActive
	Lock and Unlock
	Get**Clk
	Get**Cnt

	Appendices
	A-1 Error Codes Related to Instructions
	A-2 Error Code Descriptions
	A-3 Error Code Details
	A-4 SDO Abort Codes

	Index
	Contact

